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Problem Set #2 
(Orbit and Propulsion Subsystems) 

Motivation 

In a mission design in which an orbit transfer is necessary, the orbit transfer and propulsion 
system types may drive of the design. Many missions desire minimal mass to reduce the mission 
cost, which may be achieved in part by choosing the appropriate propulsion system. Some 
military missions and manned missions, however, may prefer minimal orbit transfer time over 
minimal cost associated with minimal mass. In many missions, the choices for the orbit transfer 
and propulsion system may be obvious. For some missions, the appropriate design is not obvious, 
given that designing a propulsion system depends on the transfer orbit chosen, and vice versa. 
For such design problem, a tool that designs the orbit transfer and propulsion system may 
alleviate the difficulty in solving the coupled problem. 

Problem Statement 

The objective is to design a tool that compares a set of feasible orbit transfer and propulsion 
system combinations for a given mission requirement. The mission requirement is in terms of the 
desired orbit transfers. For simplicity, we will only consider an orbit transfer from a lower 
circular orbit to a higher circular orbit. The output of the design tool should be a set of feasible 
transfer orbit and propulsion system combinations. The comparison metric is the mass of the 
propulsion system and the time required for orbit transfer.   
 
Note that the set of possible transfer orbits depends on the propulsion system type, and the total 
∆Vtotal required depends on the transfer orbit type. While this problem can become very complex 
depending on the accuracy of the computation and analysis, a right set of assumptions should be 
applied to minimize the computational complexity while maintaining the fidelity for comparison 
among various designs (e.g. assume fixed dry mass, but excluding the propulsion system mass).  
The satellite mission will have the following guidelines: 
 

1. Orbit transfer takes place purely by provision of additional energy by the propulsion 
system.  No plane change is considered. 

2. Shapes of initial and final orbits are circular. 
3. Both initial and final orbits are assumed to satisfy all components which affect possibility, 

duration, and efficacy of satellite mission, such as launch windows, radiation effects, 
earth convergence and others. 



4. The dry mass, mdry, (excluding the propulsion system mass) is fixed. The power 
subsystem mass have a fixed mass, although its crucial influence on comparison between 
electric propulsion systems are noted. 

5. The maximum initial mass, mmax, is fixed. 
6. Transfer orbit types to consider are: 

a. Elliptical & Hyperbolic Transfer  
b. Hohmann Transfer 
c. Hohmann Transfer Segments 
d. Spiral Transfer 

7. Types of propulsion system to consider are: 
a. Solid Motor 
b. Chemical 

i. Bipropellant 
ii. Monopropellant 

c. Electric 
 
Propulsion systems can be broken down further with different propellants and associated Isps. 
cold gas systems are excluded because of the combination of low thrust and low Isp. In general, 
cold gas systems are not applicable to orbit transfers even for satellites that are extreme 
sensitivity to contamination and/or for which the complexity of the propulsion system is of an 
issue. 

Approach 

Flow chart below shows the outline of out approach procedure.   
 
The correlation between orbit and propulsion system is complementary for each other.  The 
velocity change calculated from initial and final orbits selects propulsion systems such that 
achieve that value.  On the other hand, propulsion system with a certain velocity change budget 
constrains the types of orbital maneuvers.   Calculation starting with certain assumptions and 
releasing those assumptions as variable later is required to get out of this loop relationship.  In 
this MATLAB code, we commenced the calculation with propulsion system and associated 
achievable velocity change limit as inputs, and checked its validity with velocity change obtained 
from transfer orbits later. 
 



 
 

STEP 1: Compute the maximum ∆V available. 

To calculate the maximum velocity change achievable and the maximum firing time by a 
propulsion system, Impulsive Maneuvers for Orbit Transfer is considered.  For most orbit 
transfer calculations, each ∆V is assumed impulsive given the thrust is “relatively” high. That is, 
with high thrust capability, an infinitesimal time is necessary to achieve the necessary ∆V, and as 
such, we can approximate the burn as an impulse. If the thrust is relatively low, however, the 
maneuver will require a finite amount of time. 
 
Figure 1 illustrates the case in which the burn time is finite. In such case, the thrust vector is not 
along the flight path and results in gravity loss as shown by the second term on the right hand 
side of Eq. (1). If the thrust vector were aligned along the flight path, the gravity loss would be 
eliminated. The resulting orbit transfer, however, will not be the intended one. Thus, for a 
spacecraft to achieve the intended orbit transfer, the burn time must be short enough such that the 
gravity loss is negligible compared to the thrust. 
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Figure 1.  Forces during finite burn. 

 
We use a small angle approximation, and assume that for γ  ≤ π/12, i.e. θ  ≤ π/6, the gravity loss 
effect is minimal. Then, given the gravitational constant µ of the central body, current circular 
orbital radius r, mass of the spacecraft mi, and available propellant mass mprop, we can compute 
the maximum achievable ∆Vmax: 
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Note that mo and mp are initially unknown. Thus, we assume mi = mmax and mp = mmax – mdry. 
These values must be update once the actual values are known, and the remaining design 
processes must be repeated. 
 
This is implemented in compute_impulsive_Delta_V_max.m. 
 
Input 

mi  initial total mass, i.e. mdry + mwet
mprop           available propellant mass 
µ  gravitational constant of the body orbiting 
r                radius of the initial orbit 
T  thrust 
Isp          specific impulse 
 

Output 
 ∆Vmax  maximum impulsive ∆V available 
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STEP2: Compute the ∆V required for the orbit transfer. 

Calculate the velocity change required and transfer time for each orbit transfer from orbit 
elements of given initial and final orbit elements.  
 
Verify that velocity change for each firing is smaller than the maximum velocity achievable by a 
propulsion system.   
 
Orbit element values provided by given initial and final orbits are follows: 

• rA: Radius of initial orbit 
• rB; Radius of final orbit 
• ∆Vmax; Maximum velocity change according to propellant 

 
The satellite velocities on initial, transfer, and final orbits are calculated using these values 
mentioned above and the gravitational constant of a body the spacecraft is orbiting. 

Hohmann Transfer 

Hohmann Transfer orbit’s ellipse is tangent to both the initial and final orbits at the transfer 
orbit’s perigee and apogee respectively. This is one of the most fuel-efficient transfers between 
two circular coplanar orbits and the orbit transfer time is relatively small. The disadvantage is 
that a failure is unrecoverable during the orbit transfer. 
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The velocity changes required at each staging is computed as follows. 

∆VA: Velocity change at the perigee of transfer orbit (1st burn)   A txA iAV V V∆ = −  

∆VB: Velocity change at the apogee of transfer orbit (2nd burn)    B fB txV V V∆ = − B  
 

After verifying that both ∆VA and ∆VB are smaller than maxV∆ from propellant, total V∆ and 
transfer time can be determined by: 
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This is implemented in compute_Hohmann_transfer.m. 
 
Input 

rA  inner orbit radius 
rB           outer orbit radius 
µ  gravitational constant of the body orbiting 
 

Output 
 ∆V  ∆V required for transfer 
 ∆t  time required for transfer 

Elliptical & Hyperbolic Transfer 

Elliptical & Hyperbolic Transfer is a modified version of Hohmann to achieve rapid transfer.  
Extra energy was put at the first burn, and transfer orbit can be a bigger ellipse than Hohmann 
transfer orbit or a hyperbola. 
 
First, decide maximum rc, apoapsis of transfer orbit, which should achieve the fastest transfer, 
according to due to propellant. maxV∆
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Va∆ : Velocity change at the perigee of transfer orbit (1st burn)   ViaVtxaVa −=∆  

Vb∆ : Velocity change at the apogee of transfer orbit (2nd burn) 
φcos222 VfbVtxbVtxbVfbVb −+=∆  
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Considering that both and are smaller than Va∆ Vb∆ maxV∆ from propellant, we can get 
maximum rc, accordingly. Also, e is also determined by: 
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First, the code assumes that is the limitation.  By deploying the equation of =Va∆ Va∆ maxV∆ , 
maximum atx and rc are calculated as follows: 
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Verify that corresponding to this rc is smaller thanVb∆ maxV∆ . 
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In either case, plugging into rc value obtained into the equations above leads to total and 
transfer time required. 
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This is implemented in compute_high_energy_transfer.m. 
 
Input 

rA  inner orbit radius 
rB           outer orbit radius 
µ gravitational constant of the body orbiting 
∆Vmax  maximum impulsive ∆V available 
 

Output 
 ∆V  ∆V required for transfer 
 ∆t  time required for transfer 

Hohmann Transfer Segments 

This transfer orbit is often chosen for a low-thrust transfer, using low thrust chemical or 
electrical propulsion.   
 
First, calculate the value of atk (semimajor axis of  transfer eclipse) achievable using 

from propellant by deploying 
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rck: Apoapsis of  transfer orbit    thk raatxrck −= 2  

 
where 

at0 = ra (k=0) 
atK = rb (k=K, final orbit) 
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Vi∆ Velocity change at the perigee of transfer orbit on burn   thk akVtVtkaVak )1( −−=∆  
 
Total velocity change and total transfer time required are accumulated in each transfer orbit 
segments, and are determined by:  
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Spiral Orbit Transfer 

Given a propulsion system with a very low acceleration capability (i.e.T/W < 10-3), we cannot 
approximate each maneuver as impulsive due to high gravity loss (see Approach, STEP1). This 
implies that the aforementioned orbit transfers cannot be used. In such case, we can use a spiral 
orbit transfer (see Figure 2). During a spiral orbit transfer, the spacecraft thrusts continuously 
until it reaches the desired orbit.  
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Figure 2.  Low thrust spiral orbit. 

 
Edelbaum [2] has introduced a method for optimal low-thrust transfer between inclined circular 
orbits, which is also discussed in [1]. For coplanar orbit transfer between two circular orbits, 
however, we can derive the equations for the necessary ∆V and the time for orbit transfer using 
basic knowledge of the orbital mechanics and few key assumptions. 
 
Assuming that the spacecraft thrusts in the direction of it’s velocity vector, the change in the 
specific mechanical energy, ε, of the spacecraft with mass m is 
 

 d T v a v
dt m
ε
= ⋅ = ⋅ , (4) 

 



where T is thrust (assumed constant), a is the acceleration of the spacecraft, and v is velocity. 
Given that the thrust is very small, we can assume that the orbit remains relatively circular. That 
is, 
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where µ is the gravitational constant and r is the radius at which the spacecraft is in. Equating 
Eqs. (4) and (5), and assuming constant acceleration, we can compute the amount of time the 
spacecraft takes, ∆t, to transfer to a circular orbit at rB radius: 
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The total ∆V necessary to transfer to a circular orbit with radius rB from rA is then given by: 
 
 totalV a∆ = ⋅∆  (7) 
 
This is implemented in compute_spriral_transfer.m. 
 
Input 

rA  inner orbit radius 
rB           outer orbit radius 
µ gravitational constant of the body orbiting 
mi  initial total mass, i.e. mdry + mwet
T  thrust 
 

Output 
 ∆V  ∆V required for transfer 
 ∆t  time required for transfer 

STEP 3: Compute the propulsion system mass. 

Once propulsion system type has been chosen and the necessary ∆V  budget is determined, we 
can compute the necessary propellant mass mprop from the rocket equation: 
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V
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where Isp is the specific impulse of the propulsion system chosen, g0 is the acceleration due to 
Earth’s gravitational force at the sea level. Note that in general, the true dry mass mdry is 
unknown since the propulsion system mass is unknown among others. Thus, this number has to 
be estimated in the beginning and must be updated as better estimate of the dry mass is generated. 
 



Now with the propellant mass, we can calculate the mass of the propulsion system. Once the 
propulsion system mass is calculated, the dry mass must be updated and the whole process must 
be iterated until it converges to a desired level of confidence. 

Chemical  

We could go through a detailed analysis to determine the mass of a chemical propulsion system, 
such as monopropellant and bipropellant systems. The analysis, however, become very complex 
and tedious. Furthermore, there are many detailed design choices required to compute the 
propulsion system mass. While such tool would be great for future use, we take a very simple 
approach to approximating the chemical propulsion system mass. That is, we assume that 
approximately 85 ~ 90% of the system mass is the propellant mass [5]. Pressurant, tanks, lines, 
fittings, components, etc. contributes to the remaining 15%. 
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Solid 

Similar to the chemical propulsion system, we take a crude approximation of the solid rocket 
propulsion system mass as a mass fraction. Typically, 82 ~ 94% of a solid rocket prolusion 
system mass account for the propellant mass. We take the conservative 82%. 
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Electric Propulsion 

For electric propulsion, we will use a simple empirical model [3] to estimate the mass of the 
propulsion system. This is will more than suffice for our desired level of fidelity. This tool could 
be replaced with higher fidelity model as desired or necessary in the future. 
 
First, we compute the efficiency of the propulsion system η as follows: 
 
 ( )lnthruster PowerProcessor spA B Iη η η= = +  (11) 
 
where the constants A and B are defined in Table 1. 
 
Table 1. Empirical data for modeling the efficiency and the specific mass of an electric propulsion system. 

 Constants for Models 
Propulsion System A B C D 

H2 Arcjet   5.0 0 
NH3 Arcjet   1.8 0 
Ar Ion -2.024 0.307 4490 -0.781 



Xe Ion -1.776 0.307 123100 -1.198 
Hg Ion -0.765 0.181 82870 -1.136 
Ar MPD -0.591 0.126 7 0 
Ar PIT -1.99 0.32 7 0 

 
 
Given the flow rate of the propellant as a function of the propellant mass and the duration for 
with the thruster is turned on ∆tburn, 
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we can compute the necessary power: 
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Then, the mass of the thruster and the power processor is computed from an empirical formula 
using Table 1 where: 
 
  (14) D

Thruster PowerProcessor spm m CI+ = P
 
Finally the tank mass is calculated using one of the equation listed in Table 2. 
 
Table 2. Electric propulsion system propellant tank mass. 

Propellant Type Propellant Mass Range (kg) Tank Mass (kg) 
NH3 5000 ~ 18300 120 + 0.173 mprop + 2.28 mprop
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NH3 18300 ~ 2200 1020 + 0.198 mprop
He 5000 ~ 13000 610 + 0.493 mprop
Xe 5000 ~ 2200 52 + 0.075 mprop + 0.154 mprop

2/3

 
The total electrical propulsion system ass is: 
 
  (15) Pr PrTotal Thruster ower ocessr Tank propm m m m m= + + +
 
While the mass of the necessary power source for the propulsion system may be significant, it 
isn’t included as it overlaps with the power subsystem’s requirements.  
 

Implementation Source Code 

compute_impulsive_Delta_V_max.m 



function Delta_V_max = 
compute_impulsive_Delta_V_max(m_o,m_prop,mu,r,thruster) 
% DELTA_V_MAX = COMPUTE_IMPULSIVE_DELTA_V_MAX(M_O,M_PROP) 
% 
% Inputs: 
%   M_O             Initial total mass, i.e. m_dry + m_wet 
%   M_PROP          Available propellant mass 
%   MU              Gravitational constant of the body orbiting 
%   R               radius of the initial orbit 
%   TRUSTER         Thruster info 
% 
% Outputs: 
%   DELTA_V_MAX     Maximum impulsive Delta V available 
 
% reject any invalid inputs 
if (m_o <= m_prop) 
    error('Error! Propellant mass must be less than the initial spacecraft 
mass.'); 
end 
 
theta = 2*pi/12;    % Angle of the orbit for wich the Delta V occurs. [rad] 
                    % Assume pi/12 ~ 0, i.e. small angle approximation. 
                     
g = 98.1;           % Earth gravity at sea level [m/s^2] 
 
% Maximum propellant available during an impulsive burn. [kg] 
Delta_m_max = min(m_prop, theta * thruster.T * r^(3/2) /... 
                       (g*thruster.I_sp * sqrt(mu))); 
 
% Maximum Delta_V available during an impulsive burn. [m/s] 
Delta_V_max = g * thruster.I_sp * log(m_o/(m_o - Delta_m_max)); 
 
 
compute_high_energy_transfer.m 
function [Delta_V,Delta_t] = 
compute_high_energy_transfer(mu,r_A,r_B,Delta_V_max) 
% [DELTA_V,DELTA_T] = COMPUTE_HIGH_ENERGY_TRANSFER(MU,R_A,R_B,Delta_V_max) 
% 
% Inputs: 
%   MU              Gravitational constant of the body orbiting 
%   R_A             Radius of the inner circular orbit 
%   R_B             Radius of the outer circular orbit 
%   Delta_V_max     Maximum impulsive Delta_V available 
% 
% Outputs: 
%   DELTA_V         Total Delta_V necessary for Hohmann transfer 
%   Delta_T         Orbit transfer time 
 
% Constrain so that the first burn is no greater than the max allowed. 
Delta_V_A = Delta_V_max; 
 
v_iA = sqrt(mu/r_A);                % Velocity for inner circular orbit [m/s] 
v_fB = sqrt(mu/r_B);                % Velocity for outer circular orbit [m/s] 
 
% Compute the transfer orbit assuming that the maximum Delta_V_max is used 
% at point A. 



v_txA = Delta_V_max + v_iA;         % Velocity for transfer orbit at first 
burn [m/s] 
a_tx = 1/(2/r_A - v_txA^2/mu);      % Semi-major axis of the transfer orbit 
[m] 
e = 1 - r_A/a_tx;                   % Eccentricity of the transfer orbit 
nu = acos((a_tx*(1-e^2)/r_B - 1)/e);% True anomaly at the second burn [rad] 
phi = atan(e*sin(nu)/(1+e*cos(nu)));% Flight path angle at second burn [rad] 
v_txB = sqrt(mu*(2/r_B - 1/a_tx));  % Velocity for transfer orbit at second 
burn [m/s] 
% Second burn Delta_V necessary [m/s] 
Delta_V_B = sqrt(v_fB^2 + v_txB^2 - 2*v_fB*v_txB*cos(phi)); 
 
% Check to see if the second burn is less than the maximum allowed. 
if (Delta_V_B <= Delta_V_max) 
    % The first burn is the limiting factor. 
    Delta_V = Delta_V_A + Delta_V_B;            % Total Delta_V [m/s] 
    E = acos((e + cos(nu))/(1+e*cos(nu)));      % Eccentricy anomaly at 
second burn [rad] 
    Delta_t = sqrt(a_tx^3/mu)*(E-e*sin(E));     % Orbit transfer time [sec] 
    return 
else 
    % The second burn is the liminting factor. 
    Delta_V_B = Delta_V_max;                    % Delta_V at second burn 
[m/s] 
    a_tx = search_a_tx(mu,r_A,r_B,Delta_V_B);   % Semi-major axis of transfer 
oribt [m] 
    v_txA = sqrt(mu*(2/r_A - 1/a_tx));          % Velocity for tranfer orbit 
at first burn [m/s] 
    Delta_V_A = v_txA -v_iA;                    % Delta_V at first burn [m/s] 
    Delta_V = Delta_V_A + Delta_V_B;            % Total Delta_V [m/s] 
    e = 1 - r_A/a_tx;                           % Eccentricity of the 
transfer orbit 
    nu = acos((a_tx*(1-e^2)/r_B - 1)/e);        % True anomaly at the second 
burn [rad] 
    E = acos((e + cos(nu))/(1+e*cos(nu)));      % Eccentricy anomaly at 
second burn [rad] 
    Delta_t = sqrt(a_tx^3/mu)*(E-e*sin(E));     % Orbit transfer time [sec] 
end 
 
function Delta_V_B = compute_Delta_V_B(a_tx,mu,r_A,r_B) 
e = 1 - r_A/a_tx                                % Eccentricity of the 
transfer orbit 
nu = acos((a_tx*(1-e^2)/r_B - 1)/e);            % True anomaly at the second 
burn [rad] 
phi = atan(e*sin(nu)/(1+e*cos(nu)));            % Flight path angle at second 
burn [rad] 
v_txB = sqrt(mu*(2/r_B - 1/a_tx));              % Velocity for transfer orbit 
at second burn [m/s] 
v_fB = sqrt(mu/r_B);                            % Velocity for outer circular 
orbit [m/s] 
Delta_V_B = sqrt(v_fB^2 + v_txB^2 - 2*v_fB*v_txB*cos(phi)) 
 
function a_tx = search_a_tx(mu,r_A,r_B,Delta_V_B) 
allowable_percent_error = 0.000001; 
a_tx_low = r_B/2; 
a_tx = (r_A + r_B)/2; 
a_tx_high = (r_A + r_B)*10000; 



quit = 0; 
while (not(quit)) 
    difference = Delta_V_B - compute_Delta_V_B(a_tx,mu,r_A,r_B); % This 
should be zero 
    if ((a_tx_high - a_tx)/a_tx < allowable_percent_error | ... 
            (a_tx - a_tx_low)/a_tx < allowable_percenT_error); 
        quit = 1; 
    elseif (difference > 0) 
        a_tx_low = a_tx; 
        a_tx = (a_tx_high - a_tx)/2; 
    elseif (difference < 0) 
        a_tx_high = a_tx; 
        a_tx = (a_tx - a_tx_low)/2; 
    end     
end 
 
compute_Hohmann_transfer 
function [Delta_V,Delta_t] = compute_Hohmann_transfer(mu,r_A,r_B) 
% [DELTA_V,DELTA_T] = COMPUTE_HOHMANN_TRANSFER(MU,R_A,R_B) 
% 
% Inputs: 
%   MU              Gravitational constant of the body orbiting 
%   R_A             Radius of the inner circular orbit 
%   R_B             Radius of the outer circular orbit 
% 
% Outputs: 
%   DELTA_V         Total Delta_V necessary for Hohmann transfer 
%   Delta_T         Hohman transfer time 
 
% reject any invalid inputs 
if (r_A > r_B) 
    error('Error! Inner orbit radius is larger than the outer.'); 
end 
 
v_iA = sqrt(mu/r_A);                % Velocity for inner orbit [m/s] 
v_fB = sqrt(mu/r_B);                % Velocity for outer orbit [m/s] 
a_tx = (r_A + r_B)/2;               % Semi-major axis of transfer orbit [m/s] 
v_txA = sqrt(mu*(2/r_A - 1/a_tx));  % Velocity at periapsis for m/s] 
v_txB = sqrt(mu*(2/r_B - 1/a_tx));  % Velocity at apoapsis for [m/s] 
Delta_V_A = v_txA - v_iA;           % Delta_V at periapsis of [m/s] 
Delta_V_B = v_fB - v_txB;           % Delta_V at apoapsis of transfer [m/s] 
Delta_V = Delta_V_A + Delta_V_B;    % Total Delta V required transfer [m/s] 
Delta_t = pi*sqrt(a_tx^3/mu);       % Hohmann transfer time [s] 
 
 
compute_spiral_transfer 
function [Delta_V,Delta_t] = compute_spiral_transfer(mu,r_A,r_B,m_i,T) 
% [DELTA_V,DELTA_T] = COMPUTE_SPIRAL_TRANSFER(MU,R_A,R_B,M_I,T) 
% 
% Inputs: 
%   MU              Gravitational constant of the body orbiting 
%   R_A             Radius of the inner circular orbit 
%   R_B             Radius of the outer circular orbit 
%   M_I             Initial Total Mass 
%   T               Thrust 



% 
% Outputs: 
%   DELTA_V         Total Delta_V necessary for Hohmann transfer 
%   Delta_T         Hohman transfer time 
 
% reject any invalid inputs 
if (r_A > r_B) 
    error('Error! Inner orbit radius is larger than the outer.'); 
end 
if (T/m_i*g > 10e3) 
    error('Error! Too much thrust for spiral transfer assumptions.'); 
end 
 
a = T/m_i;                                  % Acceleration [m/s^2] 
Delta_t = (sqrt(mu/r_A) - sqrt(mu/r_B))/a;  % Orbit transfer time [s] 
Delta_V = a*Delta_t;        % Total Delta V required for orbit transfer [m/s]  
 
 



References 
1. Chobotov V., Orbital Mechanics, 2nd ed. Reston, VA: American Institute of Aeronautics and 

Astronautics, Inc., 1996. 
2. Edelbaum, T., “Propulsion Requirements for Controllable Satellites,” ARS Journal, Vol. 31, 

August 1961, pp. 1079-1089. 
3. Humble R., Henry G., Larson W., Space Propulsion Analysis and Design., New York: The 

McGraw-Hill Companies, Inc. Primis custom Publishing, 1995. 
4. Sutton G. and Biblarz O., Rocket Propulsion Elements, New York: John Wiley & Sons, Inc., 

2001. 
5. Wertz, J., and Larson, W., Space Mission Analysis and Design, 3rd ed. Torrance, CA:  

Microcosm Press, 1999. 
 
 


	Motivation
	Problem Statement
	Approach
	STEP 1: Compute the maximum (V available.
	STEP2: Compute the (V required for the orbit transfer.
	Hohmann Transfer
	Elliptical & Hyperbolic Transfer
	Hohmann Transfer Segments
	Spiral Orbit Transfer

	STEP 3: Compute the propulsion system mass.
	Chemical
	Solid
	Electric Propulsion


	Implementation Source Code

