Lecture 10

Fourier Analysis of Finite Difference
Methods

In this lecture, we determine the stability of PDE discretizations using Fourier analysis.
First, we begin with Fourier analysis of PDE’s, and then extend these ideas to finite difference
methods.

10.1 Fourier Analysis of PDE’s

We will develop Fourier analysis in one dimension. The basic ideas extend easily to multiple
dimensions. We will consider the convection-diffusion equation,
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We will assume that the velocity, u, and the viscosity, p are constant.
The solution is assumed to be periodic over a length L. Thus,

U(x +mL,t) =Ul(z,t)

where m is any integer. As we saw in Lecture 9, as the mesh is refined, the eigenvalues of the
systems with general boundary conditions tend to approach the eigenvalues of the periodic
case. Thus, we expect this periodicity assumption to still lead to insight into more general
boundary conditions especially as the mesh is refined.

A Fourier series with periodicity over length L is given by,
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k., is generally called the wavenumber, though m is the number of waves occurring over the
length L. We note that U, () is the amplitude of the m-th wavenumber and it is generally
complex (since we have used complex exponentials). Substituting the Fourier series into the
convection-diffusion equation gives,
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Noting the 2 = —1 and collecting terms gives,
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The next step is to utilize the orthogonality of the different Fourier modes over the length
L, specifically,
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By multiplying Equation (10.2) by e %% and integrating from 0 to L, the orthogonality
condition gives,

dU, -
s + (zukn + ,uki) U, =0, for any integer value of n. (10.4)

Thus, the evolution of the amplitude for an individual wavenumber is independent of the
other wavenumbers. The solution to Equation (10.4),

A

(7n(t) = Un(O)e_i“k"te_“k%t.

The convection term, which results in the complex time dependent behavior, e~##=¢ only
oscillates and does not change the magnitude of U,. The diffusion term causes the magnitude
to decrease as long as u > 0. But, if the diffusion coefficient were negative, then the
magnitude would increase unbounded with time. Thus, in the case of the convection-diffusion
PDE, as long as p > 0, this solution is stable.

10.2 Semi-Discrete Fourier Analysis

Now we move on to Fourier analysis of a semi-discrete equation. That is, we discretize in
space but not time. To be specific and simple, let consider pure convection discretized with
central differences. This is exactly the case considered in Example 9.2 so we already know
the results. But here, we derive the eigenvalues of the central difference discretization using
Fourer analysis. The semi-discrete equation is,

dU; dU;
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dt
Note that we have switched our indices from the usual i’s to j’s to avoid confusion in this
discussion because the Fourier series we are about to introduce will give rise to the imaginary
number, 7.
For the analysis of PDE’s, a Fourier series of infinite dimension was used (i.e. m ranged
from +o0 in Equation (10.1)). In that case, the infinite number of terms in the Fourier series
corresponds to the fact that there are infinitely many values of U over the periodic domain

Ujpr —Uj_1) = 0. (10.5)
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(because the space from 0 < z < L has an infinite number of points). In the semi-discrete
case, only a finite number of values exist over the periodic domain. Specifically, if there are
N equally-spaced nodes in the domain, then there will be N — 1 unique values (because
the values at the beginning and end of the domain must be the same due to periodicity).
Summarizing, there can only be N — 1 terms in the Fourier series used to describe a finite
difference solution on a periodic domain with N points.

The most common set of N — 1 modes used to analyze finite difference schemes is,

N/2-1
Uty = > U, (t)ethmine for even N, (10.6)
m=—N/2+1
and,
(N-1)/2
Uit)= > Un(t)e* 72 for odd N (10.7)
m=—(N-3)/2

Note that for large N, the limits on either Fourier series approach £N/2.

So what happens to the modes with higher wavenumbers? The answer is that the higher
wavenumbers are aliased with the lower wavenumber when fewed only at a finite number of
nodes. To demonstrate this, consider the case with N = 5 nodes. In this case, the values
of m in the Fourier series are from —1 to 2. The real and imaginary parts of the modes are
plotted in Figure 10.1 for m =0, 1, and 2. Although the mode shape is shown for all values
of x, the only values of concern are those at the nodes. We can already see the potential
for aliasing by looking at the imaginary part of the m = 2 mode. In this case, the nodal
values of this mode are all zero. Thus, at the nodes, the imaginary part of m = 2 mode is
identical to the imaginary part of the m = 0 mode (i.e. the are both zero at the nodes). The
m = 2 mode is not completely aliased with the m = 0 mode, however, because the real part
of the modes are different. Specifically, the real part of the m = 0 mode is constant (equal
to one at all nodes), while the real part of the m = 2 mode oscillates between +1. This +1
oscillation between nodes is often called an odd-even or a sawtooth mode. To demonstrate
what happens with higher wave numbers, Figure 10.2 shows the m = 3 mode, overlayed with
the m = —1 mode. As can be seen from this plot, these two modes are indistinguishable
from each other at the nodes.

If we proceed along the analogous lines to the Fourier analysis of PDE’s in the previous
section, we would substitute the Fourier series into Equation (10.5) and utilize a similar
orthogonality relationship to arrive at the conclusion that each mode of the Fourier series
behaves independently. Thus, from now on, we will simply substitute an individual mode
into the discrete equations. That is, we assume that

Uj(t) = Un(t)e™ 957,
for a valid m. Substitution of this individual mode into Equation (10.5) gives,
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(a) Real et*m% = cos k,, (b) Imag e*=% = sin k,z

Figure 10.1: Plots of cos k,,x and sin k,,x for L = 1 including the nodal values for a five
node grid (Az = 0.2).

Factoring out the term e#m2% gives,

dUm u ikm Az —ikmAz] 7 _
7 +2Ax[e e ]Um—O.
dUm LU A
W + ZA—,Z‘ Sln(kmAI) Um = 0.

Thus, for each mode m we may write,

where

.U
Am = ~ins sin(k,, Az).

Comparing these )\, to the eigenvalues found in Example 9.2, we can show that they are
identical.
A parameter which occurs throughout Fourier analysis of spatial discretizations is,

By = kmAx. (10.8)
Since k,, = 2mm/L, then
8, =2 mAz
m — 4T L

Since [, varies with m, we can determine the range of 3, values corresponding to the range
of m values. In particular, for large N, the limiting values of m approach +N/2, thus the
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Figure 10.2: Demonstration of aliasing of an m = 3 mode to m = —1 for a five node grid.

limiting values of 3, will be,
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Thus, assuming large N, the eigenvalue calculation for any spatial differencing method re-
duces to:

1. Substitute U;(t) = U, (t)e”P into the semi-discrete equation.
2. Determine the A, (8,,) such that %Um =\,U,.

3. Determine the limitations on the timestep such that A, (8,,)At will be inside the
stability region for a chosen time integration method for all —7 < 3, < 7.

Example 10.1 (Analysis of a first-order upwind discretization of convection) In this
example, we perform a Fourier analysis of a first-order upwind discretization of convection.
Assuming the velocity is positive, then an upwind discretization of convection is,

— 0,U; =0 = —L 4+ —(U; —U;_;) = 0.
dt+uz9 ’ dt+Ax(] j-1)
Following the steps outlined above, we substitute the Fourier mode,
dUs iiBm o Y [iiBm _ Gi(G=1)Bm] [
T + Az [e —e ] Un = 0.
Factoring out the term e*mi2% giyes,
dﬁm U
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Thus,

uAt . uAt
—ifm\ _ ) Q1
AnAt = — - (1 e ) = = (1 — cos B, +isin By,) .

The upwind approximation gives both a real and imaginary part to the eigenvalue. In fact, the
imaginary part is identical to the central difference part. The real part is negative, thus the
upwind approximation adds stability (in the sense that a negative real eigenvalue corresponds
to amplitudes that decrease in time). A plot of the eigenvalues is shown in Figure 10.3 for
ulAt/Ax = 1. The Matlab script for generating these eigenvalue plots is given below:

bm = linspace(-pi,pi,21);
CFL = 1;
lamdt = -CFL*(1 - exp(-i*bm));

plot(lamdt,’*’);

xlabel(’Real \lambda\Delta t’);
ylabel(’Imag \lambda\Delta t’);
grid on;

axis(’equal’);
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Figure 10.3: A, At for a first-order upwind discretization of convection for CFL = uAt/Ax =
1.





