Shuttle Environmental/Thermal Control & Life Support System

W. Guy

Shuttle Orbiter Environmental/Thermal Control & Life Support System

- Cabin Atmospheric Revitalization Subsystem
- Cabin Atmospheric Pressure and Composition Control Subsystem
- Water and Waste Management Subsystem
- Cabin Thermal Control Subsystem
- Spacecraft Active Thermal Control Subsystem
- EVA Airlock Support Subsystem

Shuttle Orbiter Environmental/Thermal Control & Life Support System

Subsystem Elements:

- CABIN ATMOSPHERIC REVITALIZATION
 - CO₂ and trace gas removal
 - Humidity control
 - Environmental cooling
 - Atmospheric circulation/ventilation

ATMOSPHERIC REVITALIZATION SUBSYSTEM

CO₂ and Trace Gas Removal:

- CO_2 Acceptable level ≤ 7.6 mmHg
- CO₂ Absorption (from humidified cabin gas)
 - Absorbent: Lithium Hydroxide (LiOH)
 - LiOH + CO₂ \rightarrow LiCO₃ + H₂O + heat
 - Single use (expendable)

CO₂ and Trace Gas Removal:

- CO₂ Absorption (from humidified cabin gas)
 - Absorbent: solid amine (polymerized ethyleneimine: RNH)
 - Absorb $RNH + H_2O \rightarrow RNH_2^+ + OH_2^ OH_2^- + CO_2 \rightarrow HCO_3^- + heat$
 - Desorb $RNH_{2}^{+} + HCO_{3}^{-} + heat + vacuum \rightarrow RNH + H_{2}O + CO_{2}$
 - Multi-use (regenerative)

CO₂ and Trace Gas Removal:

- Trace gas removal -
 - Activated charcoal
 - Single use (expendable)

Environmental Cooling and Humidity Control:

- Cabin atmospheric heat-exchanger
- Condensing heat-exchanger
- Centrifugal water/gas separator

Atmospheric Circulation/Ventilation:

- Redundant cabin fans
- Flight-deck and mid-deck duct system

Shuttle Orbiter Environmental/Thermal Control & Life Support System

Subsystem Elements:

- CABIN ATMOSPHERIC PRESSURE & COMPOSITION CONTROL
 - 14.7 psia total pressure control (normal)
 - 8 psia total pressure control (emergency de-orbit)
 - O₂/N₂ partial pressure control
 - Crew O₂ breathing masks
 - Positive and negative cabin pressure relief (anomaly)
 - Gaseous O₂/N₂ storage
 - Pressurization N₂ for Water & Waste Management

ATMOSPHERIC PRESSURE AND COMPOSITION CONTROL SUBSYSTEM

Normal Operations:

- Total pressure control (gaseous N_2)
 - 14.7 psia ("automatic" pressure regulator)
- O₂ partial pressure control (cryogenic O₂)
 - 3.2 psia ("on-off" solenoid valve)

Cabin Pressure Relief:

- Over pressure protection 16.2 psid 3 relief values (only two needed)
- Negative pressure protection 8 psid 3 relief values (only two needed)

SHUTTLE CABIN TEST FACILITY

TYPICAL OPERATION OF ATMOSPHERIC PRESSURE AND COMPOSITION CONTROL SUBSYSTEM

- o NOMINAL LEAKAGE
- o 7 CREWMEN

Crew Emergency Breathing Equipment:

- Plug-in face masks
- Purge-type breathing masks
- For use with a contaminated cabin atmosphere
- For use with a low concentration of O_2 in cabin

TYPICAL CABIN PRESSURE PROFILE FOR 8 PSIA EMERGENCY RETURN

9 psia Cabin Pressure Control for Pre EVA

- Shuttle spacesuits operate on 100% O₂
- Normally, ~four hours of 100% O₂ pre-breath @ 14.7 psia required to prevent "bends"
- However, subsequent to 12 hours acclimatization at 9 psia, only a short pre-breath required
- The short pre-breath (~ 30 minutes) is accommodated by suit-up and EVA preparation procedures
- But cabin atmospheric pressure and composition control not designed for automatically maintaining 9 psia
- Thus, a manual operational procedure for the crew was required

Issues with 9 psia Cabin Pressure Operation

- Flow-rate acceptability of fans at 9 psia
- Thermal acceptability of fans at 9 psia
- CO₂ absorption performance of LiOH at 9 psia
- Cabin ventilation adequacy for O_2/N_2 mixing with press/depress operation

ORBITER CABIN PRESSURE PROFILE FOR 9 PSI OPERATION

CABIN AND CLOSED VOLUMES PPO2 PROFILE FOR

CABIN PPO2 PROFILE FOR 9 PSIA TO 14.7 PSIA PRESSURE (ALTERNATE PROCEDURE)

Shuttle Orbiter Environmental/Thermal Control & Life Support System

Subsystem Elements:

- WATER & WASTE MANAGEMENT
 - Potable/waste water inventory management
 - Potable water storage for drinking and food preparation
 - Waste water storage for dumping to space
 - Commode and urinal for human waste collection
 - Supply water for flash evaporators

Water & Waste Management

Water Sources:

Potable Water

- Fuel cell byproduct H₂O
- Launch storage of H₂O
- Drinking water sterilization

Waste Water

- Condensate from cabin humidity control
- Urine
- Urine pre-treat for NH₃

Water and Waste Management

Solid Waste:

- On-orbit trash storage (overboard dump for odor control)
- Human solid waste collection and storage (vacuum dried/stabilized)

WASTE MANAGEMENT

COMMODE AND URINAL

Shuttle Orbiter Environmental/Thermal Control & Life Support System

Subsystem Elements:

- CABIN THERMAL CONTROL
 - Cabin circulating liquid cooling system
 - Atmospheric heat sink
 - Cabin heat rejection to spacecraft cooling system
 - Avionics cold-plate heat rejection
 - Air-cooled avionics-bay heat rejection
 - EVA crew cooling in airlock
 - Crew potable water chiller

CABIN THERMAL CONTROL SUBSYSTEM

Cabin Thermal Control System

Cabin Thermal Control Subsystem Functions:

- Cool cabin atmospheric
- Cool atmosphere in avionics bays
- Remove heat from cold-plated electronics
- Cool IMU
- Thermal control of windows & hatch
- Provide water chiller for crew
- Cool space-suited crew in airlock
- Reject cabin thermal energy to vehicle heat rejection system

Cabin Thermal Control System

Cabin Circulating Liquid Cooling Loop:

- H_20 as coolant
- Redundant pumps
- Liquid/gas heat-exchangers for atmospheric cooling
- Cold-plates for electronics cooling
- Window-mount/hatch-mount thermal control

Avionics Circulating Gas Cooling Loop:

- Cabin atmospheric used as coolant
- Redundant fans in avionics bays
- Double redundant fans for IMU cooling

Shuttle Orbiter Environmental/Thermal Control & Life Support System

Subsystem Elements:

- SPACECRAFT ACTIVE THERMAL CONTROL
 - On-orbit radiative heat sink
 - On-orbit evaporative heat sink
 - Ascent/entry evaporative heat sinks
 - Vehicle circulating liquid cooling system
 - Cabin heat sink
 - Fuel cell heat sink
 - Hydraulics heat sink
 - Cold-plate electronics heat sink
 - Payload heat sink

ATCS (Simplified Flow Schematic)

Active Thermal Control Subsystem Functions:

- Collect waste thermal energy from orbiter subsystems
- Reject waste-heat radiatively to space (on-orbit)
- Augment space radiators with evaporative heat sink at high-load/hot-environments
- Throttle radiators to restrict heat rejection and utilize evaporative heat sink to consume excess fuel cell H_2O
- Reject waste-heat evaporatively during assent (H₂O)
- Reject waste-heat evaporatively during entry (NH₃)

Heat Rejection - Radiator:

- 2 mirror-image radiator systems
- _ of the radiators located in separate cooling loops
- "Bypass-type" thermal control concept utilized
- Dual Set points 40°F & 56°F
- 4 single-sided, fixed space radiators
- 4 two-sided, deployable space radiators
- Honeycomb structure with embedded tubes for coolant
- Silver-Teflon, thermal surface coating

Heat Rejection - Flash Evaporators:

- Heat sink is phase-change of H₂O
- Dual flash chambers "high-load" and "topper"
- Non-propulsive over-board steam duct for "topper"
- Second over-board steam duct for "high-load"

Heat Rejection – Ammonia Boiler:

- Heat sink is phase-change of NH₃
- Redundant boilers
- Utilized during entry at < 100,000 feet altitude
- · Utilized on runway until ground cooling available

Circulating Liquid Cooling Loop:

- Freon 21 as coolant
- Redundant pumps
- Liquid/liquid heat exchangers
- Cold-plates

Shuttle Orbiter Environmental/Thermal Control and Life Support System

ROTATING EQUIPMENT LIFE TEST

- **Equipment**
 - Cabin fan
 - Water/gas separator
 - Avionics bay fan
 - Cabin coolant pump
 - Vehicle coolant pump
- Life Requirement
 - 100 missions
 - 20,000 hours

Shuttle Orbiter Environmental/Thermal Control & Life Support System

Functional Requirements:

EVA AIRLOCK SUPPORT

- Maintain cabin pressure & O_2/N_2 composition during airlock depress/repress
- Interface with EMU service and cooling umbilical
- Provide heat rejection for spacesuit cooling garment
- Supply backpack O₂ recharge (900 psia)
- Supply backpack H₂O recharge for sublimator
- Drain humidity condensate from backpack post-EVA

