
Design Evolution

Phase 1

Problem Statement

Sketch

CAD Model

CAE

Rapid Prototyping Validation

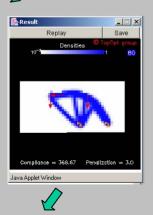
1

Phase 2

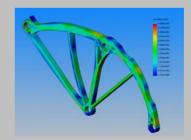
Design Optimization (Trimming!)

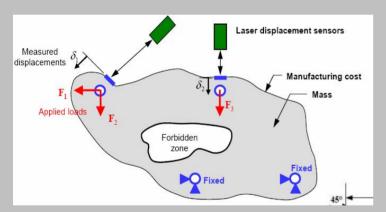
CAD Model V2

CAE V2



Rapid Prototyping V2 Validation V2

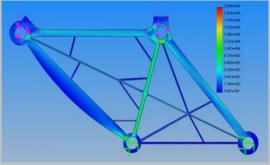




Comparison of Metrics

	Displacement 1	Displacement 2	Mass	Natural Freq	Cost
Requirement	0.071 mm	0.011 mm	0.160 lbs	505.7Hertz	7.8 \$ / Part
CAE 1	0.303 mm	0.0455 mm	0.160 lbs	460 Hertz	\$14.83
Experimental 1	0.7473 mm	0.08625 mm	0.166 lbs	477.45 Hertz	\$14.83
CAE 2	0.1568 mm	0.010998 mm	0.160 lbs	432 Hertz	\$10.19
Experimental 2	0.390 mm	0.043575 mm	0.165 lbs	426.2 Hertz	\$10.19

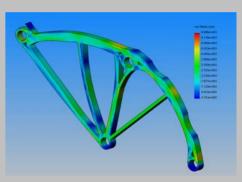
Table 1: CAE and Experimental Data



Load Case

F1 = 100lbs

F2 = 1001bs


F3 = 50lbs

Version 1 CAE

Version 1 CAE

Version 1 CAE

Version 1 CAE

FIVE

Attribute	Constrain	Optimize	Accept
Cost			
Performance			
Mass			

Table 2: Priorities

Final Specifications in Comparison to Requirements

Manufacturing Cost \$10.19 \$7.80

Performance 0.390mm, 0.0435mm 0.071mm, 0.011mm

Mass 0.165 lbs 0.160 lbs

Surface Quality 5

Design rational

- •Focused on requirement delta2 to achieve stiff and rigid power train region to give rider a sense of good acceleration
- Met mass requirement as weight is an important factor in racing bike
- Cost was largely ignored, as it is an acceptable criteria and optimizing for the other factors naturally improved cost efficiency

Final Conclusions

- Design analysis arrived at performance and weight results with in a reasonable window for the 2nd product
 - $\delta 1$ was 221% of the target, while $\delta 2$ was 99.9% of the target deflection
 - Mass was at 100% of the target
- Testing did not align with the CAE to full satisfaction
 - δ1 was 248.7% of the prediction, while δ2 was 396.2% of Cosmos Works' predictions
- While the iterations were successively achieving better results, the final model has nearly approached the limitations of the materials being utilized
 - Only by blending materials and adding new parts to the assembly, can the performance to mass ratio be improved
 - Any advancements of this kind will require a new manufacturing process, which is currently available.
- While further iterations of the design and prototyping process could improve the designs performance, these iterations would not be cost effective

