Lecture 11

Method of Weighted Residuals

In this lecture, we introduce the method of weighted residuals which provides the most
general formulation for the finite element method. To begin, let’s focus on the particular
problem of steady heat diffusion in a rod. This problem can be modeled as a one-dimensional
PDE for the temperature, 7T

(KT), = . (11.1)

where k(z) thermal conductivity of the material and ¢(z) is the heat source (per unit area),
respectively. Note that both k£ and ¢ could be functions of z. Also, let the physical domain
for the problem be from z = —L/2 to = = L/2.

Example 11.1 (Steady heat diffusion) Suppose that the rod has a length of L = 2, the
thermal conductivity is constant, k = 1, and the heat source, q(x) = 50e*. Assume that the
temperature at the ends of the rod are to be maintained at T(+£1) = 100. Equation (11.1)
can be integrated twice to obtain:

(kT:), = —q,
Tpye = —50€",
T, = —50€®+ a,
T = —=50e*+ ax +b.

Now, applying boundary conditions so that T(£1) = 100,

—50e' +a+b = 100,
—50e' —a+b = 100.

This is a 2 X 2 system which can be solved for a and b,

a = 50sinhl
b = 100+ 50cosh1,

where coshy = (e¥ 4+ e7Y)/2 and sinhy = (e¥ — e7Y)/2. Thus, the exact solution is,
T = —50e” + 50z sinh 1 4 100 + 50 cosh 1. (11.2)

A plot of this solution is shown in Figure 11.1.
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Figure 11.1: Temperature distribution for ¢ = 50e*, L =2, and k£ = 1.

A common approach to approximating the solution to a PDE such as heat diffusion is
to use a series of weighted functions. For example, for the temperature in Example 11.1 we
might assume that,

N
T(x) =100 + Z a;0;(x),
i1

where N is the number of terms (functions) in the approximation, ¢;(x) are the (known)
functions, and a; are the unknown function weights. The functions ¢;(x) are usually designed
to satisfy the boundary conditions. So, in this example where the temperature is 100 at
z = 41, then ¢;(+1) = 0 (don’t forget that T was defined to include the constant term of
100).

The question remains what functions (and how many) to choose for ¢;(z). While many
good choices exist, we will use polynomials in x because polynomial approximations are used
extensively in finite element methods (our main interest). For this problem, the following
ideas can be used to determine the form of the ¢;(x):

e First, we note that requiring ¢;(+1) = 0 places two conditions on each ¢;(x). These
two conditions can be satisfied with a linear function of z, but the linear function
which equals 0 at x = +£1 is simply 0. Since this does not add anything to the solution
even after multiplying by a weight, the first non-trivial function would be a quadratic
function.

e A quadratic function can be designed to satisy the boundary conditions in the following
manner,

d1(z) =1+ 2)(1 —z).
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By including factors which go to zero at the end points, we have constructed a quadratic
function which will satisfy the required boundary conditions. A plot of ¢;(z) is shown
in Figure 11.2.

e Suppose we wanted to include a cubic polynomial in the approximation, then one way
we could do this is multiply ¢;(z) by z.

to(z) =z (z) = 2(1 + 2)(1 — ).

Since ¢;(x) goes to zero at the end points, then so will ¢o(x). A plot of ¢o(z) is shown
in Figure 11.2. There are actually some better ways to choose these higher-order
polynomials then simply multiplying the lowest order polynomial by powers of z. The
problem with the current approach is that if the number of terms were large (so that
the powers of z would be large), then the set of polynomials (i.e. ¢;(x)) become very
poorly conditioned resulting in many numerical difficulties. We will not discuss issues
of conditioning but more advanced texts on finite element methods or related subjects
can be consulted. For low order polynomial approximations, the issues of conditioning
do not play an important role.

Figure 11.2: ¢;(z) and ¢,(z) for example heat diffusion problem.

Having selected a set of functions, we must now develop a way to determine values of a;
that will lead to a good approximation of the actual T'(xz). While several ways exist to do
this, we will focus on two methods in these introductory notes: the collocation method and
the method of weighted residuals.
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11.1 The Collocation Method

One approach to determine the N values of a; would be to enforce the governing PDE at
N points. Note that in general, the exact solution will not be a linear combination of the
¢i(z), so it will not be possible to enforce the PDE at every point in the domains. To see
this, let’s substitute T'(z) into Equation (11.1). Note that,

3 52
Tow = 92 [a101(x) + azda()],

(¢1)ww = _2a
(¢2 Tr — _6337
=T = —2a; — 6asx.

Next, we define a residual for Equation (11.1),
R(T,z) = (kTw)z +q.

If the solution were exact, then the R = 0 for all z. Now, substitution of our chosen 7" into
the residual (recall £ = 1 and ¢ = 50e® in this example) gives,

R(T, z) = —2a; — 6asx + 50¢”. (11.3)

Clearly, since a; and ay are constants (i.e. they do not depend on z), there is no way for
this residual to be zero for all x.

The question remains, where should the N points be selected. The points at which the
governing equation will be enforced are known as the collocation points. We will choose the
relatively simple approach of equally subdividing the domain with N = 2 interior collocation
points. For this domain from —1 < x < 1, the equi-distant collocation points would be at
x = +1/3. Thus, the two conditions for determining a; and a, are,

R(T,-1/3) = 0,
R(T,1/3) = 0.
From Equation (11.3) this gives,

—2a1 + 2a5 + 50713 =
—2a; — 2a49 + 50e/? = 0.

l
o

Re-arranging this into a matrix form gives,

-2 2 a; \ [ —50e"1/3
-2 =2 as )~ \ =50et® |-
N 25cosh1/3 \ [ 26.402
az )\ 25sinh1/3 |/ \ 8.489 |-
The results using this collocation method are shown in Figure 11.3 which includes plots of
T, the error (i.e. T'—T), and the residual. Note that the residual is clearly exactly zero

at the collocation points (i.e. © = £1/3), though the approximation is not exact at these
points (i.e. T # T at x = £1/3).
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11.2 The Method of Weighted Residuals

While the collocation method enforces the residual to be zero at N points, the method of
weighted residuals requires N weighted integrals of the residual to be zero. A weighted
residual is simply the integral of a weight function, w(z) and the residual over the domain.
For example, in the one-dimensional diffusion problem we are considering, a weighted residual
is,

/1 w(z) R(T, z) dz.

-1
By choosing N weight functions, w;(z) for 1 < j < N and setting these N weighted residuals
to zero, we may determine N values of a;. We define the weighted residual for w;(z) to be,

Ry(T) = | " w; (@) R(T, ) da.

-1
And, the method of weighted residuals requires,
Ri(T)=0 for1<j<N.

In the method of weighted residuals, the next step is to determine appropriate weight
functions. A common approach, known as the Galerkin method, is to set the weight functions
equal to the functions used to approximate the solution. That is,

wj(z) = ¢j(x). (Galerkin).
For the heat diffusion example we have been considering,

wi(z) = (1-z)(1+2),
wy(z) = z(1—2)(1+x).

Now, we must calculate the weighted residuals. For the example,
~ 1 ~
R(T) = [ wi(@)R(T,z)ds,
-1

1
= / (1—2)(1+2z) (—2a; — 6asx + 50€°) dz,

-1

8
= —gu+ 200e.

To do this integral, the following results were used (the constants of integration are ne-
glected),

/(1—x)(1+x)dx = x—%x?’,
_ 1, 1,
/x(l z)(1+z)de = 5T = 7%

/QL‘QEI de = z%e® — 2ze® + 26°.
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Similarly, calculating R,:
. 1 N
By(T) = [ ws(e) R(T,z)da,
-1
1
= / (1 —2)(1 4 z) (—2a; — 6aszx + 50€”) dx,

-1

8
= —zo+ 100e’ — 1200e7*,

where the following results have been used,
2 L 15
/x 1—2)1+z)dx = —z°— —z°,
3 5
/xez de = we® —¢é”,
/x?’e“C dr = %" — 32%” + 6xe” — 6e”.

Finally, we can solve for a; and ay by setting the weighted residuals R; and Ry to zero,

8
—3m +200e ! = 0,

8
—£a2 +100e' — 700e~! = 0.

This could be written as a 2 x 2 matrix equation and solved, but the equations are decoupled
and can be readily solved,

(@) 7he 1\ [ 27.591
az )\ el -85t | T 8.945 |-
The results using this method of weighted residuals are shown in Figure 11.4. Comparison

with the collocation method results shows that the method of weighted residuals is clearly
more accurate.
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Figure 11.3: Results for collocation method.
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Figure 11.4: Results for method of weight residuals.



