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• Students
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Christopher Roberts
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Class Mission Statements

• The purpose of 16.89 is to actively explore 
the concept of Systems Engineering

• Team members work collaboratively using a 
newly developed, structured design process

Process is as important as results!Process is as important as results!
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Value Proposition

• Students:
– Learn about space systems design
– Gain experience through the design of a space system architecture 

and satellite
– Present AFRL with an architecture analysis and preliminary design

• Professors:
– Guide the students through the process
– Utilize experience to help students learn
– Present AFRL with an architecture analysis and preliminary design

• AFRL:
– Provide a real system for students to gain experience
– Receive an architectural analysis and preliminary design
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Traditional Design Methodology

• Identify Need
• Talk to the Customer
• Research
• Brainstorm Potential 

Solutions
• Choose Point Design
• Build
• Test
• Sell
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16.89 Class Process

Define the Define the 
MissionMission

Formulate Formulate 
TradespaceTradespace

Architecture Architecture 
SelectionSelection

Preliminary Preliminary 
DesignDesign
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Process Summary
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The MATE Process
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MATE Process Check
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Drag and Reentry Prediction - Mir

10% error along the 
orbital path 

translates to nearly 
6500 km on the 

ground!

Image from Aerospace Corporation

Map of Mir Debris Footprint 
removed due to copyright 

restrictions.  

http://www.reentrynews.com/Mir/notam.html
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Atmospheric Drag

• Satellites traveling through the atmosphere 
encounter drag forces due to neutral particles

• Density and composition of 
particles varies with :
– altitude 
– geographic location
– solar radiation
– geomagnetic activity

Atmospheric
Composition

Prediction of drag effects on spacecraft traveling Prediction of drag effects on spacecraft traveling 
through the atmosphere is highly uncertainthrough the atmosphere is highly uncertain
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Drag Modeling and Prediction

• During certain solar cycles 
or magnetic storms, 
atmospheric density can 
increase as much as 100% 
(shown in red at right)

• These disturbances cause 
thousands of objects to alter 
their predicted orbits.  
These objects must be 
“found” again by tracking 
stations
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Mission Description

• The Air Force Research Lab’s Space Vehicles 
Branch needs data to develop satellite drag and 
neutral density models

• The models will enable:
– Precision orbit predictions for high interest satellites
– Re-entry prediction
– Positioning of AF surveillance satellites
– Collision avoidance
– Cataloging space debris orbits
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Mission Payload

• The data will be 
obtained by flying the 
customer’s instrument 
suite through the upper 
atmosphere

• Satellite Drag
• Neutral Density
• Neutral Winds 
• Neutral  Composition
• Ion Composition
• Temperature

ADS MEASUREMENTS
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XTOS Scope
Atmosphere
IonosphereSpacecraft

Atmospheric Physics Model

Global Atmospheric Model
Current State

Global Atmospheric Model
Predict Future State

User-Specific
System Integration

AFRL Model

output data “Scientist”
User Set

“Space Weather”
User Set

“Knowledgeable”
User Set

Density, Ionospheric characteristics Database

Other 
Data Sources

(Various assets)

Ground Processing

Output Raw Data
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MATE Process Check

Create a list of 
“Attributes”

Attributes

UtilityModelDesign 
Variables
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Practical Constraints

• Fly AFRL-provided instrument package
• Instruments Ram-Facing within 0.1 degrees
• Knowledge of altitude accurate to within 250 

meters
• Launched from a U.S vehicle / launch site
• Communications through TDRSS or AFSCN
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User Preferences

• Data samples taken over wide range of 
latitudes

• Data collected over different solar and earth 
weather cycles
– (e.g. solar max/min, night/day, etc…)

• Distribution of data points (across latitudes, 
time cycles)

• Mission lifetime greater than 6 months
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What is an attribute?

• Quantifiable variable capable of 
measuring how well a user-defined
objective is met

• Complete

• Operational

• Decomposable

• Non-redundant

• Minimal

• Independent of cost

• “Rule of 7” Human mind limited to 
roughly 7 simultaneous concepts

• Set of attributes must be:
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1) Data Life Span
2) Data Altitude
3) Maximum Latitude
4) Time Spent at Equator
5) Data Latency

(1) (2)

(3) (4) (5)

km
Km

2004 2005

DATA

Attributes
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MATE Process Check

Interview the 
Customer

Create Utility 
Curves

Attributes

UtilityModelDesign 
Variables

i = 0,30,60,90

rp = 150, 200…

Architectures

COST

U
TI

LI
TY

Customer
Feedback

Mission
Concept



May 13, 2002 16.89 Space Systems Design Review 22

What is Utility?

• Mathematical measure of “goodness”—lifted 
from Economics

• Ranges from 0 – 1: Ordered Metric scale

• Involved in the interview process and “multi-
attribute utility theory”

• Allows us to expand the possibilities for 
design and trade one attribute against another
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Multi-Attribute Interview Software 
Tool (MIST)

• Attributes framed by 
“scenarios”—meant to take 
each attribute in isolation

• MIST uses the “lottery 
equivalent probability” to 
create a utility curve

• User first rates each 
attribute individually, then 
balances each against the 
others

*MIST created by Satwik Seshasai
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• Different curve for each attribute
• Combination of attribute values 

produces overall utility

Converting Attributes to Utility Curves

• Sometimes users do not show 
a linear preference over an 
attribute

Single  Attribute  Utility Curve  for Tim e 
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Abstracting and Calculating Utility

• Propagated over 
entire orbit to get 
utility of orbit 
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Attribute Weighting Factors

• Depicts the 
relative 
importance 
of each 
attribute to 
the user

• Resolution of 
±0.025 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Lifespan Latitude Latency Equator
Time

Altitude

Weight Factors of each Attribute 
(k values)        
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MATE Process Check

Create the
Design Vector
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• Independent design variables that have a 
significant impact on attributes (design knobs)

• Design vector excludes model constants

• Design vector provides a means to consider 
multitudes of architectures

• Geometric growth of combinations limits size, 
scope

Design Vector Overview
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Variable: First Order Effect:
Orbital Parameters:
    •Apogee altitude (200 to 2000 km) Lifetime, Altitude
    •Perigee altitude (150 to 350 km) Lifetime, Altitude
    •Orbit inclination (0 to 90 degrees) Lifetime, Altitude

Latitude Range
Time at Equator

Physical Spacecraft Parameters:
    •Antenna gain (low/high) Latency
    •Comm Architechture (TDRSS/AFSCN) Latency
    •Propulsion type (Hall / Chemical) Lifetime
    •Power type (fuel / solar) Lifetime
    •Total ΔV capability (200 to 1000 m/s) Lifetime

Design Vector
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MATE Process Check

Create Simulation 
Software

Attributes
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Output

Satellite
database

Cost 
(lifecycle)

Utility

Mission 
Scenario

Orbits

Spacecraft

Launch

All 
variations 
on design 

vector

Mission scenarios 
with acceptable 

satellites

Simulation Software Flow Chart
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MATE Process Check

Find Architecture
Utility
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Multi-Attribute Utility Process

Stage 1: Calculate Attributes
1. Determine mission scenario and satellites 

used
2. Divide mission scenario into “phases”, 

where a new phase denotes a
change in attribute values.

3. Calculate the specific
attribute values from the 
satellites involved in each 
phase 
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Multi-Attribute Utility Process

Stage 2: Utility Function
1. Calculate Multi-Attribute Utility Value (MAUV) for 

each phase (see below)
2. Average MAUV using a time weighted average of 

the phases

( )∏
=

+=+
N

i
ii XUKkXKU

1

1)(1)(

Multi-attribute 
utility function

Relative “weight”
Normalization 

constant

Single attribute 
utility

*Keeney, Raiffa, 1976.
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Examine Utility
Trades

MATE Process Check
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All Architectures

Mission Scenario #1
1 Satellite

Mission Scenario #2
2 Satellites in series

Mission Scenario #3
2 Satellites in parallel

U
til

ity

Total Lifecycle Cost ($M 2002)

• Single satellite – 9944 architectures
• Two satellites launched in series – 20000 arch
• Two satellites launched in parallel – 20544 arch

Little value
added
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Scenario 1: Single Satellite

• Single satellite – 9944 architectures

U
til

ity

Total Lifecycle Cost ($M 2002)
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Utility vs. Cost with Altitude
Single Sat – 9944 Arch – Effect of Altitude of Apogee

Single Sat – 9944 Arch – Effect of Altitude of Perigee

U
til

ity

Total Lifecycle Cost ($M 2002) U
til

ity

Total Lifecycle Cost ($M 2002)
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Zoom in on black box
Apogee Perigee

Apogee is the main driver, perigee is secondary

U
til

ity

Total Lifecycle Cost ($M 2002)

U
til

ity

Total Lifecycle Cost ($M 2002)
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Utility vs. Lifetime With ΔV
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U
til

ity

Total Lifecycle Cost ($M 2002)

Lowest Cost

Highest Utility

Scenario 1: Single Satellite

• Example architecture choice

Lowest Cost

Highest Utility
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Summary of Key Cost and Utility Drivers

1. Apogee altitude - lifetime driver
2. Perigee altitude - lifetime driver
3. ΔV - lifetime driver

• Power drives cost
• Thruster choice drives cost
• Dry mass drives cost
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The MATE Process
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MATE Accomplishments

• Ascertained mission parameters
• Explored customer preferences
• Translated attributes into utility functions
• Defined tradespace
• Developed simulation code
• Evaluated thousands of architectures
• Identified optimal architectures
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MATE Process Evaluation

• Focus on customer desires and not point 
solution

• Improved insights into design tradeoffs
– Some counterintuitive findings

• Ability to expand a single-point attribute into a 
utility
– Taking one data point and integrating to find 

altitude utility
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MATE Process Evaluation

• Modeling constraints prevent full exploration 
of the tradespace

• Clear understanding and facilitation are keys 
to a successful implementation of the MATE 
process
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Process Summary

Attributes
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MATE-CON

• Overview
– A process allowing subsystems to trade design 

parameters in a formal setting
• Provides real-time feedback into the effect of those 

trades on:
– Other subsystems  
– The overall utility of the mission

– Facilitates detailed analysis of the tradespace
– Faster than traditional processes
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MATE-CON

• Human interaction
– All engineers operate within the same 

environment both physically and technically 
• Human interaction key to process
• Design sessions "scripted" and controlled by one 

person
• Many eyes on final product

– Experts in each area design key trades which 
directly affect their subsystem

• Examine all major spacecraft subsystems
• "Father knows best"
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MATE-CON

• Spacecraft subsystems modules
– Design and programmatic level
– ICEMaker software tool

• Interdependent Microsoft Excel Workbooks
• Common server

– Matlab integration allows for link to utility trade in 
first half of class

– Design convergence
– Subsystem tradable parameters

• Trade trees
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MATE-CON

• Mapping a converged design to utility
– Multi-step process
– Design to an architecture with an a priori utility 

value
– Subsystem trades
– Propagate traded parameters through 

worksheets
• Design Convergence

– Re-calculate utility value
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ICE Setup

Mission

ADACS

Propulsion

Payload 
& 

Thermal

Telecom 
& 

C&DH

Configuration

MATE

Systems 
& Server

Structures

Power & Pyro Reliability

Vid screen #1 Vid screen #1

Cost

Process Control
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Mission 

• The “primary” subsystem
– Contains key design 

variables
• Orbit parameters
• Total delta V for the mission

• Major components:
– Orbit determination

• Includes maneuvers for 
insertion and deorbit

– Launch vehicle selection
• From database of 

small/medium US launch 
vehicles

– Lifetime calculation
– Delta V budget

MinotaurMinotaur Pegasus, etcPegasus, etc

Launch VehicleLaunch Vehicle

300 km300 km 200 km, etc200 km, etc

OrbitOrbit

CircularCircular EllipticalElliptical
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Payload & Thermal

• Payload
– 3 Payload components

• Satellite Electrostatic 
Triaxial Accelerometer 
(SETA)

• Absolute Density Mass 
Spectrometer (ADMS)

• Composition and Density 
Sensor (CADS)

– Mass: 20.5 kg
– Power: 48 W

• Thermal
– Took in temp. constraints
– Used a spherical model
– Two possible surfaces

• 1st surface = solar panels
• 2nd surface chosen from list

– 2nd chosen to ensure thermal 
balance in two extreme 
scenarios

– Dynamic calc validated 
balance

– Insulation mass calculated for 
fuel tanks, lines

– Mass: 2.249 kg
– Design quickly converged on 

passive control
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Power and Pyrotechnic
Power & Power & PyroPyro

Solar ArraysSolar Arrays

Dual Dual 
JunctionJunction

Triple Triple 
JunctionJunction ……

Direct Direct 
Energy Energy 

TransferTransfer

Peak Peak 
Power Power 

TrackingTracking

BodyBody--
mountedmounted DeployedDeployed TrailedTrailed

Battery ChoicesBattery Choices

• Calculates power 
requirements for all modes

• Selects / sizes solar arrays
• Selects / sizes batteries
• Estimates mass of power 

subsystem

• Power requirements quickly 
drove power subsystem to 
body-mounted high 
efficiency solar arrays
– Less contingency
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CCDMCCDM

Command Control And Data 
Management (CCDM)

No redundancy

CommunicationsCommunicationsProcessorProcessor

Redundancy Low Gain

High Gain

• 3 on Board computers
• 2 for redundancy
• 1 for safe mode handling

• High speed bus
• (2) 20 Gbit recorders
• 2 Low gain antennae

• Conical Log-Spiral
• 2 sets transceiver / ampilifier

system (with all associated 
hardware)
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Propulsion

• ADACS and station 
keeping thrusters 
integrated
– Electric propulsion 

eliminated due to power
– 5 N Monopropellant 

(Hydrazine) thrusters
• Simple blowdown system
• Proven, available
• Cheap

• Isp choice determines 
total mass of fuel for 
required Delta-V

MonoMono ElectricElectric

PropulsionPropulsion

Integrated Integrated 
ADACS / ADACS / 

StationkeepingStationkeeping

DeDe--Integrated Integrated 
ADACS / ADACS / 

StationkeepingStationkeeping
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Structures & ADACS

• Structures 
– Structural mass

• Primary
• Secondary
• Miscellaneous

– Launch loads
• Acoustic
• Random shock and 

vibration

– Mechanism selection
• Requirement / need
• Power

• ADACS
– Disturbances

• Aerodynamic 
(eliminated by the 
assumption of C.G. 
ahead of C. of pressure)

• Gravity gradient
• Solar pressure

– Pointing requirements 
from Payload and Com: 
0.1 degree

– Sensors
• 1 GPS
• 2 Horizon sensors
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Configuration

• Arranges subsystem 
components
– DrawCraft
– SolidWorks

• Generates weight 
distribution, physical 
characteristics

• Parameters can be 
changed dynamically

• Human-in-the-loop required
• Sensors are ram-facing
• Center of gravity is forward 

of half-chord
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Cost

• 2 Models
– SMAD CER
– SSCM (small sat. CER)
– Compared to Aerospace 

Corp’s model for Small 
Sats

• Same order of magnitude
• 20 ~ 30% less than SMAD

MassMass

PowerPower

CostCost

ThrustersThrusters
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Reliability

• Uses Markov Modeling 
to calculate reliability at 
mission lifetime 

• Four possible states: full 
functionality, instrument 
2 or 3 fails, instruments 
2 and 3 fail, system 
failure

• Fidelity suffered from 
lack of knowledge of true 
Mean Times between 
Failures

Telecom 
Fails

ADACS 
Fails

C&DH 
Fails

Structure 
Fails

Power 
Fails

Propulsion 
Fails

Thermo 
Fails

System Failure

OR

Instrument 1
Fails

Launch FailsS/C Fails

OR

Subsystems 
MTBF

Subsystems 
# Replicates

Instruments 
MTBF

Mission
Lifetime

S/C MTBF

Transition
Matrix

Launch 
P(Failure)

State Vector
without launch

Final 
State Vector
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MATE-CON Chair

• X-TOS is first use of MATE-CON Chair
• Purpose

– Represents the customer via his/her expressed 
preferences (utility curves)

– Sets goals and guides concurrent design process to 
maximized value for customer

• Features
– Excel interface to concurrent engineering suite
– MATLAB back-end for attribute and utility computations
– MATLAB can be used to generate additional design 

roadmaps
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Baseline X-TOS Design

• Est. Cost: $71.7 M
• Utility*: 0.705
• Wet Mass: 449.6 kg
• Dry Mass: 188.9 kg
• Lifetime: 0.534 years
• Orbit: 185 km circular
• LV: Minotaur

* Denotes “Original” User Utility
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Dry Mass Breakdown Chart
yes mother(s) only mother with some daughters
no mother(s) with some daughters some daughters

mother(s) with all daughters all daughters
n/a

ADACS 
(dry)
3%

C&DH
11%

Thermal 
Control

2%

Telecom
12%

Structures & 
Mechanisms

27%

Power & 
Pyro
15%

Payload
17%

Propulsion 
(dry)
13%
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Wet Mass Breakdown Chart
yes mother(s) only mother with some daughters
no mother(s) with some daughters some daughters

mother(s) with all daughters all daughters
n/a

ADACS (dry)
2%

Thermal 
Control

1%

C&DH
6%

Payload
9%

Power & 
Pyro
8%

Propulsion 
(dry)
7%

Structures & 
Mechanisms

14%
Telecom

7%

Propellant
46%
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SSCM Breakdown Chart
SSCM

Power & 
Pyro
9%

Structures
3%

GSE Wraps
4%

IA&T 
Wraps

9%

LOOS
4%

Program
15%

TTC&DH
16%

ADACS
17%Launch

23%
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Configuration
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Uncertainty and sensitivity analysis

Attributes

UtilityModelDesign 
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Variation in same space tradespace
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Utility
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Architectures

COST
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TY

Preference Uncertainty
Rearrangement of architectures in 

different tradespaces
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Changing User Preferences (I)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Latency Latitude Equator
Time

Lifespan Altitude

Weight Factors of each Attribute (k values) 

Original Revised

• After reviewing MATE results, user expressed 
revised preferences

• Increased importance of Lifespan
• Slight decrease in importance of Latency
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Changing User Preferences (II)

• A change in user preferences may move architectures 
away from or on to the pareto optimal front
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Changing User Preferences (III)

• New preferences lead to changes in 
objectives for preliminary detailed design

Mass 
(wet) 
[kg]

Pwr
(avg) 
[W]

ΔV 
[m/s]

Apogee 
[km]

Perigee 
[km]

Life 
[yrs]

Utility 
(Orig)

Utility 
(Rev)

Life Cost 
[$M]

0.66

ICE 
Result 449.6 164 1250 185 185 0.53 0.70 0.61 71.74

0.70

Current
ICE

324.3 164 1000 300 300 2.20 0.59 0.55 75.01

Original 
Base 1000 250 200 0.75

Revised 
Base 1000 350 350 9.8
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Parametric Uncertainty Sources

Utility

Altitude Lifetime

ΔV Drag

ρatmos CDVelocity Area

AR Volume

ρs/c Mass

• Use a tree diagram to 
identify key sources of 
uncertainty

Chosen for 
sensitivity analysis
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Sensitivity to Satellite Density

• Magenta has greater sensitivity to ρs/c than Red or Green
• Red reaches the maximum life of 11 years and no longer 

benefits from increase in ρs/c (initially Red has greater slope)
• Green’s utility does not depend upon life as much as Magenta
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Sensitivity to AR and CD

• Same trend as ρs/c

• Lifetime decreases as 
CD increase
– Note the non-linear 

relationship
– Arises from non-linear 

utility function for lifetime
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Sensitivity to atmospheric density:
Variation caused by the solar cycle

• Note that base case was solar max; Solar cycle state assumed 
constant throughout life

• Solar cycle has greatest impact on Green
– Green has lower orbit than Red or Magenta

• At solar min and mean, Magenta has higher utility than Red
– Density is low enough that Magenta can take advantage of its lower orbit
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Sensitivity to Atmospheric Density:
Uncertainty in density models

• At solar min Green surpasses both Magenta and Red; 
while at solar max Green quite low

• The purpose of this mission is to determine the density
– This is a key unknown that has a large impact on 

architecture selection
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Sensitivity to Atmospheric Density:
Dynamically change orbit

• Density is a key driver of utility
• Its value is uncertain

– Uncertainty of launch date leads to uncertainty of location 
in solar cycle

– Current atmospheric model have large errors

Design spacecraft to have enough fuel and thrust to 
dynamically change its orbit in response to current 

atmospheric conditions as mission progresses

Design spacecraft to have enough fuel and thrust to 
dynamically change its orbit in response to current 

atmospheric conditions as mission progresses
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Final X-TOS Design

• Est. Cost: $75.0 M
• Utility**: 0.556
• Wet Mass: 324.3 kg
• Dry Mass: 205.5 kg
• Lifetime: 2.204 years
• Orbit: 300 km circular
• LV: Minotaur

** Denotes “Revised” User Utility
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Requirements

• Provide a basis on which to design and test 
a spacecraft system
• Lay out specific traits which the system must exhibit

• MATE-CON requirements derived differently 
than traditional systems
• MATE-CON trades design vector and attributes to 

achieve highest utility mission
• Map design vector and attributes to actual values used 

for requirements
• The mission will be in circular low earth polar orbit. The 

apogee and perigee will be at 300 Km altitude.
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Process Summary

Attributes

UtilityModelDesign 
Variables

i = 0,30,60,90

rp = 150, 200…

Architectures

COST

U
TI

LI
TY

Customer
Feedback

Mission
Concept

ICE

Architecture

Customer

Preliminary
Design
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MATE-CON Accomplishments

• Stakeholder preferences captured using MAU
• Thousands of architectures traded based on design 

vector and mission scenario 
• An architecture and a preliminary design meeting 

user and customer preferences identified
• Feedback from user incorporated quickly
• Robust, modular, reusable code developed

Completed process for architecture and preliminary 
Design selection and assessment in 3 months!

Completed process for architecture and preliminary 
Design selection and assessment in 3 months!
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Design Insights

• Utility plays a significant role
– Initial utilities show that S/C design does not 

matter
• Orbit is the largest driver

– Revised utilities show that S/C does matter
• ‘Flying Bomb’

– Large amounts of fuel can bring down uncertainty 
and increase robustness

• Can modify orbit dynamically
– Can possibly gain significant utility from re-entry
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Design Insights (II)

• Atmospheric density has greatest uncertainty
– We are designing for an unknown environment

• Need flexibility

• Drag is an enormous driver
– MATE-CON reveals unintuitive finding
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MATE-CON Insights (I)

• Communication is key!
– Iterate with user/customer 
– Establish contact with user/customer early in the 

process
– Facilitate communication within the team 

• Work in the same room!
• Ensure shared mental model of process, software 

architecture and information flow
• Manage coupling and interaction between subsystems

MATE-CON is an inherently human-centered 
process!

MATE-CON is an inherently human-centered 
process!
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MATE-CON Insights (II)

• Availability of past projects facilitates learning, but 
can be dangerous if used without critical judgment
– Model reuse can be inefficient or even wrong when the 

underlying assumptions are different!

• Agility is essential when working under time pressure 
and in an evolving environment
– True for both people and process!
– Example: changes in utility curve

• The level of fidelity should be consistent across the 
different modules
– Not always the case that high fidelity is better
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Future Opportunities/
Recommendations

• Assess effect of code reuse on process efficiency
• Increase team-team and team-customer 

communication in early stages of process
• Improve execution sequencing in ICE
• Facilitate detection of “bugs” in subsystem 

interactions
• Account for uncertainty

– Launch opportunity & policy

• Include improved risk assessment
– Recent work in Portfolio theory
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Back-up Slides
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16.89 Class Process

Define the Define the 
MissionMission

Explore Explore 
TradespaceTradespace

Decide on Final Decide on Final 
ArchitectureArchitecture

Detailed Detailed 
DesignsDesigns
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16.89 Process

Define the Define the 
MissionMission

Formulate Formulate 
TradespaceTradespace

Architecture Architecture 
SelectionSelection

Preliminary
Design

MATEMATE
((Multi-Attribute 

Tradespace
Exploration)
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MATE Process Flow

Define the MissionDefine the Mission

1. Understand 
the Mission

2. Create a list of 
“Attributes”

3. Interview the 
Customer

1. Create Utility 
Curves

2. Create Design 
Vector

3. Create 
Simulation 
Software

1. Find Utilities / 
Analyze 
Architectures

2. Examine Utility 
vs. Lifecycle 
Cost Plot

3. Select 
Architecture

Formulate Formulate 
TradespaceTradespace

Architecture Architecture 
SelectionSelection
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16.89 Process Tools

ICEICE
((Integrated Concurrent 

Engineering)

Concurrent Concurrent 
DesignsDesigns

Architecture 
Selection

Formulate 
Tradespace

Define the 
Mission
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Systems Engineering Tools

• MATE-CON
• Multi-Attribute Tradespace Exploration with 

Concurrent Design
• Matlab, STK (Satellite Tool Kit)
• ICE

– Integrated, Collaborative, Model Based Design
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What is MATE-CON?

• A formalized method to explore a design 
tradespace using model-based simulation
– Incorporates preferences into decision criteria
– Based in theory from economics and operations 

research
– Multi-Attribute Utility Analysis (MAUA), Cost-

Benefit Analysis
• A communication tool to facilitate transfer of 

wants and needs between designers and 
decision-makers
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MATE

Model/
simulation

Utility 
Function

Attributes

Design 
VectorDesign 

space

Constants 
Vector Expense

Tradespace

Utility

Expense 
FunctionConstants 

space

Designer

Firm

Customer

User

External

Constraints

Feedback

Preference Space

MIST

Communication

Data flow

Role

Legend

Defined

Solution 
Space

Decision 
Makers

RSS
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MATE Process

• Quantify customer’s preferences in terms of 
Attributes and Utility functions

• Parametrically model satellite designs using Design 
Vector 

• Simulate various mission scenarios
• Output thousands of possible architectures on Utility 

vs. Cost scale
• Analyze “Pareto-optimal” designs with customer
• Proceed to detail design of selected architecture(s)
• NEED PICTURES ABOVE EACH POINT??
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Design Vector

• The Design Vector is composed of 
fundamental, independent variables that 
define an architecture tradespace

– Focuses on variables that have significant impact 
on attributes

– Geometric growth of design space motivates a 
curtailed list of design variables
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Obtaining User Preferences

1. Define attributes

2. Define applicable attribute ranges

3. Compose utility questionnaire (context)

4. Conduct utility interview with Customer/User

5. Find utility for each attribute U(Xi), and relative 
“weight” ki
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Interview Process

• New Method
• Avoid Certainty Equivalents to Avoid “Certainty 

Effect”
• Consider a “Lottery Equivalent”

– Rather than Comparing a Lottery with a Certainty
– Reference to a Lottery is Not a Certainty

• Vary “pe” until indifference between two lotteries.  
This is the Lottery Equivalence 
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Measuring Utility

• Psychometric considerations
– Nature of interview
– Context
– Scale of response
– Method obtained (bracketing)
– Consistency and replicability (computer programs)

• Step-by-Step Procedure
– Defining the Attribute X
– Setting context
– Assessment
– Interpretation
– Numerical approximation
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Diversity in Latitude Utility Curve

U
til

ity
 (0

 to
 1

)

Diversity in Latitude (degrees)

This attribute 
evaluates user 
preference 
for achieving a 
diversity in 
latitudes while 
under 1000 km, 
ranging from 0 to 
180 degrees.
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Time Spent in Equatorial Region 
Utility Curve

Time Spent in Equatorial Region (Hours/Day)

U
til

ity
 (0

 to
 1

)

This attribute 
evaluates user 
preference 
for time spent  in 
the equatorial 
region, defined 
as ± 20 degrees 
from the equator.
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Latency Utility Curve 
(Science Mission)

U
til

ity
 (0

 to
 1

)

Latency (Hours)

This attribute 
evaluates user 
preference 
for s/c latency in 
terms of a 
science mission, 
where latency is 
defined as the 
time between 
satellite data 
dumps.
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Latency Utility Curve
(Tech Demo Mission)

U
til

ity
 (0

 to
 1

)

Latency (Hours)

This attribute 
evaluates user 
preference 
for s/c latency in 
terms of a tech 
demo mission, 
where latency is 
defined as the 
time between 
satellite data 
dumps.
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Data Life Span Utility Curve

U
til

ity
 (0

 to
 1

)

Data Life Span (years)

This attribute 
evaluates user 
preference 
for the life span 
of all the data 
entering the 
model, where 
the life span is 
the time between 
the first and last 
data sample
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Quality Function Development

• Description:
– A matrix to capture the influence a particular 

design variable has on the system attributes
• Expedites correlation of variables with 

attributes
• Enables ranking of design variables
• Enables reduction of design vector 

dimensionality
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Variables Units Constraints
Perigee Altitude m 150 < hp < 350 9 9 0 0 3 21 9 30
Apogee Altitude m 150 < ha < 1500 9 9 0 6 3 27 9 36
Inclination Degrees 0 < i < 90 0 0 9 9 3 21 6 27
delta-V m/s 0 < mass < 500 9 0 0 0 0 9 9 27
Comm System Type - AFSCN or TDRS 0 0 0 0 9 9 3 12
Propulsion Type - Chemical or Hall 6 0 0 0 0 6 6 12
Power System Type - Solar or Fuel Ce 6 0 0 0 6 12 6 18
Mission Scenario - - 9 9 9 9 3 39 9 48
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N-Squared Diagram

• Description:
– A square matrix that captures the informational 

flow among system elements

• Assists the simulation interface management 
and integration
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N-Squared Diagram

Orbit Spacecraft Launch
Cost 
(TFU)

Mission 
Scenarios

Calculate 
Attributes

Cost 
(Lifecycle) Utility Outputs

Orbit
Spacecraft X
Launch X X
Cost 
(TFU) X X
Mission 
Scenarios X X X
Calculate 
Attributes X X X
Cost 
(Lifecycle) X X X
Utility X
Outputs X X X X X X X X
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Satellite Database

Mission Scenario 
Enumerator
• Applies expert rules

• Finds satellites which fit 4 
mission scenarios 
according to expert rules

Simulator
• Takes mission scenarios (with chosen satellites)

• Calculates Attributes Cost and Utility

Satellite Enumerator

• Orbits – varies orbital 
parameters

• Spacecraft – varies 
physical satellite 
parameters

• Launch – specifies 
vehicle

Enumerator DatabaseSatellite   Database

Information Flow
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Orbits Database 

• Plot shows an 
interesting region at 
low apogees and 
perigees

• Provides insights on 
how to better utilize 
database in the 
Mission Scenario 
module
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Sub Modules
• Payload

-AFRL instruments
• Structures 
• Thermal
• Power (SC or fuel cell)
• Propulsion (chemical or 

Hall)
• ADACS (0.10 pointing)
• Communication

-3 dB Link Margin

Outputs
• Total system mass
• Dimensions
• Volume 
• Lines of code
• Data Latency
• Lifetime

Spacecraft Module

Define the Mission Explore Explore TradespaceTradespace Decide on Final Architecture Detailed Designs
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Power
• Total power needed is 

calculated by summing 
power requirements of all 
other systems. 

• Two options : Fuel Cells or 
Solar Arrays

Propulsion
• This module only sizes the 

propulsion hardware
• Two options: Chemical (Isp

350) or Hall (Isp 1500)

Payload
• All constant values as given 

in AFRL presentation. Based 
on using their instruments

Structures
• Assumes standard mass and 

power ratios for primary and 
secondary structures, cabling 
and mechanisms

Thermal
• Assumes standard mass and 

power ratios for thermal 
subsystem

Spacecraft Module
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Spacecraft Module

• The Spacecraft Module runs all the sub-modules and uses 
their output to compile mass, fuel, volume, dimension and 
lifetime estimates for the spacecraft as well as software 
and TFU costs.

•Note: The power estimate was already calculated in the 
power module.

• The module outputs three lifetime estimates:  1) assuming 
fuel only used for station keeping, 2) assuming station 
keeping and de-orbit and 3) assuming orbital insertion 
(from a circular perigee orbit),  de-orbit and station keeping

Spacecraft Module
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Spacecraft Module
Mass:

•Dry mass
•Propulsion mass
•Mass breakdown (individual subsystem masses)
•Total system mass

• Volume
•Cylinder diameter
•Cylinder side
•Total Volume

Spacecraft Module
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Spacecraft Module

• The spacecraft module estimates total amount of software 
needed, amount of storage space needed onboard, 
processing hardware needed and  

• The module outputs a data latency value which is the 
longest length of time possible between receiving data.

• TFU cost is estimated using SMAD model

Spacecraft Module
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Spacecraft
• The spacecraft will be 

delivered to it's final orbit 
by the launch vehicle

• Spacecraft is a 1:2 
cylinder (Drag calculations 
& S/C dimensions) 

• Coefficient of Drag=1.7

Orbits & Spacecraft

Orbits
• Varying: apogee, perigee, 

inclination
• Outputs include:

– Orbital period
– Minimum and maximum 

latitude encountered
– Dynamic pressure 

coefficient
– Vector of altitudes with 

respect to time

x

2x
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Cost Module

Description
• Includes spacecraft, 
operations, launch, and 
program level costs

•Uses CERs for 
spacecraft/program level

• Uses NASA’s Operations Cost 
Model

• Incorporates 95% learning 
curve

• Discounts costs at a 1.9% rate

Key Assumptions
•Assumes small satellites (20-
400 kg)

• Costs in FY2000, inflated to 
FY2002

•Assumes payment for S/C is 
made on year of launch (for 
discount)

• Annual operations cost is  
yearly constant for one S/C, 
another constant for 2 parallel 
S/C (before discounting)
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Scenarios

Sample Altitude:

• Hypothesize a new ground station
• Ground station will significantly increase data life 

span as compared to current systems
• Uncertain long-term funding

– You have a 45% chance of getting 11 years (best) and
– 55% chance of getting .5 years (worst)

OR
– 50% chance of getting 2 years (best) and 
– 50% chance of getting 0.5 years (worst)
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Possible Results for STEP 1 mission

Lifecycle Cost ($M 2002)

U
til

ity



May 13, 2002 16.89 Space Systems Design Review 120

Tech Demo vs. Science Mission

Tech Demo Science Mission

Low Gain Omni-directional Antenna

High Gain Actuated Antenna



May 13, 2002 16.89 Space Systems Design Review 121

Cost Drivers: Dry mass

Lifecycle Cost ($M 2002)

U
til

ity
Effect of Dry Mass
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Cost Drivers: Power Source

Lifecycle Cost ($M 2002)

U
til

ity

Effect of Power System Type
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Cost Drivers: Thruster Type

Lifecycle Cost ($M 2002)

U
til

ity
Effect of Power System Type
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Power and Pyrotechnic

• Selects and sizes 
secondary/primary batteries
– Secondary based on eclipse 

average load
– Primary based on launch / 

insertion requirements
– Battery couple type
– DOD %, cycle life, etc…
– Mass, volume, and 

dimensions of batteries
– Optional redundancy

• Estimates mass of power 
regulation and control 
based on power output.

• Calculates average and 
peak power requirements 
for all modes

• Selects and sizes solar 
arrays
– Based on EOL average load 

and battery charging
– Type of solar cell (database)
– Solar array configuration
– Mass, area, and dimensions 

of arrays
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Launch ModuleLaunch Module

125

Description
•Selects a Launch Vehicle    
based on the following

• Minimum Cost

• Spacecraft Total Mass

• Spacecraft Dimensions

• Perigee Altitude

• Orbital Inclination

Key Assumptions
•Must be launched on a US 
vehicle

•Scalable spacecraft

•Dimensions extracted from 
assumed densities 

•One spacecraft per launch 
vehicle
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• Some values are 
directly from the 
design vector

• Other values are 
derived from the 
design vector using 
the orbits, spacecraft, 
and launch modules

data_error_flag 0 payload_mass 20.5
bad_launch_flag 0 dry_mass 196.0718

id 1000 prop_mass 8.9422
inclination 1.5708 total_mass 205.014
alt_perigee 200000 latency 2.12E+04
alt_apogee 200000 lifetime 0.2726
comm_arch 0 lifetime_raw 0.2726
total_delta_v 700 volume 2.5226

prop_type 0 diameter 1.171
power_type 1 length 2.3421

ant_gain 1 max_avg_power 486.7966
period 5.31E+03 max_peak_power 486.7966

time_eq 19020 tfu_cost 2.14E+07
min_lat -1.545 lv_name 'Minotaur'
max_lat 1.562 lv_cost 12500000
delta_v 48.4051 lv_site Vandenberg or Kodiak'

alt_vector [89x1 double] arch_id 28
bus_mass 175.5718

Database:Sample SATDB Entry



May 13, 2002 16.89 Space Systems Design Review 127

SMAD Cost Breakdown Chart
SMAD Power & 

Pyro
3%

GSE 
Wraps

7%LOOS
1%

IA&T 
Wraps

9%

Program
24%

Launch
13%

ADACS
9%

TTC&DH
11%

Structures
22%

Thermal
1%
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