Temperature Controller Simulation

Coded by Dan Frey, 2 July 1998

This Mathcad sheet reproduces the results from Padke, "Quality Engineering Using Robust
Design” chapter 9. The sheet is intended to facilitate deeper explorartion of the case study
and to help 16.881 students complete homework #8 -- "Design of Dynamic Systems".

ORIGIN:=1 The first index of all vectors and matrices will be one.

Define the governing equations of the temperature controller circuit. An explanation of the
circuit can be found on pg. 214-216 of Phadke. The governing equations are on page 218.

Define the System Model

E,:=10 The supply voltage is not a control factor, so its nominal value is set right up
front. There will be noise induced about the nominal however.

This is the governing equation for RT-ON found in Phadke.

RaRo{E Ry + EgRy)
R{EZRy + EpRy - EpRy)

Rr_on(R1Re,Rs,Ra, Eo Ey) =

This second equation defines the value of RT-ON as a function of vectors of signal factors
(SF), noise factors (NF), and control factors (NF).

RT_oN2(SF, NF,CF) := RT_ON(NF1>CF1, NF,)CF,, SF, NF CF,, NF 8o, NF5>CF4)

This is the governing equation for RT-OFF found in Phadke.
RRRy

Rr_orr(Ry,Ro, Ra,Ra, Eo, Ez) = ol T R

This second equation defines the value of RT-OFF as a function of vectors of signal factors
(SF), noise factors (NF), and control factors (NF).

R oFF2(SF, NF,CP) := RT_OFF(NF1>CF1, NF,)CF,, SF, NF CF,, NF 8o, NF5>CF4)



Choose Noise, Control, and Signal Factor Levels

These are the noise levels defined in Table 9.1 on page 220. I've switched the ordering so that
the column numbers correspond to the compound noise factor levels defined on page 221.

.0204 1 0979
S09796 1 10204
noise_levels := ¢10204 1 09796+
C09796 1 10204~
€1.0004 1 09796

Here are the signal factor levels as defined in Table 9.2.

956
signal_levels =% 1 7

&154

Here are the control factor level assignements within the L18 as defined by Tables 9.3 and 9.4.

el 2 39
1 2 37
2668 40 60 +

5336 80 120~
cf_level :=¢ +

This command forms the L18 matrix.

6d 11111115 d31213235a221231324)0
®€112222227 ®132321317622231213W
511333333, E3;133132121%2312321%
Lig:= stackSS " stack® o6 o
€12112233%  &21133221%¢2313231 2%
122233117 $212113327%3213123W
612331122 &21322113g823321231d)



Perform the Experiment

For every row of the experiment, compute the values of RT-ON. The values of RT_ON are made by running
a full factorial on the signal factor and the compound noise factor. This is easily accomplished with nested

FOR loops. Within the FOR loops, single values of RT-ON are computed using the L18 matrix and control
factor level table.

row:=1..18
Rony = | for signaﬁ 1.3
row A

for noisel 1..3
é asf_level (ll
s Q ’ row, 3 =t}
: Cef_level L &
i 1 =18 :
Ysgnd, noise ™ Rr_on2 ; nal_levels S g Noise Ie\/elsa"O'SéI, row,4g
| é ch level, | b
é 55
: cf _level e
& 9 7,L1g 4
© ow,7 @I

y

ad 426 1543 1676(') _ _ _
_C Here is an example of the data from a single row (the first row) of
RON 2852 3085 3353 the inner array. Rows correspond to signal factor levels and
ed.277 4.628 5029g noises correspond to columns. There is greater variation due to

the signal than the noise which is as it should be.



Compute the values of beta, error variance, and S/N ratio directly from the equations for the
Continuous-continuous case as given on Phadke page 115.

3 3
[o] o]
RON ) >signal_levels .
_ a _ a ( oW/ 9gnal , noise signa
_sgnd =1 noise=1
bon =
row 3

é_ ég_ (signal_levels 'gnd)z

s
signd =1 noise=1

1 N 5
SZeONmWi: 3)8_1>< a a gRONrOW)

sgna =1 noise=1

2
- bon signad_levels . ]
signa, noise row sgnduﬂ



Repeat the exact same process for the second response RT-OFF.

For every row of the experiment, compute the values of RT-OFF. The values of RT_OFF are made by
running a full factorial on the signal factor and the compound noise factor. This is easily accomplished with
nested FOR loops. Within the FOR loops, single values of RT-OFF are computed using the L18 matrix and
control factor level table.

Rorr = | for signall 1.3
row
for noisel 1.3
é g;(.\_s:f_level3 L QJ
é C " row, 34
e Gef_level, Y
€ o level e level Gnoisd , 18r°""v4_:t5|
Ygnd noise ” RT_OFF28ignal_levels . noise levels Gt level 'U
€ ¢ 5’Llarcxw 5_.t:I
e e
é ({‘cf_level7 Ly —g
e ‘ 74l
y

a9.805 0.833 0.862¢
_C + Here is an example of the data from a single row (the first row) of the
ROFFl - 1'724+ inner array. Rows correspond to signal factor levels and noises
e2416 25 2586g correspond to columns. There is greater variation due to the signal

than the noise which is as it should be.



Compute the values of beta, error variance, and S/N ratio directly from the equations for the
Continuous-continuous case as given on Phadke page 115.

3 3
[o] o] .
a a (ROFFrow) _ _ >S|gnal_levelssjgnai
. . signa, noise
b — sgna =1 noise=1
OFFrOW- 3 3
o)

o) . 2
a a (sngnal_levelsggn a‘)
signad =1 noise=1

1 g 4
S2OFF = . 1. a a gROFFmW)

sgnd =1 noise=1

2
- bopg signd_levels . [
signa, noise row sgndg

A 2
g(bOFFrow)
h OFF =10dog5————

€ s20rF
e row

OO\



Define a function that will perform ANOVA for any response at any factor at all levels. The first argument is the
name of the data set to be analyzed. The second argument is the number of the control factor. This will be
helpful in creating the factor effect plots below.

m(response, factor_no) := | for levell 1..3
sum- 0
for rowl 1..18

sum- sum+ response if Lig = level
row row, factor_no

sum
mean - —
leve 6

mean



Define the range variable to step through the three level factors.

level =1..3

Create a shorthand notation for the control factors consistent with Table 9.4.

A=3 B:=4 C=5 D=7
35
m(h ONvA)IeveI
Sl==] 30 —
mean(h ON)
m(h OFF:A)IeveI
mean(h OFF) »[ i
—— &*@E
20 | |
1 2 3
level
35 T T ]
m(h ON> C)Ievd
BEE 30 ]
mean(h ON)

Tn(rTOFF : C) level

mean( h OFF)

20

35
m(h ON> B) level
BEE 30
mean(h ON)
m(h OFF: B)Ievd
mean(h OFF) 2
20
m(h ON> D) level
BEE
mean(h ON)

m(hOFFr D)Ievel

mean( h OFF)

35

25

20
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Optimization

The optimum settings chosen by Padke were:

A=2 B=1 C=3 D=3

For RT-ON he prediction is:

N pred = mean(hON) + ”(hON:A)Z + W(hON:B)l + ”(hONvC)S + m(hON,D)s - 4’mean(hON)

20

34 Y YR, :
(0]
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Confirmation

The true value is:

Run through all the signal and noise factors at the optimal control factor settings.

Ron_oprt := | for signalT 1..3
for noisel 1..3
g 40 &
& foiodi 05336 )
%ignal_levels . ,noise_levelsaqo'Sé],g _u
sgndl G 600

ysignal ,noise Rr_oN2

72 &

D D

2718 0755 0795
RON_OPT = $1435 151 1589~
§2153 2265 2384 5

Here is the data you'd gather.

3 3
[} [e) .
a a (RON_OPT)Sign " noise&gnal_levelssjgn ’

__signd =1 noise=1
bon_opT = 3 .
o) o . 2
a a (agnal_le\/elssignd)

sgna =1 noise=1

3 3
[*] [o]
" a a gRON—OPT)s'gnd ,hoise

sgna =1 noise=1

. 2
- bON_opT>ggnal_IeveIss.gna|H

1
S =
260N_OPT 2. 1

10



é(bON OPT)2H
hon_opT = 104ogg —————

8S2e0N_OPT (j hon_opT = 26436

Not a bad prediction. The forecast was for
an increase of about 4.4 dB and we

actually realized an increase of 3.2 dB.

mean(h on) = 23241

11



Solution

a) At the optimized control factor settings, what is the variance in RT-ON at the three
settings of the signal factor R3?

Run through all the signal and noise factors at the optimal control factor settings.

Ron_opt := | for signali 1.3
for noisel 1.3
4.0 q:j
doisdt 05336 ]
ignal_levels ,noise_levels%'Sé],Q —u
signa G 600

&72 &

MD) (DD~

ysignal ,noise RT_ONZ

DD D

9718 0755 0795
RON_OPT = $1435 151 1589~
£2153 2265 2334 g

Here is the data you'd gather.

signal :=1..3

Plot and tabulate the variance at the various signal factor levels.

0.015 T T ; N
4 T Sgnalll)
0oL - | VargRON_OF’T ) a=
A egnally 1.483-10 -3
. To o
VH%%N_OPT g 5.932.10 3
=1= =] 0.005 [~ —
0.013
|
0
0 0.5 1 15

sgnal_levelsggna

There is a roughly linear scaling of variance with the signal factor R3. This confirms what we stated in lecture 12,
that robust design generally assumes this will hold making S/N a useful metric (independent of adjustment with the

scaling factor).

12



b) Run a Monte Carlo Simulation to check the results from part (a).

number_of trials := 1000

5%
Ry = rnorrrfg?:\umber of_trials,4.0,4.0— 300
(7]
5/00
Ro = rnormg umber of_trials, 5.336,5.336%— 3
@
R3:=signal_levels
5A)Q
Rgq:= rnorrrfg?\umber of_trials, 60.0, 60.0— 3
2
x 5A)o
E = rnormg umber_of_trials, 7.2, 7.2%— 3
o]

B = rnormg?\umber of trias, 10, 1O><?0
%]

trial := 1.. number_of _trids

= R
RON—M Ctnai sgnal RT ON( trlal 2trial sgnal R4tnai Eotrlai tnai)
&ignalfl
VARuC = Vaf(RON MC )
sgnd
0.015
0.01 — The compounding strategy is just about 5
times too overconservative at every signal
factor level. The Monte Carlo simulation
0.005 [~ . takes more function evaluations, but the
variance values are much more accrate and
coding is quite a bit simpler. Bottom line
0 0 > lesson, compounding noise factors is a
B82 Compound good strategy in parameter design because
*%>  Monte Carlo it drives you to the right control factor

settings, but is too overconservative for
tolerance design.
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c ) Use a different noise strategy. Pick an appropriate outer array and induce the noise
through it.

There are five noise factors at three levels. The L18 or the L16 primed would both be fine. 1 will use the L18 since I've
already entered the definition of the matrix.

Perform the Experiment

For every row of the experiment, compute the values of RT-ON. The values of RT_ON are made by running
a full factorial on the signal factor and the compound noise factor. This is easily accomplished with nested
FOR loops. Within the FOR loops, single values of RT-ON are computed using the L18 matrix and control
factor level table.

row:=1..18
a8 1 1025
oo 1 1027
noise levels = ¢098 1 102+
G098 1 1027
80.98 1102g
Ronig = | for signall 1.3
row R
for noisel 1..18
A oise levels A N
& ? - 1,L1g__ 29 H
a c noise, N @f_|eve|3’|_ q_’]
é noise_levels =G row, 3 +L,J
& ; 118 3 Cef level =
. . igndl levels . Gnoise levels, | - row,4 1
Ysgre oise RT_ONZZS'gn — % sgna ¢ 18 gise, 4 + ng_Ievel5 L 2u
€ Cnoise levels - " Brow,s5 U
é c 4Llg =€ G
A noise, 5 gcf Ievvel7 L =
é . Gof_level,
a gnoise_levels - 10w, 7 Y
€ 8 ' 18noise,Gﬂ u
y

14



Here is an example of the data from a single row (the first row) of the inner array.

Rows correspond to signal factor levels and noises correspond to columns. Note
that now there are 18 columns of noise.

RON1S. = 1| 1.543| 1.569| 1.595| 1.517| 1.543( 1.568 144 1.526| 1.595| 1.536
1 |2| 3.085| 3.137| 3.189| 3.034| 3.085| 3.136| 2.879| 3.051| 3.189| 3.073
4.628( 4.706( 4.784 | 4551 4.628 | 4.704| 4.319| 4577 | 4.784| 4.609

Compute the values of beta, error variance, and S/N ratio directly from the equations for the
Continuous-continuous case as given on Phadke page 115.

row:=1..18

3 18

o] [¢]

a a (Ros,)
signad =1 noise=1

3 18
o

o . 2
a a (sgnal_levelssignd)
sgnd =1 noise=1

>signa|_|e\/e|ssj

signd, noise gna

bonig =
row

3 18
1 o o
S2ON18 = 2.1 a a gROlemw)

signd =1 noise=1

A 2
g(boms )
o rows |

honig = 10%0g
row gszeON18mW

- bon1g signal_levels_ (]
signal, noise row sgnaa

OC\CO\C/
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Repeat the exact same process for the second response RT-OFF.

For every row of the experiment, compute the values of RT-OFF. The values of RT_OFF are made by
running a full factorial on the signal factor and the compound noise factor. This is easily accomplished with
nested FOR loops. Within the FOR loops, single values of RT-OFF are computed using the L18 matrix and

control factor level table.

Rorrig = | for signall 1.3
row
for noisel 1..18

y

ysignd ,noise RT_OFF2

DD D D D> DyfD> D> D> D> DD

gnal_lI evelsSi

E@mse_leveISL Ly

gnoi se levels

¢noise_levels,
gnal’(;

Cnoise levels

¢
¢

&

noise levels

9 y
noise,2 ° f level ¢
+ SN L %
. rO\N,Ble
=18 =
noise, 3 . ch_level4’ Ly Ky
+ ow.4
, (; -
noise, 4~ * cf level u
=6 L1850
Lig =€ U
noise,5 gcf_level =
+ 7,L1g
. e row, 7 l.,J
' 18n0ise,6b u

Here is an example of the data from a single row (the first row) of the inner array.
Rows correspond to signal factor levels and noises correspond to columns. Note

that now there are 18 columns of noise.

1 2 3 4 5 6 7 8 9 10
ROFF18. = 1| 0.833 0.85]| 0.867| 0.817| 0.833 0.85| 0.803 0.82| 0.828| 0.839
1 12| 1.667| 1.701| 1.735| 1.633| 1.667 1.7] 1.607| 1.639| 1.655| 1.678
25| 2551 2.602 2.45 25 2.55 241 | 2459 2.483( 2.516

16



Compute the values of beta, error variance, and S/N ratio directly from the equations for the
Continuous-continuous case as given on Phadke page 115.

3 18
[} o] .
a a (ROFFlSrow) _ _ >S|gna|_|e\/elssjgmji
. . signd, noise
b _ Sgnd =1 noise=1
OFFlSmW- 3 18 ,
[¢} o] .
a a (sgnal_levelssjgnd)
sgnd =1 noise=1
3 18 5
[] [o]
S = X -b ssigna_levels . 1
2eOFF18, a5, 1. A a ¢ ROFFlSrOW)signei,noise OFF18  >signal | sgnef]

sgnd =1 noise=1

é b 2
A Y OFF18
row,

horrig  :=10dogg
g

OO\

S2e0OFF18
row

17



Define the range variable to step through the three level factors.

level =1..3

Create a shorthand notation for the control factors consistent with Table 9.4.

A=3 B:=4 C=5 D=7
35
m(h ON18!A)Ieve|
888 o
mean(h ON18)
m(h OFF18:A)IeveI
mean(h OFF18) =
20 | |
2 3
level
35 T T
m(hOle!C)l o
=is =] ” 30 ﬂ/a

mean(h ON18)
m(h OFF18 C) level

mean(h OFF18)

20

18

m(h ON18: B)Ievel
EEE

mean(h ON18)
m(h OFF18 B) level

mean(h OFF18)

m(h ON18: D)Ievd
EEE

mean( h ON18)

m(h OFF18 D)Ievd

mean(h OFF18)

35

20

35

25

20




20

20
! ! ! 234 ¥ W) )
m§0>10 bONl8)ngevel 15
234 ¥ W) ) oo
m&20odbonts) Aglers 15 |- . A 3®)--
- mean&2040
2% % W), . ON18) g

mean&040d b onig) %R 5 O
KBSV IB 5 10 — mgéo"o bOFFlB) ' Bgeve
mgﬁom bOFFlB) 'Aﬂe\lel Yo Ya Yo VAR, fo) L

meang%Oﬂo b OFFlS) 7| 5
3 %4 ¥4 Y4B, 5

means20% ol bOFF18 7| 5 7
0 | | |
1 2 3
0 | ! i
20 T T T 20 : : :
3% %W :
& 3 %% W .
E}Eamgzom oute) Cgrems 15~ i m&20og(b onzg) D;(z)jevd 15 |
VoY Ya W, Bes

3/,3/,3 .
—_ 10 - B\ _ ON18/ g
s ¥a Va V4 . - - B
mgzoxg ?) . ®) ct TT— Y YaY® 10 B
OFF18) » “glevel mgiom bOFFlB) Dge/a —
¥4 Yo Yo V4R, ¢
meana204og b orr1g)

32 %4 Y2 VB, o
mean 2040 bOFF18 17| 5

a
I
!

leve level

Note that the S/N ratios all went up (about 5dB), but the shapes of the curves were preseved. This means that the
decisions you would make regarding control factor settings would be unaffected by the change in experimental
procedure.

Also note that the plots of 20log(beta) were unaffected by the change in noise startegy. The overconservative

nature of noise compounding does not seem to bias the results wrt to beta. The same trend probably holds for the
ANOM on the mean for static experiments.
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d ) Phadke states that the additive model holds better for 20log(beta) than for
beta. Provide an anlysis to show that this is the case.

one way to check for additivity is to look at the variance within the unassigned columns. These columns are
estimates of error variance AND interactions. All other things being equal, if a response is more additive, then the
unassigned columns will be more nearly flat.

20

20 T I T
3B .
(0) 3B .
mgﬁOﬂo boN),devel 15~ - mgﬁOﬂo bON)76;oaevd 15 - _
3/4343/®6 =is =] Y % Y
4 Y4 =
meang%o%o bON) 1%} o meang%o%o bON)g
S 1G) B E?_AQE ] — L ]
() EZ% 771G/ N 10 =1
mgviod borr) 2o m&204ogb orr) , 6Jere ) -
¥4 Yo V2@ o
— — ¥4 Yo V2@ o
reroiedvorely ¢ rexBoronfs s i
| | |
0
1 2 3 0 11 ‘2 ‘3
20 ! ! ! level
Yo IR,
¢
m320>10 bON)’SQIeveI 15 - -
B

Yo Yo IB,
meangZOXo bON)E

Ya Y Ya®, ¢ 10 P?_E__g;::ﬂ 7]
mgzoﬂo bOFF)ISQIeveI

Y4 Y2 Ya®, o
meangZOXo bo,:,:)E 5 .
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m(b ON> 2) level
Ba8
mean(b ON)

;‘(EOFF: 2) level

mean( b OFF)

m(b ON> 6) level
B
mean(b ON)

;‘(EOFF: 6) level

S
mean(bOFF)
0 | |
1 2
leve
T
4k ]
m(b oy, 8
EE(EON ) v
mean(bON)
m(bOFFIS)Ievd ok _
mean(bOFF)
0 |

4
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Another way to solve this problem is to consider the difference between the prediction and the confirmation.

The true value is:

Run through all the signal and noise factors at the optimal control factor settings.

Ron_opt := | for signali 1.3

for noisel 1.3
4.0 q:j

&72 &

é. . Fhoisdl Q5'336-3ﬂ

ysignal,noise_' RT_ONzggnal_levelsggnd,n0|se_levels "¢ 600 4
& p
e

a®.755 0755 0.755

Ron opT = %151 151 151
€265 2265 2265

Here is the data you'd gather.

3 3
o [} .
>signal_| evelss.gna

a a (RON—OPT)sjgnaI ,noise
__signa =1 noise=1
boN_opT = 2 3
o) o . 2
a a (sugnal_levelsggnd)

sgna =1 noise=1

bon_opT = 151

204 og(b ON_OPT) =3578

For beta, the prediction is:

bpred = -3>mean(bON) + rT(bON,A)Z + I’T(bON,B)l + n‘(bON,C)g + n‘(bON,D)g
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boON_OPT - bpred

= 52.388%
boN_oPT

For the 20log(beta) metric, the prediction is:

Ya % Yu® .. Y2 Yu® . Va3 Yu® . Yo Yu® . Y2 % Yu®
logbpred = - 3>mean3°20>{og(bON)8+ mg‘%oxog(bo,\]) ,A%Z + me@omg(bON) , B% + mea%OXog(bON),C%; + mg%oxog(bo,\]),

logbpreg = 2612

20*09(b0N_opT) - logbpred

= 27.003%
20*09(b0N_0PT)

So, in fact, the log transform on beta improved additivity in this case.
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e ) Carry out one additional iteration of robustness and discuss your results.

Here are the previous control factor level assignements within the L18 as defined by Tables 9.3
and 9.4.

gL 23 .0204 1 0979% ¢
C2668 40 60 = c. ~0
0979% 1 1.0204 .
65336 80 120~ , -
cf_level :=¢ + noise_levels := ¢10204 1 09796+
2668 40 60 . .
¢ ; €09796 1 1.0204"
¢l 2 3~ €10004 1 0979 5
€48 6 72°
8 1 2 3 g

Phadke states that in iterative optimization, you should take the optimum value as the baseline, middle value. Then,
he says, set the high and low values according to the same relationships that were previously assigned. Referring to
section 9.4 (pg. 222), you must set the levels for the second iteration as:

2o 9
1 .
¢ 0 -

¢ 20 40 1540 T

¢ 15 _

¢ 533 N

C— 533 1556336~
cf_level:=¢ 15 -
g D5 1560 -

15 .

(; -

c 1 2 3 =

Co8%2 72 7242 ?

8 1 2 3 g
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Perform the Experiment

For every row of the experiment, compute the values of RT-ON. The values of RT_ON are made by running
a full factorial on the signal factor and the compound noise factor. This is easily accomplished with nested
FOR loops. Within the FOR loops, single values of RT-ON are computed using the L18 matrix and control
factor level table.

row:=1..18
Ron = | for signall 1.3
row R

for noisel 1.3
¢ oof levely | G
é ' row, 3 <tl
& Ccf_level U
é L > g » 18 U
. . Shoisd! row,4 "7
ysigna,noise_' RT_ON2€5|gnaI_Ie\/eIssigna,n0|se_levels 'gcf level —u
e (; - 57L18 =t
& 4
& Gof_level, | +
é ' 18row,7ﬂ]

y

ad.754 0.79%6 08429 _ _ _

_C + Here is an example of the data from a single row (the first row) of
RONl 1509 159 1'683+ the inner array. Rows correspond to signal factor levels and noises
€2263 2389 2525 g correspond to columns. There is greater variation due to the signal

than the noise which is as it should be.
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Compute the values of beta, error variance, and S/N ratio directly from the equations for the
Continuous-continuous case as given on Phadke page 115.

3 3
[o] o]
RON ) >signal_levels .
_ a _ a ( oW/ 9gnal , noise signa
_sgnd =1 noise=1
bon =
row 3

é_ ég_ (signal_levels 'gnd)z

s
signd =1 noise=1

1 N 5
SZeONmWi: 3)8_1>< a a gRONrOW)

sgna =1 noise=1

2
- bon signad_levels . ]
signa, noise row sgnduﬂ
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Repeat the exact same process for the second response RT-OFF.

For every row of the experiment, compute the values of RT-OFF. The values of RT_OFF are made by
running a full factorial on the signal factor and the compound noise factor. This is easily accomplished with

nested FOR loops. Within the FOR loops, single values of RT-OFF are computed using the L18 matrix and
control factor level table.

Rorr = | for signall 1.3
row
for noisel 1.3
é g;(.\_s:f_level3 L QJ
é C " row, 34
e Gef_level, Y
€ o level e level Gnoisd , 18r°""v4_:t5|
Ygnd noise ” RT_OFF28ignal_levels . noise levels Gt level 'U
€ ¢ 5’Llarcxw 5_.t:I
e e
é ({‘cf_level7 Ly —g
e ‘ 74l
y

a8.59 0.613 0636
_C + Here is an example of the data from a single row (the first row) of the
ROFFl - 1'272+ inner array. Rows correspond to signal factor levels and noises
el77 1838 1908 g correspond to columns. There is greater variation due to the signal

than the noise which is as it should be.
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Compute the values of beta, error variance, and S/N ratio directly from the equations for the
Continuous-continuous case as given on Phadke page 115.

3 3
[o] o] .
a a (ROFFrow) _ _ >S|gnal_levelssjgnai
. . signa, noise
b — sgna =1 noise=1
OFFrOW- 3 3
o)

o) . 2
a a (sngnal_levelsggn a‘)
signad =1 noise=1

1 g 4
S2OFF = . 1. a a gROFFmW)

sgnd =1 noise=1

2
- bopg signd_levels . [
signa, noise row sgndg

A 2
g(bOFFrow)
h OFF =10dog5————

€ s20rF
e row

OO\
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Define a function that will perform ANOVA for any response at any factor at all levels. The first argument is
the name of the data set to be analyzed. The second argument is the number of the control factor. This will
be helpful in creating the factor effect plots below.

m(response, factor_no) := | for levell 1..3
sum- 0
for rowl 1..18

sum- sum+ response if Lig = level
row row, factor_no

sum
mean - —
leve 6

mean

29



Define the range variable to step through the three level factors.

level =1..3

Create a shorthand notation for the control factors consistent with Table 9.4.

m(h ONvA)IeveI
BE8
mean(h ON)

m(hOFFrA)Ievel

mean( h OFF)

35

25

20

m(hONvC)Ievel

BEE
mean( h ON)

Tn(rTOFF ) C) level

mean( h OFF)

C:=5 D=7
35 T T T
_ m(h ON> B)Ievd
e 30 -
mean(h ON)
Bt 3 m(hOFFrB)Ievd Eamee Y —
251
mean(h OFF)
| | | | | |
1 2 3 20 1 5 3
level level
35 T T T 35 T T
m(h ON> D)Ievd
30 =15 30
mean(h ON)
B///Ja///{] m(horr. D) eve ] B/E//E
25 mean(ho,:,:) 25
20 | I | 20 | I
1 2 3 1 2
level level
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mgﬁOﬂo boN),Agevd 15~ - mgﬁOﬂo bow),Bge/a 15 - _
Yo Y2 IB, ) B Y % Y
4 Y4 =
meang%o%o bON)g meang%o%o bON)g
L7787 Z1C)/ N 10~ 7] e 10H —
(0] Y
mgéOﬂo bOFF):Agevd 4 %4 Ya®

8
mg%Oﬂo bo|:|:) s Bgevd
32 Y4 Y2@ .. E\
(0] - — 32 Y4 Y2@ ..
5
meang%o%o bOFF) 17} meangﬁox o bOFF)g 5 / -

™ N e -

| | p e
0 y 1 1
1 2 3 0 1 5 3
20 T I T 20 : : :
4 Y YR, :
& . YR,
mgzo>40 boN),CQIe\/eI 151 - ngOﬂo bON)’DEIevd 15 _
Yo Ya IB, B Y Y Yo
5 494 =
meangZOXo bON)Q mean0io bONE
Ya Y Ya®, 10 7 B — 10 —
& C ¥4 ¥4 Ya®, "
meeviod bore). Cgis m2040gb orr) , Dyleve
Y2 Y Ya®, .
- — Y4 ¥4 Ya®,
meana20x4og b 5 s 4 Y B B}
OFF/ g e meanz204 0 bo,:,:)E 5
| | |
0
1 2 3 0 ‘1 ‘2 ‘3
leve level
Optimization

The optimum settings for this second iteration seem to be:
A=2 B=3 C=1 D=3
The optimum settings chosen by Padke on the FIRST optimization run were:

A=2 B=1 C=3 D=3

I'd say there's no point in reversing the values of B and C. Let's just leave them alone and change only D. So,
my final decision on this round is to select

A=2 B=2 C=2 D=3

For RT-ON he prediction is:

31



hpredZ = -3>mean(h ON) + n’(h ON1A)2 + rr(h ONaB)Z + n‘(h ON:C)Z + n’(h ON1D)3
h pred2 = 26.885

Oddly, this is not as high as our last prediction, but is at least higher than our last relized value of S/N.

hoN_opT = 26436

Confirmation

The true value is:

Run through all the signal and noise factors at the optimal control factor settings.
Ron_opt := | for signall 1.3

for noisel 1.3

g 40
8. . &oisd! C 5336 y)
ysignd,noise_' RT_ONg%gnal_le'\/elssignd,n0|se_levels '¢ 600 4

D D

7042

a8.6%4 0729 0.765
RoN OPT = ¢1380 1457 153 _ Here is the data you'd gather.
€2083 2186 229% g

3 3
o o
>signal_levels
a a (RON—OPT)signd,noise gna._ signal
b _ sgnad =1 noise=1
ON_OPT: 3 3
[¢] [o]

. 2
a a (agnal_le\/elssignd)
sgna =1 noise=1
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1 3 >
S = X
260N_OPT P— a

sgnad =1 noise=1

é gRON_OPT)

- bon_optsignal_levels

2
signdl, noise sgnaIH

hoN_opT = 26852

Not a bad prediction. The forecast was for
an increase of about 0.7 dB and we

actually realized an increase of almost 0.7
dB.

This represents an improvement over our last realized value of S/N
which was 26.43. However, the rate of increase in S/N is dropping
quickly as we approach an optimal point.
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