

Course Introduction

Probability, Statistics and Quality Loss

HW#1 Presentations

Background

SDM split-summer format

- Heavily front-loaded
- Systems perspective
- Concern with scaling
- Product development track, CIPD

- Place in wider context of product realization
- Joint 16 (Aero/Astro) and 2 (Mech E)

Course Learning Objectives

- Formulate measures of performance
- Synthesize and select design concepts
- Identify noise factors
- Estimate the robustness
- Reduce the effects of noise
- Select rational tolerances
- Understand the context of RD in the end-to-end business process of product realization.

Instructors

- Dan Frey, Aero/Astro
- Don Clausing, Xerox Fellow
- Joe Saleh, TA

- Dave Miller, Guest from MIT Aero/Astro
- Others ...

Primary Text

Phadke, Madhav S., *Quality Engineering Using Robust Design*. Prentice Hall, 1989.

Computer Hardware & Software

Required

- Access to a PC running Windows 95 or NT
- Office 95 or later
- Reasonable proficiency with Excel
- Provided
 - MathCad 7 Professional (for duration of course only)

Learning Approach

- Constructivism (Jean Piaget)
 - Knowledge is not simply transmitted
 - Knowledge is actively constructed in the mind of the learner (critical thought is required)
- Constructionism (Seymour Papert)
 - People learn with particular effectiveness when they are engaged in building things, writing software, etc.
 - http://el.www.media.mit.edu/groups/el/

Format of a Typical Session

Well, almost

- Reading assignment
- Quiz
- Labs, case discussions, design projects
- Homework

Grading

- Breakdown
 - 40% Term project
 - 30% Final exam
 - − 20% Homework (~15 assignments)
 - − 10% Quizzes (~15 quizzes)
- No curve anticipated

Grading Standards

Grade Range	Letter Equivalent	Meaning	
97-100	A+	Exceptionally good performance demonstrating	
94-96	A	superior understanding of the subject matter.	
90-93	A-		
87-90	B+	Good performance demonstrating capacity to use	
84-86	В	appropriate concepts, a good understanding of	
80-83	B-	the subject matter and ability to handle	
		problems.	
77-80	C+	Adequate performance demonstrating an	
74-76	C	adequate understanding of the subject matter, an	
70-73	C-	ability to handle relatively simple problems, and	
		adequate preparation.	
67-70	D+	Minimally acceptable performance	
64-66	D	demonstrating at least partial familiarity with the	
60-63	D-	subject matter and some capacity to deal with	
		relatively simple problems.	
<60	F	Unacceptable performance.	

Reading Assignment

- Taguchi and Clausing, "Robust Quality"
- Major Points
 - Quality loss functions (Lecture 1)
 - Overall context of RD (Lecture 2)
 - Orthogonal array based experiments (Lecture 3)
 - Two-step optimization for robustness
- Questions?

Learning Objectives

- Review some fundamentals of probability and statistics
- Introduce the quality loss function
- Tie the two together
- Discuss in the context of engineering problems

Probability Definitions

- Sample space List all possible outcomes of an experiment
 - Finest grained
 - Mutually exclusive
 - Collectively exhaustive
- Event A collection of points or areas in the sample space

Probability Measure

Axioms

- For any event A, $P(A) \ge 0$
- P(U) = 1
- If $AB = \phi$, then P(A+B) = P(A) + P(B)

Discrete Random Variables

- A random variable that can assume any of a set of discrete values
- Probability mass function
 - $-p_x(x_o)$ = probability that the random variable x will take the value x_o
 - Let's build a pmf for one of the examples
- Event probabilities computed by summation

Continuous Random Variables

- Can take values anywhere within continuous ranges
- Probability density function

$$- P\{a < x \le b\} = \int_a^b f_x(x) dx$$

$$-0 \le f_x(x)$$
 for all x

$$-\int_{-\infty}^{\infty} f_x(x) \mathrm{d}x = 1$$

Histograms

- A graph of continuous data
- Approximates a pdf in the limit of large *n*

Measures of Central Tendency

• Expected value
$$E(g(x)) = \int_{a}^{b} g(x) f_{x}(x) dx$$

Mean

$$\mu = E(x)$$

Arithmetic average

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

Measures of Dispersion

Variance

$$VAR(x) = \sigma^2 = E((x - E(x))^2)$$

Standard deviation

$$\sigma = \sqrt{E((x - E(x))^2)}$$

• Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

• *n*th central moment

$$E((x-E(x))^n)$$

• *n*th moment about m

$$E((x-m)^n)$$

Sums of Random Variables

• Average of the sum is the sum of the average (regardless of distribution and independence) E(x + y) = E(x) + E(y)

Variance also sums iff independent

$$\sigma^2(x+y) = \sigma(x)^2 + \sigma(y)^2$$

- This is the origin of the RSS rule
 - Beware of the independence restriction!

Central Limit Theorem

The mean of a sequence of *n* iid random variables with

– Finite μ

$$-E(|x_i - E(x_i)|^{2+\delta}) < \infty \quad \delta > 0$$

approximates a normal distribution in the limit of a large n.

Normal Distribution

$$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Robust System Design Session #1

Engineering Tolerances

- Tolerance -- The total amount by which a specified dimension is *permitted to vary* (ANSI Y14.5M)
- Every component
 within spec adds
 to the yield (Y)

Crankshafts

- What does a crankshaft do?
- How would you define the tolerances?
- How does variation affect performance?

Robust System Design Session #1

GD&T Symbols

	TYPE OF TOLERANCE	CHARACTERISTIC	SYMBOL	SEE:		
FOR INDIVIDUAL FEATURES	FORM	STRAIGHTNESS		6.4.1		
		FLATNESS		6.4.2		
		CIRCULARITY (ROUNDNESS)	0	6.4.3		
		CYLINDRICITY	/2/	6.4.4		
FOR INDIVIDUAL OR RELATED FEATURES	PROFILE	PROFILE OF A LINE	\cap	6.5.2 (b)		
		PROFILE OF A SURFACE		6.5.2 (a)		
FOR RELATED FEATURES	ORIENTATION	ANGULARITY		6.6.2		
		PERPENDICULARITY		6.6.4		
		PARALLELISM	//	6.6.3		
	LOCATION	POSITION	+	5.2		
		CONCENTRICITY	0	5.11.3		
	RUNOUT	CIRCULAR RUNOUT	A*	6.7.2.1		
		TOTAL RUNOUT	29*	6.7.2.2		
*Arrowhead(s) may be filled in.						

FIG. 68 GEOMETRIC CHARACTERISTIC SYMBOLS

Loss Function Concept

• Quantify the economic consequences of performance degradation due to variation

Fraction Defective Fallacy

- ANSI seems to imply a "goalpost" mentality
- But, what is the difference between
 - -1 and 2?
 - -2 and 3?

Isn't a continuous function more appropriate?

A Generic Loss Function

- Desired properties
 - Zero at nominal value
 - Equal to cost at specification limit
 - C1 continuous
- Taylor series

$$f(x) \approx \sum_{n=0}^{\infty} \frac{1}{n!} (x-a)^n f^{(n)}(a)$$

Nominal-the-best

Defined as

$$L(y) = \frac{A_o}{\Delta_o^2} (y - m)^2$$

Average loss is proportional to the 2nd moment about *m* (HW#2 prob. 1)

- —— quadratic quality loss function
- --- "goal post" loss function

Average Quality Loss

- —— quadratic quality loss function
- —— probability density function

Other Loss Functions

• Smaller the better (HW#3a)

$$L(y) = \frac{A_o}{\Delta_o^2} y^2$$

Larger-the better (HW#3b)

$$L(y) = A_o \Delta_o^2 \frac{1}{y^2}$$

Asymmetric(HW#2fc)

$$L(y) = \begin{vmatrix} \frac{A_o}{\Delta_{Upper}^2} (y - m)^2 & \text{if } y > m \\ \frac{A_o}{\Delta_{Lower}^2} (y - m)^2 & \text{if } y \le m \end{vmatrix}$$

Printed Wiring Boards

- What does the second level connection do?
- How would you define the tolerances?
- How does variation affect performance?

Robust System Design Session #1

Next Steps

- Load Mathcad (if you wish)
- Optional Mathcad tutoring session
 - 1hour Session
- Complete Homework #2
- Read Phadke ch. 1 & 2 and session #2 notes
- Next lecture
 - Don Clausing, Context of RD in PD

