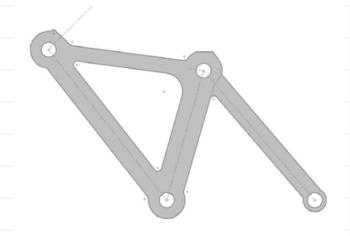

16.810 Critical Design Review Crossover Bicycle

JoHanna Przybylowski & Laura Condon
January 30, 2004

Introduction and Initial Design

- Cross Over Bicycle designed for mass consumer market
 - Constrain Mass
 - Optimize Cost
 - Accept Performance
- Loading Cases
 - F1 = 50 lbs
 - F2 = 75 lbs
 - F3 = 75 lbs
- Requirements
 - Delta 1 < 0.060 mm
 - Delta 2 < 0.009 mm
 - Natural Frequency > 505 Hz
 - Mass < .27 lbs
 - Cost < \$5.20 per part
 - Cutting Quality = 4


Initial CAD Design from Hand Sketch

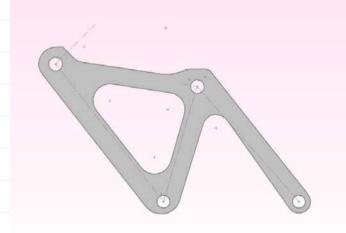
Version 1: Manufactured and Tested

- Manufactured part slightly different from original design
 - Bar between bottom holes moved because it was not being stressed
 - Design freedom used on the "fork" hole: moved diagonally upward
 - Individual bar widths modified to redistribute mass

FEM and Test Results

Parameter	Constraint	FEM Version 1	Test Version 1
Cost	< \$5.2	\$5.22	\$5.22
delta 1 (mm)	< 0.060	0.052	0.156
delta 2 (mm)	< 0.009	0.0034	0.051
Unrestrained Natural Frequency (Hz)	> 505	476	486
Mass (lbs)	< 0.27	0.246	0.25

- •All displacements were met with FEM
- •Displacements were ~1/5 and 4/5 less than constraints
- Test Delta 1 is factor of 3 greater than FEM
- •Test Delta 2 is factor of 15 greater than FEM

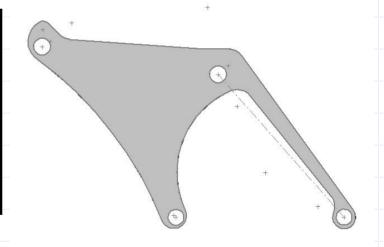

Manufactured Version 1
CAD Design

Version 2: Manufactured and Tested

- Goal to minimize cost while staying exactly at mass limit
 - Fillet Radii increased to decrease cutting time
 - Straight paths joining holes
 - Altered thickness of bars

FEM and Test Results

Parameter	Constraint	FEM Version 2	Test Version 2
Cost	< \$5.2	\$5.05	\$5.05
delta 1 (mm)	< 0.060	0.045	0.0685
delta 2 (mm)	< 0.009	0.0055	0.0598
Unrestrained Natural Frequency (Hz)	> 505	487	506
Mass (lbs)	< 0.27	0.27	0.279


- •All displacements were met with FEM
- •Displacements were ~1/4 less than constraints
- •Test Delta 1 is factor of 1.5 greater than FEM
- •Test Delta 2 is factor of 10.9 greater than FEM

Manufactured Version 2
CAD Design

Alternative "Boomerang" design

- Goal to eliminate hole in middle to drastically cut cost
- Optimized mass distribution through iterations to improve performance.
- FEM and Test Results

Parameter	Constraint	FEM Version 1	Test Version 1
Cost	< \$5.2	\$4.05	\$4.05
delta 1 (mm)	< 0.060	0.0692	0.090
delta 2 (mm)	< 0.009	0.0064	0.022
Unrestrained Natural Frequency (Hz)	> 505	544	563
Mass (lbs)	< 0.27	0.27	0.272

- •All except delta 1 were FEM compliant
- •Delta 1 is factor of 1.3 greater than FEM
- •Delta 2 is factor of 3.43 greater than FEM

New Boomerang CAD Design