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Problem Set #4:  Final Report 
 
 
Subject:  Orbit, Power and Communication Subsystems 
 
Motivation:  The power and communications subsystems aboard a spacecraft interact with one 
another as a function of the spacecraft’s orbit to achieve a set of requirements.  These 
requirements often involve pointing the satellite at a given location for a specified amount of 
time, and then transmitting the accumulated data to a particular ground location at a later time in 
the orbit.  A mission also has a set of standard power and communication requirements that 
depend on the orbit: 

1. Given the power requirement over the mission lifetime, the power subsystem (solar 
arrays and batteries) mass depends on the orbit. 

2. The amount of data a spacecraft can transmit depends on the transponder bandwidth of 
the communication subsystem and the amount of time over which a specified set of 
ground stations are visible to the spacecraft.   The mission may also require a specified 
amount of data transmission.  

Furthermore, the power and communications subsystems impose additional mutual constraints 
on one another.  The power required by the spacecraft depends on the communications 
subsystem design and the duration of its use.  Using the trades between the Orbit, Power and 
Communication Subsystems as guidelines, ranges of orbit size and inclination, sizes of solar 
arrays and batteries, and communication subsystem power usage as well as antenna size can be 
found and optimized. 
 
Problem Statement:  What combination of orbit size and inclination, solar array and battery sizes, 
and communication subsystem power usage and antenna size yields an optimal solution given a 
specified ground station downlink site?  The objective is not to model each subsystem to a high 
fidelity, but rather to better understand and model the mutual dependencies of the subsystems. 
 
Approach:  A program will be written using Matlab and STK.  The program will use information 
input by the user to compare different combinations of orbits, solar array and battery size, and 
communication subsystem power needs and antenna size.  The program will then output a set of 
optimal ranges for each of the subsystems.  A more detailed description of our approach is found 
in the Solution section. 
 
Solution:  The inputs include the amount of data that needs to be transmitted and a predetermined 
fixed data rate.  This data rate was mentioned in SMAD to be approximately 9.6kbps, which is 
based on current technological limitations.  The user also inputs the latitude of the ground station 
with which the satellite will communicate as well as the total mission duration of the satellite.  



Finally, the user inputs much power the satellite uses during daylight and eclipse and the mission 
lifetime. 
 
Using the equations from page 546 of SMAD, the first module calculates the T (the amount of 
time the satellite must be in view of the ground station) needed to fulfill the data transfer 
requirement: 
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where D (the total bits of data that must be transmitted) is defined by the mission requirement, R 
(the data transfer rate in bits per second), is known, and Tinitiate (the time required to initiate 
communications) can be assumed to be two minutes according to SMAD.  M (the margin needed 
to account for ground station down time) is approximated to be two or three in SMAD; in the 
implemented module, a margin of three is used. 
 
Next, a set of orbits that provides T communication time is computed.  Given the requirement 
that the satellite must communicate with the specified ground station on each flyby and the 
assumed restriction that only circular LEO’s are desired, the orbit radius, r, and inclination, i, are 
the only constrained orbital parameters.  Chapter 5 of SMAD discusses the computation of the 
ground station viewing time for a given LEO.  This approach is adapted to instead compute set 
orbits that provide T communication time: 
 

1. Compute minimum orbit radius that provides T communication time on each flyby. 
2. For a set of feasible orbit radii, compute the maximum allowable orbit inclination that 

guarantees T communication time on all flybys. 
 
For the first step, the minimum orbit radius that assures T communication time on each flyby is 
computed by recognizing the fact that this orbit must be equatorial.  That is, if the orbit is 
inclined, the altitude of the satellite must be raised to assure that the ground station is still in 
view when the satellite is in the opposite side of the hemisphere with respect to the ground 
station latitude (note, with an inclined LEO, the ground track oscillates between northern and 
southern hemisphere).  As the orbit radius is raised, however, the inclination can be increased 
and still assure communication, illustrated in Figure 1.  
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Given the range of the feasible orbit radii, the second step of the algorithm computes the 
maximum inclination, imax, that guarantees the required communication time.  The worst case is 
when the satellite is in the opposite hemisphere with respect to the ground station latitude, at the 
pole of its orbit.  That is, the instantaneous longitude of the ascending node is 90° from the 
ground station’s longitude.  With this knowledge, spherical trigonometry along with the orbital 
period can be used to compute imax and the maximum distance from the satellite to the ground 
station during communication (see SMAD Chapter 5 for all necessary equations).  Note that the 
angular rotation rate is assumed negligible relative to the orbital period of circular LEO. 
 
Figure 2 and Figure 3, respectively, represents the maximum inclination and distance as a 
function of orbit radius and latitude for 1 MB of data transmitted at 9.6kps.  Note that the 
maximum inclination angle increases as the ground station is moved toward the equator as 
expected. 
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Figure 2. Orbit Radius vs. Inclination 
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Figure 3.  Orbit vs. Distance 
 
The second module takes as inputs the orbit that fulfills the input requirements from the previous 
module, the maximum distance to the ground station, the transmission frequency, and the 
diameter of the ground antenna.  Using the following equations found in section 13.3 of SMAD, 
this module uses the inputs to determine how large the transmitter diameter needs to be to send 
the required amount of data.  The module also determines how much power is needed by the 
communication subsystem to use the antenna. 
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where L is the signal loss in free space based on the distance to the ground, frequency and speed 
of light; dsat is the diameter of the spacecraft’s antenna based on the Gain (G), speed of light (c), 
efficiency of the satellite (E) and frequency (f); P is the power needed by the communication 
subsystem based on the signal-to-noise ration (SNR), the noise density (No), data rate (R), free 
space signal loss, approximate atmospheric attenuation (La) and the gains of the satellite and 
ground antennas. 
 
The final module's inputs include the power needed during daylight and eclipse as well as the 
mission duration and the calculated orbit’s radius and inclination.  The module uses STK to 
determine the eclipse times of the satellite.  Based on the eclipse times and the power required by 
the satellite and using the following equations from Chapter 11.4 of SMAD, the module sizes 
solar arrays and batteries to fulfill these requirements. 
 
Solar Array Sizing Equations: 
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Battery Sizing Equations: 
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Table 1 lists the variable names, their definitions and whether or not they are fixed within the 
code.  The module will output the solar array and battery mass. 
 



Variable Definition Source Units 
Asa Area of the solar array Calculated m*m 
Peol Power needed at end of life Input Watts 
Pbol Power needed at beginning of life Input Watts 
Ld Life degradation Calculated Unitless 
 Degradation per year Worst Case: 

Ga-arsenide = 0.0275 
Silicon = 0.0375 
Multijunction = 0.005 

Unitless 

Satellitelife Mission Duration Input Years 
Po Power output Ga-arsenide = 252.895 

Silicon = 202.316 
Multijunction = 300.74 

Watts / 
m*m 

Id Inherent Degredation Worst Case Id = 0.77 Unitless 
θ Sun incidence angle Worst Case θ = 23.5 Degrees 
Psa Total power the solar array must provide Calculated Watts 
Pe and Pd Power requirement during eclipse and 

daylight 
Calculated Watts 

Te and Td Time in eclipse and daylight Calculated by STK Seconds 
Xe and Xd Efficiencies during eclipse and daylight Direct Energy Transfer: 

Xe = 0.65 
Xd = 0.85 
Peak Power Tracking: 
Xe = 0.60 
Xd = 0.80 

Unitless 

Cr Battery capacity Calculated Watt hours 
DOD Depth of discharge Worst Case at LEO: 

NiH2 = 40% 
NiCd = 10% 

Unitless 

N Number of batteries N = 1 Unitless 
n Battery to load transmission efficiency n = 0.9 Unitless 
M Mass of battery Calculated Kg 
Ed Specific Energy Density NiH2 = 35 

NiCd = 45 
Watt hours / 
kilogram 

Table 1.  Power Subsystem Sizing Equation Variables 
 
Figure 4 illustrates the flow of the program including inputs and outputs to each model using a 
blackbox diagram. 
 



 
Figure 4.  Blackbox Diagram 

 
 Assumptions: 

1. The orbits are circular. 
2. The orbits are all Low-Earth Orbits (below 11,000 km). 
3. The orbits do not go over the poles. 
4. The amount of data that needs to be transmitted is sent on every fly-by. 

 
Sample Test Runs and Conclusions:  
Three sample test cases were run using the following input data.  The three cases 
accounted for three different operating frequencies. 
� Data Quantity:   8e6 bits 
� Ground Station Latitude:  12 deg 
� Ground Station Antenna Size: 3 m 



� Daylight Power Needed:  110 W 
� Eclipse Power Needed:  110 W 
� Mission Duration:   5 years 
� Frequency:   S-Band, C-Band and Ku-Band 

 
Outputs: 
 
Satellite Antenna Size: 
� S-Band Frequency (2.2e9 Hz):  0.475 m 
� C-Band Frequency (4e9 Hz):  0.261 m 
� Ku-Band Frequency (12.0e9 Hz):  0.087 m 

 
Figures 5 and 6 illustrate the mass of the power subsystem (solar arrays and NiH2 and 
NiCd batteries respectively) with respect to the orbit radius.  The orbit radius has been 
normalized with respect to the Earth’s radius. 
 
The different solar-array materials and power configurations had a negligible effect on 
the power subsystem mass.  The communication subsystem bandwith also had no effect 
on the amount of power required by the communication subsystem.  This was found to be 
a function of distance from the ground station, which grows as the orbit radius increases.  
The optimal solution to the problem lies at the minimum mass point on the curves. 

 
 

Figure 5.  Mass of Power Subsystem with NiH2 Batteries vs. Non-dimensional Orbit Radius 
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Figure 5.  Mass of Power Subsystem with NiCD Batteries 
vs. Non-dimensional Orbit Radius 
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Code: 

 
function [radius, inclination,comm_power,diameter,solar_array_size,battery_size,power_mass] = Scenario(data_amt, latitude, frequency, 
diameter_grnd_antenna, daylight_power_needed, eclipse_power_needed, mission_lifetime) 
    data_rate = 96000; % bps from SMAD 
    epsilon_min = 5 * pi/180; % radians 
     
    time =  compute_communication_time(data_amt, data_rate); 
    [radius, inclination, max_distance] = compute_feasible_circular_LEO(time, epsilon_min, latitude); 
    tic 
     
    for i=1:length(radius) 
        [comm_power(i), diameter(i)] = comm_sys(data_rate, max_distance(i), frequency, diameter_grnd_antenna); 
        periods = calculatePeriods(radius(i), inclination(i)); 
        solar_array_size(i,:) = calculatePSA(daylight_power_needed, eclipse_power_needed, mission_lifetime, periods); 
        battery_size(i,:) = size_batteries(eclipse_power_needed, periods); 
         
        for j=1:length(solar_array_size(i,:)) %solar array loop 
            for k = 1:length(battery_size(i,:)) 
                power_mass(i,2*(j - 1) + k) = solar_array_size(i,j) + battery_size(i,k); 
            end 
        end 
        toc 
    end 
     
     
function [r, i_max, D_max] = compute_feasible_circular_LEO(T_min, epsilon_min, lat_gs) 
% [r, i_max, D_max] = compute_feasible_circular_LEO(T_min, epsilon_min, lat_gs) 
% Input 
%   T_min           minimum communication time per fly-by [sec] 



%   epsilon_min     minimum satelite elevation from surface [rad] 
%   lat_gs          latitude of the ground station [rad] 
% Output 
%   r               radius of the orbit [m] 
%   i_max           maximum inclination [rad] 
%   D_max           maximum distance to ground station [m] 
mu_E  = 398600.4418e9;  % Earth gravitational constant [m^3/s^2] 
R_E = 6378136.49;       % Earth equatorial radius [m] 
omega_E = 7.292115e-5;  % Earth angular velocity [rad/s] 
r_max = R_E + 5000000;  % Maximum raidus for which this module is valid [m] 
n = 10;               % Number of data points 
 
% Compute the minimum radius for which the ground station is in view for at least T_min. 
r_min = fsolve(@min_radius_function, 100000000000, optimset, epsilon_min, lat_gs, T_min); 
% If the minimum radius is greater than the maximum radius, then this 
% module is no longer valid for the problem. 
if (r_min > r_max | abs(imag(r_min)) > 1) 
    error('No solution can be found for the given problem using this module!'); 
else 
    r_min = real(r_min); 
end 
 
% Generate a set of radius 
if (n <= 1) 
    r = r_min; 
else 
    r = r_min:(r_max-r_min)/ceil(n-1):r_max; 
end 
 
rho = asin(R_E./r);  % Earth Angular Radius 
eta_max = asin(sin(rho)*cos(epsilon_min));  % Maximum nadir angle [rad] 
lambda_max = pi/2 - epsilon_min - eta_max;  % Maximum Earth central angle [rad] 
P = 2*pi*sqrt(r.^3/mu_E);  % Period of the orbit 
lambda_min = acos(cos(lambda_max)./cos(T_min*pi./P));  % Worst case minimum Earth central angle [rad] 
lat_pole_max = lat_gs - lambda_min;  % Minimum latitude of the instantaneous orbit pole [rad] 
i_max = lat_pole_max;  % Maximum orbit inclination 
D_max = R_E*sin(lambda_max)./sin(eta_max);  % Maximum distance to the ground station [m] 
 
%figure(3) 
%plot(r/R_E,sin(lambda_max),r/R_E,sin(eta_max),r/R_E,sin(lambda_max)/sin(eta_max)) 
 
function x = min_radius_function(r, epsilon_min, lat_gs, T) 
mu_E  = 398600.4418e9;  % Earth gravitational constant [m^3/s^2] 
R_E = 6378136.49;       % Earth equatorial radius [m] 
 
rho = asin(R_E./r);  % Earth Angular Radius 
eta_max = asin(sin(rho)*cos(epsilon_min));  % Maximum nadir angle [rad] 
lambda_max = pi/2 - epsilon_min - eta_max;  % Maximum Earth central angle [rad] 
P = 2*pi*sqrt(r.^3/mu_E);  % Period of the orbit 
lat_pole_min = 0;  % Minimum latitude of the instantaneous orbit pole [rad] 
lambda_min_max = lat_gs - lat_pole_min;  % Worst case minimum Earth central angle [rad] 
x = P/pi.*acos(cos(lambda_max)./cos(lambda_min_max)) - T;  % The computed communication time should equal the required communication 
time. 
 
function T_max = compute_communication_time(D_max, R_min) 
% T_max = compute_communication_time(D_max,R_min) 
%   This module assume communication initiation time of 2 min and adds in a 
%   margin of 3 to the quantity of data. 
% 
%   Ref: Wertz and Larson. Space Misson Analysis and Design, 2nd ed. 
% 
% Input 
%   D_max           Maximum quantity of Data [bit] 
%   R_min           Minimum data transfer rate [bit/sec] 
% Output 
%   T_max           Maximum required communication time [sec] 
T_initiate = 2*60; % Communication initation time [sec] 
M = 3; % Margin to account for missed passes 
T_max = (D_max*M/R_min + T_initiate); % From SMAD 3rd ed. 
 



function [output_data] = calculatePSA(dpn, epn, lifetime, periods) 
    Xe_direct_energy_transfer = 0.65;  % Efficiency during eclipse for direct energy transfer 
    Xd_direct_energy_transfer = 0.85;  % Efficiency during daylight for direct energy transfer 
    Xe_peak_power_tracking = 0.6;  % Efficiency during eclipse for peak power tracking 
    Xd_peak_power_tracking = 0.8;  % Efficiency during daylight for peak power tracking 
    Id = 0.77;  % Nominal value for inherent degredation 
    theta = 0.4101;  % The solar array is at worstcase Sun angle between equatorial and ecliptic planes 
    material_degradation_GA = .0275;  % Gallium Arsenide degrades at 2.75% per year (worst case) 
    material_degradation_multijunction = .005;  % Multijunction Solar cells degrade at 0.5% per year (worst case)  
    material_degradation_Si = .0375;  % Silicon degrades at 2.75% per year (worst case) 
     
%     [periods] = calculatePeriods(altitude, inclination); 
    [periods] = [periods] / 60;  % Convert seconds to minutes 
             
    psa_det = ((epn * periods(1)) / Xe_direct_energy_transfer + (dpn * periods(2)) / Xd_direct_energy_transfer) / periods(2); 
    psa_ppt = ((epn * periods(1)) / Xe_peak_power_tracking + (dpn * periods(2)) / Xd_peak_power_tracking) / periods(2); 
     
    power_output_Si = 202.316;  % 14.8% * 1,367 W/m^2 (incident solar radiation) 
    power_BOL_Si = powerBeginningLife(power_output_Si, Id, theta); 
    power_EOL_Si = powerEndLife(power_BOL_Si, material_degradation_Si, lifetime); 
     
    power_output_multijunction = 300.74;  % 22% * 1,367 W/m^2 (incident solar radiation) 
    power_BOL_multijunction = powerBeginningLife(power_output_multijunction, Id, theta); 
    power_EOL_multijunction = powerEndLife(power_BOL_multijunction, material_degradation_multijunction, lifetime); 
     
    power_output_GA = 252.895;  % 18.5% * 1,367 W/m^2 (incident solar radiation) 
    power_BOL_GA = powerBeginningLife(power_output_GA, Id, theta); 
    power_EOL_GA = powerEndLife(power_BOL_GA, material_degradation_GA, lifetime); 
     
    silicon_area_direct_energy_transfer = psa_det / power_EOL_Si; 
    multijunction_area_direct_energy_transfer = psa_det / power_EOL_multijunction; 
    gallium_arsenide_area_direct_energy_transfer = psa_det / power_EOL_GA; 
 
    silicon_area_peak_power_tracking = psa_ppt / power_EOL_Si; 
    multijunction_area_peak_power_tracking = psa_ppt / power_EOL_multijunction; 
    gallium_arsenide_area_peak_power_tracking = psa_ppt / power_EOL_GA; 
     
    output_data(1) = silicon_area_direct_energy_transfer * 0.55; % 0.55 denisty of silicon cells 
    output_data(2) = multijunction_area_direct_energy_transfer * 0.85; % 0.85 denisty of multijunction cells 
    output_data(3) = gallium_arsenide_area_direct_energy_transfer * 0.85; % 0.85 denisty of ga-arsenide cells; 
    output_data(4) = silicon_area_peak_power_tracking * 0.55; % 0.55 denisty of silicon cells; 
    output_data(5) = multijunction_area_peak_power_tracking * 0.85; % 0.85 denisty of multijunction cells; 
    output_data(6) = gallium_arsenide_area_peak_power_tracking * 0.85; % 0.85 denisty of ga-arsenide cells; 
     
% determines the beginning of life power production 
% theta - Sun incidence angle between the vector normal to the surface in degrees 
% output - power at beginning of life (W/m^2) 
function power_BOL = powerBeginningLife(power_output, inherent_degradation, theta) 
    power_BOL = power_output * inherent_degradation * cos(theta); 
    
% determines the end of life power production 
% output - power at end of life (W/m^2) 
function power_EOL = powerEndLife(power_BOL, material_degradation, lifetime) %lifetime in years 
    power_EOL = power_BOL * ( (1 - material_degradation) ^ lifetime ); 
 
function [battery_mass] = size_batteries(epn, periods) 
    NiH2_dod = 0.40; % Worst case from SMAD 
    NiCd_dod = 0.10; % Worst case from SMAD 
    N = 1; 
    n = 0.9; 
%     [periods] = calculatePeriods(altitude, inclination); 
    [periods] = [periods] / 60; % Convert seconds to minutes 
    NiH2_capacity = (epn * periods(1)) / (NiH2_dod * N * n); 
    NiCd_capacity = (epn * periods(1)) / (NiCd_dod * N * n); 
    NiH2_mass = NiH2_capacity / 35; 
    NiCd_mass = NiCd_capacity / 45; 
    battery_mass(1) = NiH2_mass; 
    battery_mass(2) = NiCd_mass; 
     
function [periods] = calculatePeriods(radius, inclination) 



    stkinit; 
    remMachine = stkDefaultHost; 
    conid = stkOpen(remMachine);  % Open the Connect to STK 
    
    % first check to see if a scenario is open 
    % if there is, close it 
    scen_open = stkValidScen; 
    if scen_open == 1 
        stkUnload('/*') 
    end 
 
    cmd = 'New / Scenario maneuver_scenario';  % set up scenario 
    stkExec(conid, cmd); 
    cmd = 'New / */Satellite sat1';  % put the satellite in the scenario 
    stkExec(conid, cmd); 
 
    % set the scenario epoch 
    epochDate = '"28 Sep 2003 00:00:00.00"'; 
    startDate = epochDate; 
    stopDate = '"2 Oct 2003 00:00:00.00"'; 
    cmd = ['SetEpoch * ' epochDate]; 
    stkExec(conid, cmd); 
    stkSyncEpoch; 
     
    % set the time period for the scenario 
    stkSetTimePeriod(startDate, stopDate, 'GREGUTC'); 
     
    % set the animation parameters 
    rtn = stkConnect(conid,'Animate','Scenario/maneuver_scenario','SetValues "28 Sep 2003 00:00:00.0" 60 0.1'); 
    rtn = stkConnect(conid,'Animate','Scenario/maneuver_scenario','Reset'); 
 
    % set up initial state 
    % STK expects fields in meters NOT kilometers 
incl = abs(inclination*180/pi); 
    cmd = ['SetState */Satellite/sat1 Classical J2Perturbation ' startDate ' ' stopDate ' 60 J2000 ' epochDate ' ' num2str(radius) ' 0 ' 
num2str(incl,'%2.4f') ' 0 0 0'] 
    stkExec(conid, cmd); 
     
    % get eclipse duration from STK 
    [secData, secNames] = stkReport('*/Satellite/sat1', 'Eclipse Times'); 
    if (length(secData{1})==0) 
        eclipse_duration = 0; 
         
  % set eclipse duration in seconds 
  eclipse_duration_average = 0; 
   
  % get sunlight duration from STK 
  [secData, secNames] = stkReport('*/Satellite/sat1', 'Sun'); 
  sunlight_duration = stkFindData(secData{1}, 'Duration'); 
     
  % return eclipse and sunlight periods in seconds 
  periods(1) = 0; 
  periods(2) = sunlight_duration; 
 
    else 
        eclipse_duration = stkFindData(secData{1}, 'Total Duration'); 
         
        % set eclipse duration in seconds 
        eclipse_duration = unique(eclipse_duration); 
        x = length(eclipse_duration); 
        eclipse_duration = eclipse_duration(2 : (x-1)); 
        eclipse_duration_average = mean(eclipse_duration); 
         
        % get sunlight duration from STK 
        [secData, secNames] = stkReport('*/Satellite/sat1', 'Sun'); 
        sunlight_duration = stkFindData(secData{1}, 'Duration'); 
         
        % set sunlight duration in seconds 
        y = length(sunlight_duration); 
        sunlight_duration = sunlight_duration(2 : (y-1)); 



        sunlight_duration_average = mean(sunlight_duration); 
         
        % return eclipse and sunlight periods in seconds 
        periods(1) = eclipse_duration_average; 
        periods(2) = sunlight_duration_average; 
    end 
         
    stkClose(conid)  % close out the stk connection 
    stkClose  % this closes any default connection 
     
function [P, dia_sat] = comm_sys(R, d, freq, dia_gnd) 
% Input: 
%  - R, data rate, [bits/s] 
%  - d, distance from satellite to ground antenna [m] 
%  - freq, communication frequency, [Hz] 
%  - dia_gnd, ground antenna diameter [m] 
% Output: 
%  - P, satellite communication required signal power [W] 
%  - dia_sat, satellite antenna diameter [m] 
% Assumes: 
%  - ground antenna at 300 K 
%  - satellite antenna gain = 60 
%  - communciation frequency < 20 GHz 
SNR = 10; % Conservative Signal-to-Noise ratio, SMAD p. 551. 
eff_gnd = 0.5; % Ground antenna efficiency 
eff_sat = 0.5; % Satellite antenna efficiency 
G_sat = 60; % Satellite antenna gain 
L_a = 100; % Approximate atmosphere attenuation (rain, clouds, etc.) 
 
N0 = 1.38e-23 * 300; % Noise Density, (Boltzmann's constant [J/K]) * (Ground Antenna Temp [K]) 
L = (4*pi*d*freq/3e8)^2; % Free space signal loss 
dia_sat = sqrt(G_sat*3e8^2/(eff_sat*pi^2*freq^2)); % receiver diameter, [m] 
G_gnd = eff_gnd * (pi*dia_gnd*freq/3e8)^2; % Ground antenna gain 
P = ( SNR * N0 * R * L * L_a ) / (G_sat * G_gnd); % Satellite communication required signal power, [W] 
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