Lecture 15

Introduction to the Monte Carlo

Method

In this lecture, we begin our exploration of probabilistic methods, i.e. numerical methods
which are used to quantify the impact of uncertainty. In particular, we will focus on the
Monte Carlo method as it is the most common probabilistic method and is the foundation

for many others.

To make our discussion concrete, we will consider a simplified model for the heat transfer
through a cooled turbine blade as shown in Figure 15.1. A one-dimensional model of the
heat transfer along the dashed line is,
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Then, given the values of hgas, Tgas, krC, LTBC) Emy Lim,s Peoot, and Teoe, We can solve these
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Figure 15.1: Turbine blade heat transfer example
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four equations to determine, Trgc, Thun, Tine, and ¢. In the design of cooled turbine blades, a
key parameter is the hot-side metal temperature, 7,,,, because as this temperature increases,
the durability (usable life) of a blade decreases. Thus, the goal of the heat transfer design is
to maintain the metal temperatures at an acceptablly low value while minimizing cost.

Example 15.1 (Nominal Analysis of Turbine Blade Heat Transfer) A typical, de-
terministic analysis of the turbine blade heat transfer problem would assume that all of the
input parameters are at their nominal, i.e. design-intent, values. Suppose the design-intent

values were,
hgas = 3000 W/(m*K), heoot = 1000 W/(m2K),

Tyas = 1500 K,  Too = 600 K,
krse = LW/ (mK),  kp = 20W/(mK),
Lrgc = 0.0005m, L,, =0.003m.

The results of this design-intent analysis give,
Trpc = 1348.7K, T, =1121.8K, T, =1053.8K, ¢=453780W/m>.

Due to manufacturing variability, the parameters of the actual manufactured blades are
not exactly the design intent values but rather are distributed. For example, due to the
difficulty of applying the thermal barrier coating on the outside of the blades, the thickness
of the thermal barrier coating is variable. The role of probabilistic methods is to quantify the
impact of this type of variability on properties of interest (e.g. the hot-side metal tempera-
ture). The results of the probabilistic analysis can take many forms depending on the specific
application. In the example of the turbine blade where the hot-side metal temperature is
critical, the following information might be desired from a probabilistic analysis:

e The distribution of T,,, that would be observed in the population of manufactured
blades.

e The probability that T, is above some critical value (indicating the blade’s life will
be unacceptable low).

e Instead of determining the entire distribution of 7;,,, sometimes knowing the mean
value, pr , , is sufficient.

e To have some indication of the variability of 7;,, without requiring accurate estimation
of the entire distribution, the standard deviation, or,_,, can be used.

The Monte Carlo method is based on the idea of taking a small, randomly-drawn sample
from a population and estimating the desired outputs from this sample. For the outputs
described above, this would involve:

e Replacing the distribution of 7;,, that would be observed over the entire population
of manufactured blades with the distribution (i.e. histogram) of 7,,, observed in the
random sample.
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e Replacing the probability that 7}, is above a critical value for the entire population of
manufactured blades with the fraction of blades in the random sample that have T,
greater than the critical value.

e Replacing the mean value of 7},, for the entire population with the mean value of the
random sample.

e Replacing the standard deviation of 7}, for the entire population with the standard
deviation of the random sample.

Since this exactly what is done in the field of statistics, the analysis of the Monte Carlo
method is a direct application of statistics.
In summary, the Monte Carlo method involves essentially three steps:

1. Generate a random sample of the input parameters according to the (assumed) distri-
butions of the inputs.

2. Analyze (deterministically) each set of inputs in the sample.

3. Estimate the desired probabilistic outputs, and the uncertainty in these outputs, using
the random sample.

15.1 Monte Carlo Method for Uniform Distributions

To demonstrate the Monte Carlo method in more detail, let’s consider the specific case where
the thermal barrier coating in the previous turbine blade example is known to be uniformly
distributed from 0.00025m < Lppc < 0.00075 m as shown from the probability distribution
function (PDF) of Lrpc in Figure 15.2.
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Figure 15.2: Probability distribution function (PDF) of Lrpc uniformly-distributed from
0.00025m < Lrpc < 0.00075 m.

The first step is to generate a random sample of Lrgc. The basic approach relies on the
ability to generate random numbers which are uniformly distributed from 0 to 1. This type of
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functionality exists within many different scientific programming environments or languages.
In Matlab, the command rand provides this capability. Then, using the uniform distribution
from 0 to 1, a uniform distribution of Lyrgc over the desired range can be created,

Lrpe = 0.00025 4 0.0005u,

where u is a random variable uniformly distributed from 0 to 1. This approach is used to
create the samples shown as histograms in Figure 15.3 for samples of size N = 100, 1000,
and 10000. For the smaller sample size (specifically N = 100), the fact that the sample
was drawn from a uniform distribution is not readily apparent. However, as the number of
samples increases, the uniform distribution becomes more evident. Clearly, the sample size
will have a direct impact on the accuracy of the probabilistic estimates in the Monte Carlo
method.

The following is a Matlab script that implements the Monte Carlo method for this uniform
distribution of Lygc. The distributions of 7}, shown in Figure 15.4 correspond to the Lyge
distributions shown in Figure 15.3 and were generated with this script.

clear all;

% Nominal values of input parameters

hgas = 3000; % TBC-gas heat transfer coef. (W/(m~2 K))

Tgas = 1500; % Mixed gas temperature (K)

ktbc = 1; % TBC  thermal conduct. (W/mK)

km = 20; % Metal thermal conduct. (W/mK)

Lm = 0.003; % Metal thickness (m)

hcool = 1000; % Coolant-metal heat transfer coef. (W/(m"2 K))
Tcool = 600; % Coolant temperature (K)

% Number of Monte Carlo trials

N = 100;

Ltbc = zeros(N,1);

Tmh = zeros(N,1);

for n = 1:N,
% generate Ltbc values using a uniform distribution
Ltbc(n) = 0.00025 + 0.0005*rand;

% Solve heat transfer problem

[Ttbc, Tmh(n), Tmc, gq] = bladelD(hgas, Tgas,
ktbc, Ltbc(n),
km, Lm,
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hcool, Tcool);
end

figure(1);
hist(Ltbc,20);

xlabel (°L_{tbc} (m)’);
figure(2);
hist(Tmh,20);

xlabel (°T_{mh} (X)’);

15.2 Monte Carlo Method for Non-Uniform Distribu-
tions

Input variability can be distributed in many ways beyond the simple uniform distribution
considered above. In this section, we discuss a common approach used to implement the
Monte Carlo method for non-uniform distributions. However, we note that for many of the
most common distribution types, random number generators widely available. For example,
in Matlab, the function randn returns random numbers that are normally distributed with
a mean of zero and a standard deviation of one. In Matlab’s Statistics Toolbox, many other
distribution types are available (see the documentation for the random function for details).

In these notes, we will discuss the inversion method for generating random numbers with
non-uniform distributions. While other methods exist for generating random numbers, they
are often based on the inversion method. The basic principle of the inversion method is
to utilize the inverse of the cumulative distribution function (CDF) to transform a uniform
distribution to a desired distribution. Recall that the CDF is defined as the integral of the
PDF,

and that the CDF is related to probability by,
F(z) =P{x<uz}.

That is, the probability of the random variable x < x is the CDF evaluated at . As shown in
Figure 15.5, F(x) ranges from 0 to 1. The inversion method for generating random numbers
of an arbitrary distribution consists of the following two steps:

1. Generate a random number, u, from a uniform distribution between 0 and 1.

2. Given u, find the value of z at which v = F(z). In otherwords, invert F'(x) such that,
z = F~Y(u).
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15.2.1 Triangular Distributions

This was discussed in class. Hand-written notes were distributed.

15.2.2 Empirical Distributions

This was discussed in class.
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Figure 15.3: Distribution of a random sample from a uniformly-distributed Lt g for a sample
size of N = 100, 1000, and 10000.
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Figure 15.4: Distribution of a 7,,, from a uniformly-distributed Lrpc for a sample size of
N =100, 1000, and 10000.
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Figure 15.5: Cumulative distribution function (CDF) of a normally distributed variables
with zero mean and unit variance.



