Lecture 2

Convergence and Accuracy

This lecture is a bit on the technical side, but the concepts introduced are critical to the
analysis of finite difference methods for ODE’s.

2.1 Convergence and Global Accuracy

As the timestep is decreased, i.e. At — 0, the approximation from a finite difference method
should converge to the solution of the ODE. This concept is known as convergence and is
stated mathematically as follows:

Definition 2.1 (Convergence) A finite difference method for solving,
= f(u,t) with — u(0) = ug
fromt =0 to T is convergent if

max _[v" — u(nAt)| — 0 as At — 0.
n=[0,T/At]

While convergence is a clear requirement for a good numerical method, the rate at which
the method converges is also important. This rate is known as the global order of accuracy.

Definition 2.2 (Global Order of Accuracy) A method has a global order of accuracy of
p if,

max _[v" —u(nAt)| < O(AtP) as At — 0,
n=[0,T/At]

for any f(u,t) that has p continuous derivatives (i.e. wup to and including OF f /Ot and
oPf/ouP).

Thus, methods with higher p will converge to u(t) more rapidly than those methods with
lower p.
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Figure 2.1: Forward Euler solution for & = —u? with u(0) = 1 with A¢ = 0.1, 0.2, and 0.4.
Forward Euler (symbols) and exact solution (line) are shown in first plot. Error is shown in
second plot.

Example 2.1 To demonstrate the ideas of global accuracy, we will consider an ODE with
f = —u? and an initial condition of u(0) = 1. The solution to this ODE isu = (1+t)~. Now,
let us apply the forward Euler method to solving this problem fort = 0 to 10. The approrimate
solutions for a range of At are shown Figure 2.1 along with the exact solution. The forward
Euler solutions are clearly approaching the exact solution as At decreases. Furthermore, the
error appears to be decreasing by approrimately a factor of 2 for every factor of 2 decrease
in At. For example, if we look at t = 4, the error is seen to be 0.028, 0.013, and 0.0065 for
At = 0.4, 0.2, and 0.1, respectively. Thus, from these results, we would conclude that the
global accuracy of the forward Fuler method is p = 1 since the error is proportional to At.

Example 2.2 Now, let’s apply the midpoint method on the problem from FExample 2.1. Sim-
tlar to the results observed in Example 1.5, the midpoint method shows an oscillatory behavior
(this may be a little hard to see because of scale of the figure, but the midpoint results are
basically oscillated about the exact solution, with the oscillations reducing for the smaller
timesteps). Note that the timesteps used in these results are a factor of 10 smaller than
those used with the forward Euler method in Fxample 2.1. Since the midpoint and the for-
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ward Euler method require essentially the same work per timestep, the midpoint results took
about a factor of 10 more work than the forward Euler method for this problem. Amnother
interesting aspect of these results is that the error is actually increasing as t increases (in
the forward Euler results in Figure 2.1, the error decreased as t increased). Regardless, the
method does appear convergent since as the timestep decreases, so are the errors. In fact,
it appears that the errors are decreasing by a factor of 4 for a factor of 2 decrease in At.
For example, if we look at t = 4, the error (averaged to remove the oscillations) is seen to
be approzrimately 0.02, 0.005, and 0.00125 for At = 0.04, 0.02, and 0.01, respectively. Thus,
from these results, we would conclude that the global accuracy of the midpoint method 1us
p = 2 since the error is proportional to At?.
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Figure 2.2: Forward Euler solution for & = —u? with u(0) = 1 with A¢ = 0.01, 0.02, and
0.04. Midpoint method (symbols) and exact solution (line) are shown in first plot. Error is
shown in second plot.

2.2 Local Accuracy

The analysis of convergence and global accuracy usually relies on the analsysi of consistency
and local accuracy. Both convergence/global accuracy and consistency/local accuracy are
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related to the behavior of the error as At — 0. However, while convergence/global accuracy
is associated with the behavior of the error over a finite time (i.e. from ¢ = 0 to 7)),
consistency /local accuracy is associated with the behavior of the error for a single timestep.
If we can quantify how much the error changes in a single timestep, then we will have an
indication of how much the error could change over a series of timesteps. Specifically, let’s
write the solution error at ¢t = 7" as a sum of the change in error at each timestep,

T/At
e(T) = u(T) — vT/At = ZA@

where Ae™ is the change in the error from iteration n — 1 to n (i.e. the local error). Suppose
the local error is O(A#P*1), then the global error might be expected to behave as,

T/At
eT) = Y Ae,

n=1

T/At

= Z O(APPH),

T
o

= O(AP).

Thus, the global error would be one order less than the local error because the local errors
sum for T'/At timesteps. However, the local errors do not have to sum this way if the
numerical method is not stable. But, if a numerical method is both consistent and stable,
this will be enough to guarantee convergence. For now, we concentrate on quantifying the
local accuracy and leave the discussion of consistency and stability for another lecture.

The local error (usually called the local truncation error) is the difference between the
approximate solution and the exact solution when using the exact solution for all of the
required data. Let’s consider the forward Euler method as an example. Recall, the forward
Euler method is,

vt =" 4+ Atf(v", 7).

Thus, for the forward Euler method, v"*! = v"*1(v™ At ¢"). Then, if we substitute the
exact solution into the right-hand side, we find,

v (u™, AL ) = w4+ Atf(u”, ).

Recall our notation that u is the exact solution; in this discussion we use the superscript
notation u™ = u(nAt) realizing that u = wu(t). The local truncation error for the forward
Euler method is then,

Local truncation error = v" ' (u", At, ") — u"*t'. (2.1)
Substitution gives,

Local truncation error = u™ + Atf(u",t") — u"*'.
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The local order of accuracy is then found using a Taylor series expansion about t = t".
Recall that f(u™,t") = 4(t") and

1
u(t™t) = u(t™) + Ata(t") + §At2a(t") + O(AP).
Substitution gives the local truncation error as,

Local truncation error = "+ Atf(u", ") — u™t,

= u(t") + Atu(t") — |u(t™) + Atu(t™) + %At%’(t”) + O(AF)

1
= —§At2u(t") + O(A).

Thus, the leading term of the local trunction error for the forward Euler method is —1 A¢?i(t") =
O(At?). Based on our previous argument, we expect that the global accuracy of the forward
Euler method should be O(At) (i.e. first order accuracy). This was in fact observed in
Example 2.1.

In-class Discussion 2.1 (Local accuracy of the midpoint method)

Definition 2.3 (Local Order of Accuracy) Suppose we are given a numerical method
for solving i = f(u,t) which we write in the following form,

vt = N(" T o o™ LAY
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For simplicity, the possible dependence on t at various n has been omitted in the definition
of N (though it should be there). The local truncation error, T, is defined as,

7= N o™ e AL) — ut
and the local order of accuracy p 1s,
17| = O(A#P*) as At — 0.

Note: the local order of accuracy is defined to be one less than the order of the leading term
of the local truncation error so that the local and global accuracy will be the same.

By the definition of the local order of accuracy, we see that the forward Euler method is
first order (p = 1) and the midpoint method is second order (p = 2).



