Lecture 1

Numerical Integration of Ordinary
Differential Equations:
An Introduction

Ordinary differential equations (ODE’s) occur throughout science and engineering.

Example 1.1 A model for the velocity u of a spherical object falling freely through the
atmosphere can be derived by applying Newton’s Law. Specifically,

myt = myg — D(u) (1.1)

where my, is the mass of the particle, g is the gravity, and D is the aerodynamic drag acting
on the particle. For low speeds, this drag can be modeled as,

D = %pgﬂ'GQUQCD(Re) (1.2)
2

Re = %0 (1.3)
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where py and pg are the density and dynamic viscosity of the atmosphere, a is the sphere
radius, Re is the Reynolds number for the sphere, and Cp is the drag coefficient. To complete
the problem specification, an initial condition is required on the velocity. For example, at time
t =0, let u(0) = ug. By solving Equation 1.1 with this initial condition, the velocity at any
time u(t) can be found.

A general ODE is typically written in the form,
= f(u,t), (1.5)

where f(u,t) is the forcing function that results in the evolution of u in time. When f(u,t)
depends on « in a nonlinear manner, then the ODE is called a nonlinear ODE.
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Example 1.2 For Example 1.1, the forcing function is,

1
tYy=9g— —D
flu,t) =g m (u)
From the definition of D(u), f(u,t) is nonlinear in u. Note also that in this example, f does
not depend on t directly rather f(u,t) = f(u).

Although the use of numerical integration is most important for nonlinear ODE’s (since
analytic solutions rarely exist), the study of numerical methods applied to linear ODE’s is
often quite helpful in understanding the behavior for nonlinear problems. The general form
For a single, linear ODE, is

= At)u+ g(t), (1.6)

where A(t) is independent of u. When A(#) is a constant, the ODE is referred to as a linear
ODE with constant coeflicients.

In many situations, the linear ODE is derived by linearizing a nonlinear ODE about a
constant state. Specifically, define the dependent state u(t) as a sum of uy and a perturbation,
u(t),

u(t) = ug + u(t). (1.7)

A linearized equation for the evolution of @ can be derived by substitution of this into
Equation 1.5:

1"1/ = f(u’ t)’
i@ = f(uo,0) f‘ i+ g t+ O(t%, at, u?).
uo,O

Thus, when ¢ and 4 are small, the perturbatlon satisfies the linear equation,
of ‘ f " (1.8)

uo,O

1:), ~ f(UO,

Comparing Equation 1.6 to 1.8, we see that in this example,

of
)‘(t) 8_Uu070’
_ o7
o0 = S0+ G ¢

Note, this is a constant coefficient linear ODE.

Example 1.3 For the falling sphere problem in FExamples 1.1 and 1.2, a linear ODE can
be derived by linearizing about the initial velocity ug. As shown above, this requires the
calculation of Of /Ou and Of /Ot. For the sphere,

af_al 1 ]: 1 0D

my

my, Ou



1.1. THE FORWARD EULER METHOD 3

The value of 0D /0u is

oD 01 5 o
3 = Bu §pg7rauCD(Re) :

1 60D ORe
= p,ma’uCp(Re) + ipgmﬁf@a—u,
and 0Cp/0Re and ORe/0u can be found from their definitions given in Example 1.1. Also,
since f does not directly depend on t for this problem, 0f /0t = 0.

1.1 The Forward Euler Method

We now consider our first numerical method for ODE integration, the forward Euler method.
The general problem we wish to solve is to approximate the solution u(t) for Equation 1.5
with an appropriate initial condition, u(0) = ug. Usually, we are interesting in approximating
this solution over some range of ¢, say from ¢ = 0 to ¢t = 7. Or, we may not know a precise
final time but wish to integrate forward in time until an event occurs (e.g. the problem
reaches a steady state). In either case, the basic philosophy of numerical integration is to
start from a known initial state, u(0), and somehow approximate the solution a small time
forward, u(At) where At is a small time increment. Then, we repeat this process and move
forward to the next time to find, u(2At), and so on. Initially, we will consider the situation
in which At is fixed for the entire integration from ¢t = 0 to 7. However, the best methods
for solving ODE’s tend to be adaptive methods in which At is adjusted depending on the
current approximation.

Before moving on to the specific form of the forward Euler method, let’s put some nota-
tions in place. Superscripts will be used to indicate a particular iteration. Thus, assuming
constant At,

t" = nAt.

The approximation from the numerical integration will be defined as v. Thus, using the
superscript notation,
v" = the approximation of u(t").

Now, let’s derive the forward Euler method. There are several ways to motivate the
forward Euler method. We will start with an approach based on Taylor series. Specifically,
the Taylor expansion of u(t"*1) about " is,

1
uw(t™t) = u(t™) + Ata(t") + 5At%(t’"L) +O(A).
Using only the first two terms in this expansion,
u(t™ ) = u(t™) + Ata(t").

Finally, the term @(¢") is in fact just f(u(t™), t") since the governing equation is Equation 1.5.
Thus,
u(t") = u(t™) + Atf (u(t™), ). (1.9)
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In-class Discussion 1.1 (Graphical interpretation of Equation 1.9)

Since we do not know u(t"), we will instead use the approximation from the previous
timestep, v™. Thus, the forward Euler algorithm is,

V"t =" + Atf(v", ") for  n>0, (1.10)

and v° = u(0).

Example 1.4 Now, let’s apply the forward Euler method to solving the falling sphere prob-
lem. Suppose the sphere is actually a small particle of ice falling in the atmosphere at an
altitude of approximately 3000 meters. Specifically, let’s assume the radius of the particle is
a = 0.01m. Then, since the density of ice is approzimately p, = 917 kg/m?®, the mass of the
particle can be calculated from,

4
my, = pp Volume, = ppgwa3 = 0.0038 kg
At that altitude, the properties of the atmosphere are:
ps, = 09kg/m®
Ly = 1.69E-5kg/(m sec)
g = 9.8m/sec?
We expect the particle to accelerate until it reaches its terminal velocity which will occur
when the drag force is equal to the gravitational force. But, a priori, we do not know how
long that will take (see In-class Discussion 1.2 for someways to make this estimate). For

now, let’s set T = 25 sec and use a timestep of At = 0.25sec. The results are shown in
Figure 1.1.
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Figure 1.1: Behavior of velocity, Reynolds number, and drag coefficient as a function of time
for an ice particle falling through the atmosphere. Simulation performed using the forward
Euler method with At = 0.25 sec.
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In-class Discussion 1.2 (Estimating time to reach terminal velocity)

1.2 The Midpoint Method

Now, let’s look at a second integration method known as the midpoint method. For this
method, we will use a slightly different point of view to derive it. Specifically, let’s start
from the definition of a derivative,

u(t + At) — u(t — At)
At—0 2At

Now, instead of taking the limit, assume a finite At. Then, we end up with an approximation
to du/dt:
_ult+ At) —u(t — At)

u(t) ~ AL for small At

Then, we can re-arrange this to the following estimate for u(t + At),

u(t + At) ~ ut — At) + 2Atu(t) (1.11)
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In-class Discussion 1.3 (Graphical interpretation of Equation 1.11)

Then, following the same process as in the forward Euler method, we arrive at the
midpoint method,

o™= " L AL (0", 1) for  n > L. (1.12)

However, because of the use of v"~!, the midpont method can only be applied for n > 1.

Thus, for the first timestep a different numerical method must be applied (e.g. the forward
Euler method).

Example 1.5 We will now solve the same problem as in Example 1.4 using the midpoint
method. Using the same values of At and T as before, the results are shown in Figure 1.2.
Clearly, something has gone wrong here as the results show non-physical oscillations. Perhaps
the oscillations will disappear if we take a smaller timestep. To test out this hypothesis, let’s
re-run the midpoint method with At = 0.025 sec which is one-tenth the previous timestep.
Those results are shown in Figure 1.3. Unfortunately, while the results are better, the oscil-
lations are clearly still present. For this problem, clearly the forward Fuler method is a better
choice than the midpoint method. We will see why this has happened in o few lectures.
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Figure 1.2: Behavior of velocity, Reynolds number, and drag coefficient as a function of time
for an ice particle falling through the atmosphere. Simulation performed using the midpoint

method with At = 0.25 sec.
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Figure 1.3: Behavior of velocity, Reynolds number, and drag coefficient as a function of time
for an ice particle falling through the atmosphere. Simulation performed using the midpoint

method with At = 0.025 sec.



