
Seung Chung
Steve Paschall
Kathryn Weiss
16.851 – Satellite Engineering
Due: Wednesday, October 29, 2003

Problem Set #4: Final Report

Subject: Orbit, Power and Communication Subsystems

Motivation: The power and communications subsystems aboard a spacecraft interact with one
another as a function of the spacecraft’s orbit to achieve a set of requirements. These
requirements often involve pointing the satellite at a given location for a specified amount of
time, and then transmitting the accumulated data to a particular ground location at a later time in
the orbit. A mission also has a set of standard power and communication requirements that
depend on the orbit:

1. Given the power requirement over the mission lifetime, the power subsystem (solar
arrays and batteries) mass depends on the orbit.

2. The amount of data a spacecraft can transmit depends on the transponder bandwidth of
the communication subsystem and the amount of time over which a specified set of
ground stations are visible to the spacecraft. The mission may also require a specified
amount of data transmission.

Furthermore, the power and communications subsystems impose additional mutual constraints
on one another. The power required by the spacecraft depends on the communications
subsystem design and the duration of its use. Using the trades between the Orbit, Power and
Communication Subsystems as guidelines, ranges of orbit size and inclination, sizes of solar
arrays and batteries, and communication subsystem power usage as well as antenna size can be
found and optimized.

Problem Statement: What combination of orbit size and inclination, solar array and battery sizes,
and communication subsystem power usage and antenna size yields an optimal solution given a
specified ground station downlink site? The objective is not to model each subsystem to a high
fidelity, but rather to better understand and model the mutual dependencies of the subsystems.

Approach: A program will be written using Matlab and STK. The program will use information
input by the user to compare different combinations of orbits, solar array and battery size, and
communication subsystem power needs and antenna size. The program will then output a set of
optimal ranges for each of the subsystems. A more detailed description of our approach is found
in the Solution section.

Solution: The inputs include the amount of data that needs to be transmitted and a predetermined
fixed data rate. This data rate was mentioned in SMAD to be approximately 9.6kbps, which is
based on current technological limitations. The user also inputs the latitude of the ground station
with which the satellite will communicate as well as the total mission duration of the satellite.

Finally, the user inputs much power the satellite uses during daylight and eclipse and the mission
lifetime.

Using the equations from page 546 of SMAD, the first module calculates the T (the amount of
time the satellite must be in view of the ground station) needed to fulfill the data transfer
requirement:

initiate
M DT T
R
⋅

= + ,

where D (the total bits of data that must be transmitted) is defined by the mission requirement, R
(the data transfer rate in bits per second), is known, and Tinitiate (the time required to initiate
communications) can be assumed to be two minutes according to SMAD. M (the margin needed
to account for ground station down time) is approximated to be two or three in SMAD; in the
implemented module, a margin of three is used.

Next, a set of orbits that provides T communication time is computed. Given the requirement
that the satellite must communicate with the specified ground station on each flyby and the
assumed restriction that only circular LEO’s are desired, the orbit radius, r, and inclination, i, are
the only constrained orbital parameters. Chapter 5 of SMAD discusses the computation of the
ground station viewing time for a given LEO. This approach is adapted to instead compute set
orbits that provide T communication time:

1. Compute minimum orbit radius that provides T communication time on each flyby.
2. For a set of feasible orbit radii, compute the maximum allowable orbit inclination that

guarantees T communication time on all flybys.

For the first step, the minimum orbit radius that assures T communication time on each flyby is
computed by recognizing the fact that this orbit must be equatorial. That is, if the orbit is
inclined, the altitude of the satellite must be raised to assure that the ground station is still in
view when the satellite is in the opposite side of the hemisphere with respect to the ground
station latitude (note, with an inclined LEO, the ground track oscillates between northern and
southern hemisphere). As the orbit radius is raised, however, the inclination can be increased
and still assure communication, illustrated in Figure 1.

)

max)

ma

x

Figure 1. Calculatin
lowest orbit (i = 0°
g Maxim

higher orbit (i > 0°
i

max

um Inclination

Given the range of the feasible orbit radii, the second step of the algorithm computes the
maximum inclination, imax, that guarantees the required communication time. The worst case is
when the satellite is in the opposite hemisphere with respect to the ground station latitude, at the
pole of its orbit. That is, the instantaneous longitude of the ascending node is 90° from the
ground station’s longitude. With this knowledge, spherical trigonometry along with the orbital
period can be used to compute imax and the maximum distance from the satellite to the ground
station during communication (see SMAD Chapter 5 for all necessary equations). Note that the
angular rotation rate is assumed negligible relative to the orbital period of circular LEO.

Figure 2 and Figure 3, respectively, represents the maximum inclination and distance as a
function of orbit radius and latitude for 1 MB of data transmitted at 9.6kps. Note that the
maximum inclination angle increases as the ground station is moved toward the equator as
expected.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

10

20

30

40

50

60

70

M
ax

im
um

 In
cl

in
at

io
n

A
ng

le
 [d

eg
]

Orbit Radius[RE]

0o

10o

20o

30o

40o

50o

Ground Station
Latitude

Figure 2. Orbit Radius vs. Inclination

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
M

ax
im

um
 D

is
ta

nc
e

fro
m

 th
e

G
ro

un
d

S
ta

tio
n

[R
E]

Orbit Radius[RE]

Figure 3. Orbit vs. Distance

The second module takes as inputs the orbit that fulfills the input requirements from the previous
module, the maximum distance to the ground station, the transmission frequency, and the
diameter of the ground antenna. Using the following equations found in section 13.3 of SMAD,
this module uses the inputs to determine how large the transmitter diameter needs to be to send
the required amount of data. The module also determines how much power is needed by the
communication subsystem to use the antenna.

()

groundsat

ao

ground
groundground

sat

sat
sat

ground

GG
LLRNSNRP

c
fd

EG

fE
cGd

c
fd

L

⋅
⋅⋅⋅⋅

=








 ⋅⋅
=

⋅
⋅

=








 ⋅⋅
=

2

22

2

24

π

π

π

where L is the signal loss in free space based on the distance to the ground, frequency and speed
of light; dsat is the diameter of the spacecraft’s antenna based on the Gain (G), speed of light (c),
efficiency of the satellite (E) and frequency (f); P is the power needed by the communication
subsystem based on the signal-to-noise ration (SNR), the noise density (No), data rate (R), free
space signal loss, approximate atmospheric attenuation (La) and the gains of the satellite and
ground antennas.

The final module's inputs include the power needed during daylight and eclipse as well as the
mission duration and the calculated orbit’s radius and inclination. The module uses STK to
determine the eclipse times of the satellite. Based on the eclipse times and the power required by
the satellite and using the following equations from Chapter 11.4 of SMAD, the module sizes
solar arrays and batteries to fulfill these requirements.

Solar Array Sizing Equations:

EOLsasa PPA /= where

d

d

dd

e

ee

sa T
X
TP

X
TP

P








+









= and
ifesatellitel

doBOL

dBOLEOL

yrL

IPP
LPP

)/ndegradatio1(

cos

−=

=

d

=
θ

Battery Sizing Equations:

D

r

ee
r

E
CM

NnDOD
TP

C

=

=
)(

Table 1 lists the variable names, their definitions and whether or not they are fixed within the
code. The module will output the solar array and battery mass.

Variable Definition Source Units
Asa Area of the solar array Calculated m*m
Peol Power needed at end of life Input Watts
Pbol Power needed at beginning of life Input Watts
Ld Life degradation Calculated Unitless
 Degradation per year Worst Case:

Ga-arsenide = 0.0275
Silicon = 0.0375
Multijunction = 0.005

Unitless

Satellitelife Mission Duration Input Years
Po Power output Ga-arsenide = 252.895

Silicon = 202.316
Multijunction = 300.74

Watts /
m*m

Id Inherent Degredation Worst Case Id = 0.77 Unitless
θ Sun incidence angle Worst Case θ = 23.5 Degrees
Psa Total power the solar array must provide Calculated Watts
Pe and Pd Power requirement during eclipse and

daylight
Calculated Watts

Te and Td Time in eclipse and daylight Calculated by STK Seconds
Xe and Xd Efficiencies during eclipse and daylight Direct Energy Transfer:

Xe = 0.65
Xd = 0.85
Peak Power Tracking:
Xe = 0.60
Xd = 0.80

Unitless

Cr Battery capacity Calculated Watt hours
DOD Depth of discharge Worst Case at LEO:

NiH2 = 40%
NiCd = 10%

Unitless

N Number of batteries N = 1 Unitless
n Battery to load transmission efficiency n = 0.9 Unitless
M Mass of battery Calculated Kg
Ed Specific Energy Density NiH2 = 35

NiCd = 45
Watt hours /
kilogram

Table 1. Power Subsystem Sizing Equation Variables

Figure 4 illustrates the flow of the program including inputs and outputs to each model using a
blackbox diagram.

Figure 4. Blackbox Diagram

 Assumptions:

1. The orbits are circular.
2. The orbits are all Low-Earth Orbits (below 11,000 km).
3. The orbits do not go over the poles.
4. The amount of data that needs to be transmitted is sent on every fly-by.

Sample Test Runs and Conclusions:
Three sample test cases were run using the following input data. The three cases
accounted for three different operating frequencies.
� Data Quantity: 8e6 bits
� Ground Station Latitude: 12 deg
� Ground Station Antenna Size: 3 m

� Daylight Power Needed: 110 W
� Eclipse Power Needed: 110 W
� Mission Duration: 5 years
� Frequency: S-Band, C-Band and Ku-Band

Outputs:

Satellite Antenna Size:
� S-Band Frequency (2.2e9 Hz): 0.475 m
� C-Band Frequency (4e9 Hz): 0.261 m
� Ku-Band Frequency (12.0e9 Hz): 0.087 m

Figures 5 and 6 illustrate the mass of the power subsystem (solar arrays and NiH2 and
NiCd batteries respectively) with respect to the orbit radius. The orbit radius has been
normalized with respect to the Earth’s radius.

The different solar-array materials and power configurations had a negligible effect on
the power subsystem mass. The communication subsystem bandwith also had no effect
on the amount of power required by the communication subsystem. This was found to be
a function of distance from the ground station, which grows as the orbit radius increases.
The optimal solution to the problem lies at the minimum mass point on the curves.

Figure 5. Mass of Power Subsystem with NiH2 Batteries vs. Non-dimensional Orbit Radius

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
300

305

310

315

320

325

330

335

Non-dim Earth Radii

M
as

s
[k

g]

NiH2 Battery Storage

Figure 5. Mass of Power Subsystem with NiCD Batteries
vs. Non-dimensional Orbit Radius

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
920

940

960

980

1000

1020

1040

Non-dim Earth Radii

M
as

s
[k

g]

NiCd Battery Storage

Code:

function [radius, inclination,comm_power,diameter,solar_array_size,battery_size,power_mass] = Scenario(data_amt, latitude, frequency,
diameter_grnd_antenna, daylight_power_needed, eclipse_power_needed, mission_lifetime)
 data_rate = 96000; % bps from SMAD
 epsilon_min = 5 * pi/180; % radians

 time = compute_communication_time(data_amt, data_rate);
 [radius, inclination, max_distance] = compute_feasible_circular_LEO(time, epsilon_min, latitude);
 tic

 for i=1:length(radius)
 [comm_power(i), diameter(i)] = comm_sys(data_rate, max_distance(i), frequency, diameter_grnd_antenna);
 periods = calculatePeriods(radius(i), inclination(i));
 solar_array_size(i,:) = calculatePSA(daylight_power_needed, eclipse_power_needed, mission_lifetime, periods);
 battery_size(i,:) = size_batteries(eclipse_power_needed, periods);

 for j=1:length(solar_array_size(i,:)) %solar array loop
 for k = 1:length(battery_size(i,:))
 power_mass(i,2*(j - 1) + k) = solar_array_size(i,j) + battery_size(i,k);
 end
 end
 toc
 end

function [r, i_max, D_max] = compute_feasible_circular_LEO(T_min, epsilon_min, lat_gs)
% [r, i_max, D_max] = compute_feasible_circular_LEO(T_min, epsilon_min, lat_gs)
% Input
% T_min minimum communication time per fly-by [sec]

% epsilon_min minimum satelite elevation from surface [rad]
% lat_gs latitude of the ground station [rad]
% Output
% r radius of the orbit [m]
% i_max maximum inclination [rad]
% D_max maximum distance to ground station [m]
mu_E = 398600.4418e9; % Earth gravitational constant [m^3/s^2]
R_E = 6378136.49; % Earth equatorial radius [m]
omega_E = 7.292115e-5; % Earth angular velocity [rad/s]
r_max = R_E + 5000000; % Maximum raidus for which this module is valid [m]
n = 10; % Number of data points

% Compute the minimum radius for which the ground station is in view for at least T_min.
r_min = fsolve(@min_radius_function, 100000000000, optimset, epsilon_min, lat_gs, T_min);
% If the minimum radius is greater than the maximum radius, then this
% module is no longer valid for the problem.
if (r_min > r_max | abs(imag(r_min)) > 1)
 error('No solution can be found for the given problem using this module!');
else
 r_min = real(r_min);
end

% Generate a set of radius
if (n <= 1)
 r = r_min;
else
 r = r_min:(r_max-r_min)/ceil(n-1):r_max;
end

rho = asin(R_E./r); % Earth Angular Radius
eta_max = asin(sin(rho)*cos(epsilon_min)); % Maximum nadir angle [rad]
lambda_max = pi/2 - epsilon_min - eta_max; % Maximum Earth central angle [rad]
P = 2*pi*sqrt(r.^3/mu_E); % Period of the orbit
lambda_min = acos(cos(lambda_max)./cos(T_min*pi./P)); % Worst case minimum Earth central angle [rad]
lat_pole_max = lat_gs - lambda_min; % Minimum latitude of the instantaneous orbit pole [rad]
i_max = lat_pole_max; % Maximum orbit inclination
D_max = R_E*sin(lambda_max)./sin(eta_max); % Maximum distance to the ground station [m]

%figure(3)
%plot(r/R_E,sin(lambda_max),r/R_E,sin(eta_max),r/R_E,sin(lambda_max)/sin(eta_max))

function x = min_radius_function(r, epsilon_min, lat_gs, T)
mu_E = 398600.4418e9; % Earth gravitational constant [m^3/s^2]
R_E = 6378136.49; % Earth equatorial radius [m]

rho = asin(R_E./r); % Earth Angular Radius
eta_max = asin(sin(rho)*cos(epsilon_min)); % Maximum nadir angle [rad]
lambda_max = pi/2 - epsilon_min - eta_max; % Maximum Earth central angle [rad]
P = 2*pi*sqrt(r.^3/mu_E); % Period of the orbit
lat_pole_min = 0; % Minimum latitude of the instantaneous orbit pole [rad]
lambda_min_max = lat_gs - lat_pole_min; % Worst case minimum Earth central angle [rad]
x = P/pi.*acos(cos(lambda_max)./cos(lambda_min_max)) - T; % The computed communication time should equal the required communication
time.

function T_max = compute_communication_time(D_max, R_min)
% T_max = compute_communication_time(D_max,R_min)
% This module assume communication initiation time of 2 min and adds in a
% margin of 3 to the quantity of data.
%
% Ref: Wertz and Larson. Space Misson Analysis and Design, 2nd ed.
%
% Input
% D_max Maximum quantity of Data [bit]
% R_min Minimum data transfer rate [bit/sec]
% Output
% T_max Maximum required communication time [sec]
T_initiate = 2*60; % Communication initation time [sec]
M = 3; % Margin to account for missed passes
T_max = (D_max*M/R_min + T_initiate); % From SMAD 3rd ed.

function [output_data] = calculatePSA(dpn, epn, lifetime, periods)
 Xe_direct_energy_transfer = 0.65; % Efficiency during eclipse for direct energy transfer
 Xd_direct_energy_transfer = 0.85; % Efficiency during daylight for direct energy transfer
 Xe_peak_power_tracking = 0.6; % Efficiency during eclipse for peak power tracking
 Xd_peak_power_tracking = 0.8; % Efficiency during daylight for peak power tracking
 Id = 0.77; % Nominal value for inherent degredation
 theta = 0.4101; % The solar array is at worstcase Sun angle between equatorial and ecliptic planes
 material_degradation_GA = .0275; % Gallium Arsenide degrades at 2.75% per year (worst case)
 material_degradation_multijunction = .005; % Multijunction Solar cells degrade at 0.5% per year (worst case)
 material_degradation_Si = .0375; % Silicon degrades at 2.75% per year (worst case)

% [periods] = calculatePeriods(altitude, inclination);
 [periods] = [periods] / 60; % Convert seconds to minutes

 psa_det = ((epn * periods(1)) / Xe_direct_energy_transfer + (dpn * periods(2)) / Xd_direct_energy_transfer) / periods(2);
 psa_ppt = ((epn * periods(1)) / Xe_peak_power_tracking + (dpn * periods(2)) / Xd_peak_power_tracking) / periods(2);

 power_output_Si = 202.316; % 14.8% * 1,367 W/m^2 (incident solar radiation)
 power_BOL_Si = powerBeginningLife(power_output_Si, Id, theta);
 power_EOL_Si = powerEndLife(power_BOL_Si, material_degradation_Si, lifetime);

 power_output_multijunction = 300.74; % 22% * 1,367 W/m^2 (incident solar radiation)
 power_BOL_multijunction = powerBeginningLife(power_output_multijunction, Id, theta);
 power_EOL_multijunction = powerEndLife(power_BOL_multijunction, material_degradation_multijunction, lifetime);

 power_output_GA = 252.895; % 18.5% * 1,367 W/m^2 (incident solar radiation)
 power_BOL_GA = powerBeginningLife(power_output_GA, Id, theta);
 power_EOL_GA = powerEndLife(power_BOL_GA, material_degradation_GA, lifetime);

 silicon_area_direct_energy_transfer = psa_det / power_EOL_Si;
 multijunction_area_direct_energy_transfer = psa_det / power_EOL_multijunction;
 gallium_arsenide_area_direct_energy_transfer = psa_det / power_EOL_GA;

 silicon_area_peak_power_tracking = psa_ppt / power_EOL_Si;
 multijunction_area_peak_power_tracking = psa_ppt / power_EOL_multijunction;
 gallium_arsenide_area_peak_power_tracking = psa_ppt / power_EOL_GA;

 output_data(1) = silicon_area_direct_energy_transfer * 0.55; % 0.55 denisty of silicon cells
 output_data(2) = multijunction_area_direct_energy_transfer * 0.85; % 0.85 denisty of multijunction cells
 output_data(3) = gallium_arsenide_area_direct_energy_transfer * 0.85; % 0.85 denisty of ga-arsenide cells;
 output_data(4) = silicon_area_peak_power_tracking * 0.55; % 0.55 denisty of silicon cells;
 output_data(5) = multijunction_area_peak_power_tracking * 0.85; % 0.85 denisty of multijunction cells;
 output_data(6) = gallium_arsenide_area_peak_power_tracking * 0.85; % 0.85 denisty of ga-arsenide cells;

% determines the beginning of life power production
% theta - Sun incidence angle between the vector normal to the surface in degrees
% output - power at beginning of life (W/m^2)
function power_BOL = powerBeginningLife(power_output, inherent_degradation, theta)
 power_BOL = power_output * inherent_degradation * cos(theta);

% determines the end of life power production
% output - power at end of life (W/m^2)
function power_EOL = powerEndLife(power_BOL, material_degradation, lifetime) %lifetime in years
 power_EOL = power_BOL * ((1 - material_degradation) ^ lifetime);

function [battery_mass] = size_batteries(epn, periods)
 NiH2_dod = 0.40; % Worst case from SMAD
 NiCd_dod = 0.10; % Worst case from SMAD
 N = 1;
 n = 0.9;
% [periods] = calculatePeriods(altitude, inclination);
 [periods] = [periods] / 60; % Convert seconds to minutes
 NiH2_capacity = (epn * periods(1)) / (NiH2_dod * N * n);
 NiCd_capacity = (epn * periods(1)) / (NiCd_dod * N * n);
 NiH2_mass = NiH2_capacity / 35;
 NiCd_mass = NiCd_capacity / 45;
 battery_mass(1) = NiH2_mass;
 battery_mass(2) = NiCd_mass;

function [periods] = calculatePeriods(radius, inclination)

 stkinit;
 remMachine = stkDefaultHost;
 conid = stkOpen(remMachine); % Open the Connect to STK

 % first check to see if a scenario is open
 % if there is, close it
 scen_open = stkValidScen;
 if scen_open == 1
 stkUnload('/*')
 end

 cmd = 'New / Scenario maneuver_scenario'; % set up scenario
 stkExec(conid, cmd);
 cmd = 'New / */Satellite sat1'; % put the satellite in the scenario
 stkExec(conid, cmd);

 % set the scenario epoch
 epochDate = '"28 Sep 2003 00:00:00.00"';
 startDate = epochDate;
 stopDate = '"2 Oct 2003 00:00:00.00"';
 cmd = ['SetEpoch * ' epochDate];
 stkExec(conid, cmd);
 stkSyncEpoch;

 % set the time period for the scenario
 stkSetTimePeriod(startDate, stopDate, 'GREGUTC');

 % set the animation parameters
 rtn = stkConnect(conid,'Animate','Scenario/maneuver_scenario','SetValues "28 Sep 2003 00:00:00.0" 60 0.1');
 rtn = stkConnect(conid,'Animate','Scenario/maneuver_scenario','Reset');

 % set up initial state
 % STK expects fields in meters NOT kilometers
incl = abs(inclination*180/pi);
 cmd = ['SetState */Satellite/sat1 Classical J2Perturbation ' startDate ' ' stopDate ' 60 J2000 ' epochDate ' ' num2str(radius) ' 0 '
num2str(incl,'%2.4f') ' 0 0 0']
 stkExec(conid, cmd);

 % get eclipse duration from STK
 [secData, secNames] = stkReport('*/Satellite/sat1', 'Eclipse Times');
 if (length(secData{1})==0)
 eclipse_duration = 0;

 % set eclipse duration in seconds
 eclipse_duration_average = 0;

 % get sunlight duration from STK
 [secData, secNames] = stkReport('*/Satellite/sat1', 'Sun');
 sunlight_duration = stkFindData(secData{1}, 'Duration');

 % return eclipse and sunlight periods in seconds
 periods(1) = 0;
 periods(2) = sunlight_duration;

 else
 eclipse_duration = stkFindData(secData{1}, 'Total Duration');

 % set eclipse duration in seconds
 eclipse_duration = unique(eclipse_duration);
 x = length(eclipse_duration);
 eclipse_duration = eclipse_duration(2 : (x-1));
 eclipse_duration_average = mean(eclipse_duration);

 % get sunlight duration from STK
 [secData, secNames] = stkReport('*/Satellite/sat1', 'Sun');
 sunlight_duration = stkFindData(secData{1}, 'Duration');

 % set sunlight duration in seconds
 y = length(sunlight_duration);
 sunlight_duration = sunlight_duration(2 : (y-1));

 sunlight_duration_average = mean(sunlight_duration);

 % return eclipse and sunlight periods in seconds
 periods(1) = eclipse_duration_average;
 periods(2) = sunlight_duration_average;
 end

 stkClose(conid) % close out the stk connection
 stkClose % this closes any default connection

function [P, dia_sat] = comm_sys(R, d, freq, dia_gnd)
% Input:
% - R, data rate, [bits/s]
% - d, distance from satellite to ground antenna [m]
% - freq, communication frequency, [Hz]
% - dia_gnd, ground antenna diameter [m]
% Output:
% - P, satellite communication required signal power [W]
% - dia_sat, satellite antenna diameter [m]
% Assumes:
% - ground antenna at 300 K
% - satellite antenna gain = 60
% - communciation frequency < 20 GHz
SNR = 10; % Conservative Signal-to-Noise ratio, SMAD p. 551.
eff_gnd = 0.5; % Ground antenna efficiency
eff_sat = 0.5; % Satellite antenna efficiency
G_sat = 60; % Satellite antenna gain
L_a = 100; % Approximate atmosphere attenuation (rain, clouds, etc.)

N0 = 1.38e-23 * 300; % Noise Density, (Boltzmann's constant [J/K]) * (Ground Antenna Temp [K])
L = (4*pi*d*freq/3e8)^2; % Free space signal loss
dia_sat = sqrt(G_sat*3e8^2/(eff_sat*pi^2*freq^2)); % receiver diameter, [m]
G_gnd = eff_gnd * (pi*dia_gnd*freq/3e8)^2; % Ground antenna gain
P = (SNR * N0 * R * L * L_a) / (G_sat * G_gnd); % Satellite communication required signal power, [W]

	Problem Set #4: Final Report
	Figure 4. Blackbox Diagram

