Lecture 16

Error Estimates
for the Monte Carlo Method

These notes address the accuracy of Monte Carlo methods in estimating probabilistic out-
puts. We will begin with errors when estimating the expected (i.e. mean) value, and then
move on to other quantities such as the variance and probability.

16.1 Mean

Let the output of interest be labelled y, e.g. y = T,,, in the previous turbine blade heat
transfer problem. For a Monte Carlo simulation of sample size, /N, label the individual
values from each trial be labelled, y; where 1 =1 to N. In this section, we will consider the
error made when estimating the expected value, also known as the mean, of y when using a
sample of size N. This Monte Carlo error estimate is in fact a direct application of the field
of statistics. If the distribution of y is f(y), then the expected value of y is,
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Using the N trials, a reasonable estimator for 1, would be,
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In-class Discussion 16.1 (Mean of T,,, from Monte Carlo) The variability of the sam-
ple mean of T, will be demonstrated in class using various sample sizes.

As seen in the In-class Discussion 16.1, the sample mean, T}, varies from Monte Carlo
simulation-to-simulation. However, as the sample size N increased, the variability of the
sample means decreased. One question which might be asked is: on average how accurate is
7 as an estimate of 11,7 To see this, take the expectation of J — p1,:

EY-py) = E@) -,
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Since the y;’s occur from a random sampling of the inputs when using the Monte Carlo
method, then E(y;) = y,, thus:
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This result shows that on average, the error in using 7 to approximate p, is zero. When an
estimator gives an expected error of zero, it is called an unbiased estimator.
To quantify the variability in 7, we use the variance of 7 — p,:
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Because the Monte Carlo method draws independent, random samples, then the following
two conditions hold,

E (i~ m)’] = E [y — w)*] = 0.
E(yi — py)(yi — py)] = 0.

Thus, the variance of the mean estimate is,
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Summarizing, we have found that,
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g =E@) =py, o02=E[T— )=

Note, the quantity, oy is known as the standard error of the estimator. Thus, the standard
error decreases with the square root of the sample size, v/ N. In other words, to decrease the
variability in the estimate by a factor of 10 requires a factor of 100 increase in the sample
size.

In-class Discussion 16.2 (Distribution of T},,) In-class we will discuss how Ty, is dis-
tributed from Monte Carlo simulation-to-simulation.
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For large sample size N, the central limit theorem can be applied to approximate the
distribution of 7. Specifically, the central limit theorem says for large N, the distribution of
7 will approach a normal distribution with mean g, and variation o, /v N:

f(@) — N(ug, o5) = N(py, Uy/\/N)-

We can now use this to make some very precise statements about the error in . Suppose,
for example, that we want to have 95% confidence on the possible values for p,. Since the
normal distribution has approximately 95% of its values within +2 standard deviations of
the mean, then we know that,
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If even higher confidence is wanted, then a wider range of error must be accepted. For ex-
ample, a 99% confidence interval occurs at 3 standard deviations for a normal distribution.
Thus,

} ~ 0.95.
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Unfortunately, in a practical situation, we cannot actually calculate the above error
estimates or confidence intervals because they depend on o, and we do not know o,. So, we
typically use an estimate of o,. In particular, an unbiased estimate of 05 is,

} ~ 0.99.
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So, the usual practice is to replace o, by s, in the various error estimates. Note, this does
introduce additional uncertainty in the quality of the estimate and for small sample sizes
this could be significant.

16.2 Other Estimators and Standard Errors

16.2.1 Probability

Often, Monte Carlo simulations are used to estimate the probability of an event occurring.
For example, in the turbine blade example, we might be interested in the probability that
the hot metal temperature exceeds a critical value. Generically, suppose that the event of
interest is A. Then, an estimate of P {A} is the fraction of times the event A occurs out of
the total number of trials,

. Na

p(A) = N

where N4 is the number of times A occurred in the Monte Carlo simulation of sample size
N. p(A) is actually an unbiased estimate of P {A}. To see this, define a function I(A4;)
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which equals 1 if event A occurred on the i-th trial, and equals zero if A did not occur. For
example, if the event A is defined as y > Yyimit, (A;) would be defined as,

1 ity > Yiima,
I(A;) = 1(yi > Yrimit) = { 0 ify < ylimz’z-

Using this definition, the number of times which A occurred can be written,
N
Na=> I(A). (16.2)
i=1

Finding the expectation of N4 gives,

BV = B[ 1040)

Since we assume that the Monte Carlo trials are drawn at random and independently from
each other, then E[I(A;)] = P {A}. Thus,

E[Ns] = NP {A}.
Finally, using this result it is easy to show that,

_ E[N4]

Blp(4)] = =5

= P{A}.

We can also use Equation (16.2) in combination with the central limit theorem to show
that hatp(A) is normally distributed for large N with mean P {A} and standard error,

_ \/P{A}(l—P{A}).
N

P

In-class Discussion 16.3 (Low Probability Estimation with Monte Carlo)
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16.2.2 Variance

The variance of y is given the symbol, 05, and is defined as,

oy = Bl(y — 11)*]. (16.3)

As noted in Equation (16.1), an unbiased estimator of o is s, that is:

Note, you should try proving this result.
To quantify the uncertainty in this estimator, we would like to determine the standard

€rror,
oo ={B[s2— 0]}

Unfortunately, this standard error is not known for general distributions of y. However, if y
has a normal distribution, then,

v N2

Under the assumption of y being normally distributed, the distribution of 53 is also related
to the chi-squared distribution. Specifically, (N — l)sz / 05 has a chi-square distribution with
N —1 degrees of freedom. Note that the requirement that y be normally distributed is much
more restrictive than the requirements for the mean error estimates to hold. For the mean
error estimates, the standard error, oy = 0,/ VN, is exact regardless of the distribution of y.
The application of the central limit theorem which gives that 7 is normally distributed only
requires that the number of samples is large but does constrain the distribution of y itself
(beyond requiring that f(y) is continuous).

16.2.3 Standard Deviation

Typically, the standard deviation of y is estimated using s,, i.e. the square root of the
variance estimator. This estimate, however, is biased,

Elsy] # oy.

The standard error for this estimate is only known exactly when y is normally distributed.

In that case,
1/2 Oy

o, = {Ells =)} =

16.3 Bootstrapping





