Plan for the Session

- Questions?
- Complete some random topics
- Lecture on Design of Dynamic Systems (Signal / Response Systems)
- Recitation on HW#5?

Dummy Levels and μ

• Before

- After
 - Set SP2=SP3
 - $-\mu$ rises
 - Predictions unaffected

MIT

Number of Tests

- One at a time
 - Listed as small
- Orthogonal Array
 - Listed as small
- White Box
 - Listed as medium

Linear Regression

• Fits a linear model to data

$$Y_i = \beta_0 + \beta_1 \cdot X_i + \varepsilon_i$$

Error Terms

- Error should be independent
 - Within replicates
 - Between X values

Least Squares Estimators

• We want to choose values of b_o and b₁ that minimize the sum squared error

$$SSE(b_0,b_1) := \sum_{i} [y_i - (b_0 + b_1 \cdot x_i)]^2$$

 Take the derivatives, set them equal to zero and you get

$$b_{1} := \frac{\sum_{i} (\mathbf{x}_{i} - \text{mean}(\mathbf{x})) \cdot (\mathbf{y}_{i} - \text{mean}(\mathbf{y}))}{\sum_{i} (\mathbf{x}_{i} - \text{mean}(\mathbf{x}))^{2}}$$

$$b_0 := mean(y) - b_1 \cdot mean(x)$$

Distribution of Error

Homoscedasticity

Heteroscedasticity

Cautions Re: Regression

• What will result if you run a linear regression on these data sets?

Linear Regression Assumptions

- 1. The average value of the dependent variable *Y* is a linear function of *X*.
- 2. The only random component of the linear model is the error term ε . The values of X are assumed to be fixed.
- 3. The errors between observations are uncorrelated. In addition, for any given value of *X*, the errors are are normally distributed with a mean of zero and a constant variance.

If The Assumptions Hold

- You can compute confidence intervals on β₁
- You can test hypotheses
 - Test for zero slope $\beta_1=0$
 - Test for zero intercept $\beta_0=0$
- You can compute prediction intervals

Design of Dynamic Systems (Signal / Response Systems)

Dynamic Systems Defined

"Those systems in which we want the system response to follow the levels of the signal factor in a prescribed manner"

- Phadke, pg. 213

Examples of Dynamic Systems

- Calipers
- Automobile steering system
- Aircraft engine
- Printing
- Others?

Static versus Dynamic

Static

- Vary CF settings
- For each row, induce noise
- Compute S/N for each row (single sums)

<u>Dynamic</u>

- Vary CF settings
- Vary signal (M)
- Induce noise
- Compute S/N for each row (double sums)

S/N Ratios for Dynamic Problems

Signals

	Continuous	Digital
Continuous	C-C	C-D
Digital	D-C	D-D

Examples of each?

Responses

Continuous - continuous S/N

- Vary the signal among discrete levels
- Induce noise, then compute

$$\beta = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij} M_{i}}{\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i}^{2}}$$

$$\sigma_e^2 = \frac{1}{mn-1} \sum_{i=1}^m \sum_{j=1}^n (y_{ij} - \beta M_i)^2$$

$$\eta = 10\log_{10}\frac{\beta^2}{\sigma_e^2}$$

Response

Signal Factor

C - C S/N and Regression

C-C S/N

$$\beta = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij} M_{i}}{\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i}^{2}}$$

$$\sigma_e^2 = \frac{1}{mn-1} \sum_{i=1}^m \sum_{j=1}^n (y_{ij} - \beta M_i)^2$$

$$\eta = 10\log_{10}\frac{\beta^2}{\sigma_{e}^2}$$

Linear Regression

$$b_{1} := \frac{\sum_{i} (\mathbf{x}_{i} - \text{mean}(\mathbf{x})) \cdot (\mathbf{y}_{i} - \text{mean}(\mathbf{y}))}{\sum_{i} (\mathbf{x}_{i} - \text{mean}(\mathbf{x}))^{2}}$$

$$SSE(b_0,b_1) \coloneqq \sum_{i} [\mathbf{y}_i - (b_0 + b_1 \cdot \mathbf{x}_i)]^2$$

Non-zero Intercepts

- Use the same formula for S/N as for the zero intercept case
- Find a second scaling factor to independently adjust β and α

Response

Signal Factor

M

Continuous - digital S/N

- Define some continuous response *y*
- The discrete output y_d is a function of y

Signal Factor

Temperature Control Circuit

- Resistance of thermistor decreases with increasing temperature
- Hysteresis in the circuit lengthens life

System Model

Known in closed form

$$R_{T_{ON}} = \frac{R_{3} \cdot R_{2} \cdot (E_{z} \cdot R_{4} + E_{o} \cdot R_{1})}{R_{1} \cdot (E_{z} \cdot R_{2} + E_{z} \cdot R_{4} - E_{o} \cdot R_{2})}$$

$$R_{T_{OFF}} = \frac{R_{3} \cdot R_{2} \cdot R_{4}}{R_{1} \cdot (R_{2} + R_{4})}$$

Problem Definition

16.881

MIT

Results (Graphical)

Results (Interpreted)

- R_T has little effect on either S/N ratio
 - Scaling factor for both β s
 - What if I needed to independently set β s?
- Effects of CFs on $R_{T\text{-}OFF}$ smaller than for $R_{T\text{-}ON}$
- Best choices for R_{T-ON} tend to negatively impact R_{T-OFF}
- Why not consider factor levels outside the chosen range?

/ 16.881

Next Steps

- Homework #8 due 7 July
- Next session Monday 6 July 4:10-6:00
 - Read Phadke Ch. 9 -- "Design of Dynamic Systems"
 - No quiz tomorrow
- 6 July -- Quiz on Dynamic Systems

