

Network Revenue Management: Origin-Destination Control

16.75J/1.234J Airline Management

Dr. Peter P. Belobaba April 26, 2006

Presentation Outline

- Need for Network Revenue Management
 - Limitations of Fare Class Yield Management
 - What is O-D Control?
- Basic O-D Control Mechanisms:
 - Revenue Value Buckets
 - Displacement Adjusted Virtual Nesting
 - Bid Price Control
 - System Components and Alternatives
- Examples of O-D Simulation Results

Background: Fare Class Control

- Vast majority of world airlines still practice "fare class control":
 - High-yield ("full") fare types in top booking classes
 - Lower yield ("discount") fares in lower classes
 - Designed to maximize yields, not total revenues
- Seats for connecting itineraries must be available in same class across all flight legs:
 - Airline cannot distinguish among itineraries
 - "Bottleneck" legs can block long haul passengers

Yield-Based Fare Class Structure (Example)

BOOKING	FARE PRODUCT TYPE
CLASS	
Y	Unrestricted "full" fares
В	Discounted one-way fares
M	7-day advance purchase
	round-trip excursion fares
Q	14-day advance purchase
	round-trip excursion fares
V	21-day advance purchase or
	special promotional fares

Leg-Based Class Availability

FLIGHT LEG INVENTORIES

LH 100	NCE-FRA
CLASS	AVAILABLE
Υ	32
В	18
M	0
Q	0
V	0

LH 200	FRA-HKG
CLASS	AVAILABLE
Y	142
В	118
M	97
Q	66
V	32

LH 300	FRA-JFK
CLASS	AVAILABLE
Y	51
В	39
M	28
Q	17
V	0

ITINERARY/FARE AVAILABILITY

NCE/FRA LH 100 Y B

NCE/HKG LH 100 Y B

LH 200 Y B M Q V

NCE/JFK LH 100 Y B

LH 300 Y B M Q

Leg Class Control Does Not Maximize Total Network Revenues

(A) SEAT AVAILABILITY: SHORT HAUL BLOCKS LONG HAUL

NCE/FRA	
CLASS	FARE (OW)
Υ	\$450
В	\$380
М	\$225
Q	\$165
V	\$135

NCE/HKG	(via FRA)
CLASS	FARE (OW)
Y	\$1415
В	\$975
M	\$770
Q	\$590
V	\$499

NCE/JFK	(via FRA)
CLASS	FARE (OW)
Υ	\$950
В	\$710
M	\$550
Q	\$425
V	\$325

(B) SEAT AVAILABILITY: LOCAL VS. CONNECTING PASSENGERS

NCE/FRA	
CLASS	FARE (OW)
Y	\$450
В	\$380
M	\$225
Q	\$165
V	\$135

FRA/JFK	
CLASS	FARE (OW)
Υ	\$920
В	\$670
M	\$515
Q	\$385
V	\$315

NCE/JFK	(via FRA)
CLASS	FARE (OW)
Υ	\$950
В	\$710
M	\$550
Q	\$425
V	\$325

The O-D Control Problem

- Revenue maximization over a network of connecting flights requires two strategies:
 - (1) Increase availability to high-revenue, long-haul passengers, regardless of yield;
 - (2) Prevent long-haul passengers from displacing high-yield short-haul passengers on full flights.
- Revenue benefits of (1) outweigh risks of (2):
 - Probability of <u>both</u> connecting flights being fully booked is low, relative to other possible outcomes

What is O-D Control?

- The capability to respond to different O-D requests with different seat availability.
- Can be implemented in a variety of ways:
 - Revenue value buckets ("greedy approach")
 - EMSR heuristic bid price
 - Displacement adjusted virtual nesting
 - Network "optimal" bid price control
- All of the above can increase revenues, but each one has implementation trade-offs.

Revenue Value Bucket Concept

- Fixed relationship between fare type and booking class is abandoned:
 - Booking classes ("buckets") defined according to revenue value, regardless of fare restrictions
 - Each itinerary/fare type (i.e.., "ODF") assigned to a revenue value bucket on each flight leg
 - ODF seat availability depends on value buckets
- Value concept can be implemented within existing classes or through "virtual" classes

Value Bucket Implementation

Within Existing Booking Classes:

- Fare codes need to be re-published according to revenue value; no changes to inventory structure
- Does not require seamless CRS links, but can be confusing to travel agents and consumers

Development of Virtual Inventory Classes:

- Substantial cost of new inventory structure and mapping functions to virtual classes
- CRS seamless availability links are essential

Stratified Bucketing by Revenue Value

ORIGINAL PUBLISHED FARES/CLASSES

NCE/FRA	
CLASS	FARE (OW)
Y	\$450
В	\$380
M	\$225
Q	\$165
V	\$135

NCE/HKG	(via FRA)
CLASS	FARE (OW)
Y	\$1415
В	\$975
М	\$770
Q	\$560
V	\$499

NCE/JFK	(via FRA)
CLASS	FARE (OW)
Y	\$950
В	\$710
M	\$550
Q	\$425
V	\$325

STRATIFIED FARES BY ODF VALUE

STRATIF.	REVENUE	MAPPING OF
BUCKET	RANGE	O-D MARKETS/CLASSES
Υ	800 +	Y NCEHKG B NCEHKG
		Y NCEJFK
В	560-799	M NCEHKG Q NCEHKG
		B NCEJFK
M	440-559	V NCEHKG M NCEJFK
		Y NCEFRA
Q	300-439	B NCEFRA Q NCEJFK
		V NCEJFK
V	0-299	M NCEFRA Q NCEFRA
		V NCEFRA

Virtual Class Mapping by ODF Revenue Value

FARE VALUES BY ITINERARY

NCE/FRA		
CLASS FARE (OW)		
Y	\$450	
В	\$380	
M	\$225	
Q	\$165	
V	\$135	

NCE/HKG	(via FRA)
CLASS	FARE (OW)
Y	\$1415
В	\$975
M	\$770
Q	\$590
V	\$499

NCE/JFK	(via FRA)
CLASS	FARE (OW)
Y	\$950
В	\$710
M	\$550
Q	\$425
V	\$325

MAPPING OF ODFs ON NCE/FRA LEG TO VIRTUAL VALUE CLASSES

MOTUAL	DEVENUE	MADDING OF	
VIRTUAL	REVENUE	MAPPING OF	
CLASS	RANGE	O-D MARKETS/CLASSES	
1	1200 +	Y NCEHKG	
2	900-1199	B NCEHKG Y NCEJFK	
3	750-899	M NCEHKG	
4	600-749	B NCEJFK	
5	500-599	Q NCEHKG M NCEJFK	
6	430-499	V NCEHKG Y NCEFRA	
7	340-429	B NCEFRA Q NCEJFK	
8	200-339	V NCEJFK M NCEFRA	
9	150-199	Q NCEFRA	
10	0 - 149	V NCEFRA	

Value Bucket O-D Control

Allows O-D control with existing RM system:

- Data collection and storage by leg/value bucket
- Forecasting and optimization by leg/value bucket
- Different ODF requests get different availability

But also has limitations:

- Re-bucketing of ODFs disturbs data and forecasts
- Leg-based optimization, not a network solution
- Can give too much preference to long-haul passengers (i.e..., "greedy" approach)

Displacement Cost Concept

- Actual value of an ODF to network revenue on a leg is less than or equal to its total fare:
 - Connecting passengers can displace revenue on down-line (or upline) legs
- How to determine network value of each ODF for O-D control purposes?
 - Network optimization techniques to calculate displacement cost on each flight leg
 - Leg-based EMSR estimates of displacement

Value Buckets with Displacement

- Given estimated down-line displacement, ODFs are mapped based on <u>network</u> value:
 - Network value on Leg 1 = Total fare minus sum of down-line leg displacement costs
 - Under high demand, availability for connecting passengers is reduced, locals get more seats
- Revision of displacement costs is an issue:
 - Frequent revisions capture demand changes, but ODF re-mapping can disrupt bucket forecasts

Alternative Mechanism: Bid Price

 Under value bucket control, accept ODF if its network value falls into an available bucket:

Network Value > Value of Last Seat on Leg; or Fare - Displacement > Value of Last Seat

Same decision rule can be expressed as:

Fare > Value of Last Seat + Displacement, or

Fare > Minimum Acceptable "Bid Price" for ODF

 Bid Prices and Value Buckets are simply two different O-D control mechanisms.

O-D Bid Price Control

- Much simpler inventory control mechanism than virtual buckets:
 - Simply need to store bid price value for each leg
 - Evaluate ODF fare vs. itinerary bid price at time of availability request
 - Must revise bid prices frequently to prevent too many bookings of ODFs at current bid price
- Bid prices can be calculated with network optimization tools or leg-based heuristics

Example: Bid Price Control

A-----D

Given leg bid prices

A-B: \$35 B-C: \$240 C-D: \$160

Availability for O-D requests B-C:

	Bid Price = \$240	Available?
Υ	\$440	Yes
M	\$315	Yes
В	\$223	No
Q	\$177	No

A-B: \$35 B-C: \$240 C-D: \$160

A-C	Bid Price = \$275	Available?
Y	\$519	Yes
M	\$374	Yes
В	\$292	Yes
Q	\$201	No

A-D	Bid Price = \$435	Available?
Υ	\$582	Yes
M	\$399	No
В	\$322	No
Q	\$249	No

Network vs. Heuristic Models

- Estimates of displacement costs and bid prices can be derived using either approach:
 - Most O-D RM software vendors claim "network optimal" solutions possible with their product
 - Most airlines lack detailed data and face practical constraints in using network optimization models
 - Still substantial debate among researchers about which network
 O-D solution is "most optimal"
- Revenue gain, not optimality, is critical issue

Use of Network Optimization Tools

- To date, few airlines have implemented network optimization for dynamic O-D control:
 - Lack of detailed historical ODF booking data
 - Technical and computational issues
 - Concerns about ODF demand forecasting accuracy (small numbers, high variance)
 - Difficult for RM analysts to interact with solutions
- Recent RM developments have addressed first two issues, but other concerns remain.

Leg-Based Heuristic Approaches

- Several large airlines have implemented approximation models of network effects:
 - Estimates of displacement costs and/or bid prices based on leg/bucket EMSR calculations
 - Use existing inventory structure, databases, and RM system capabilities
 - Compatible with RM analyst work routines
- Low-risk approach to O-D revenue gains, as an intermediate step to network optimization

EMSR Heuristic Bid Price Control

- EMSR value of the last available seat on each leg is used in a bid price decision rule.
- Connecting ODF requests are accepted only if the total itinerary fare exceeds the current bid price:
 - Bid Price =MAX[EMSR1, EMSR2] + d*MIN[EMSR1, EMSR2], where 0 < d < 1.00
- Local (1-leg) requests are controlled by EMSR fare class booking limits.

O-D Control System Components

Much more than an optimization model:

- <u>Database Requirements</u>: Leg/bucket vs. ODF.
- Forecasting Models: Level of detail to match data; detruncation and estimation methods.
- Optimization Model: Leg-based or network tools; deterministic vs. probabilistic; dynamic programs
- Control Mechanism: Booking classes vs. value buckets vs. bid price control.

Many effective combinations are possible:

Revenue gain, not optimality, is the critical issue.

O-D Control System Alternatives

O-D Control System	Data and Forecasts	Optimization Model	Control Mechanism
Rev. Value Buckets	Leg/bucket	Leg EMSR	Leg/bucket Limits
Heuristic Bid Price	Leg/bucket	Leg EMSR	Bid Price for Connex only
Disp. Adjust. Value Bkts.	ODF	Network + Leg EMSR	Leg/bucket Limits
Network Bid Price	ODF	Network	O-D Bid Prices

O-D Revenue Gain Comparison Airline A, O-D Control vs. Leg/Class RM

Potential for O-D Control

- Simulations show potential O-D revenue gain:
 - As much as 1-2% additional gain over leg/class control under ideal simulation conditions
- Network characteristics affect O-D benefits:
 - Substantial connecting traffic required
 - High demand factors on at least some feeder legs
 - Greater benefits with greater demand variability
- CRS seamless availability links essential:
 - Different responses to different ODF requests

O-D Implementation Questions

- Can we forecast ODF demand by flight date?
 - All network optimization methods require this input
- Value buckets or bid price control?
 - Affected by other airline functions and RM users
- Which network optimization model?
 - Trade-off costs, revenue gains, robustness issues
- How will our RM business process change?
 - Transition from leg/bucket controls to O-D traffic flows and network revenue values