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Abstract

The teaching of Lean Enterprise Thinking in the aerospace context requires that students
understand a complex subject—aerospace enterprises and their transformation—in a deep and
intuitive way. Without this context, the lessons of the LAI Lean Academy Course” will make
little sense. A rich simulation of an enterprise with a structure and problems typical of the US
aerospace industry is used as a teaching tool. The simulation allows students to understand Lean
Thinking at an intuitive level, and practice lean tools in a realistic setting. The simulation
enables a CDIO approach (in this case, Comprehend, Design, Implement and Operate), by
having the students take two iterations through a CDIO process to transform the simulated
enterprise from an inefficient legacy state to a high performance future state (x3 to x6 production
using the same resources). The simulation and its teaching goals are described, with reference to
the limited literature on simulations in education. The process used in the simulation is then
described in a CDIO context. Finally, the success of the simulation is evaluated using limited
quantitative and more extensive qualitative data. It is found that the simulation is a powerful
learning tool and a key component of the LAI Lean Academy.
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The Lean Academy Simulation

Lean principles are rooted in the Toyota Production System [1]. They have been applied in
many manufacturing, service and educational organizations. To be effective, lean thinking
should be implemented across a given enterprise leading to a lean enterprise [2]. Teaching lean
principles in the context of complex aerospace enterprises has proved to be extremely
challenging, especially for engineering students who are not used to abstractions such as
enterprises and process flows. Students need an intuitive understanding of complex enterprises,
their intrinsic challenges, and their specific problems, before the concepts of lean transformation
can make sense in this context. Almost all existing teaching materials are focused on the much
simpler and easier-to-understand context of a factory floor.
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In response to this challenge, a team at the Lean Aerospace Initiative created the Lean Enterprise
Value (LEV) simulation.” Participants fabricate parts, process engineering design jobs,
assemble, and support a fleet of Lego” aircraft, to satisfy customer and corporate demands. Each
participant is in charge of a facility: an assembly plant, subcontractor fabricating plant, product
development department, or service and support depot. A realistic economic system allows
participants to track their performance and justify their decisions as they progress on their lean
enterprise journey. During the course of the simulation, participants learn advanced lessons in
applying lean at the enterprise level, quantifying the value of lean improvements, and managing
change in a complex, interdependent enterprise. The LEV simulation is, intrinsically, a tool for
teaching enterprise-level lean thinking. Participants must identify not only how to improve the
mechanical aspects of their processes, but also the more complex challenge of how to interact
with elements of the enterprise outside their control, on mechanical, financial, and human levels.
It is also a practice field for lean tools such as value stream mapping, kaizen improvements,
standard work, single piece flow, and kanban inventory control.

For the LAI Lean Academy Course, a simplified version of the LEV simulation was created.
Teams of 6 students (4-5 teams in a typical class) compete to produce Lego aircraft. The
simulation includes a 4-station process for creating Lego aircraft, a two-step supply chain
(including a warehouse and a remote supplier), a simple financial system, and an abstract
engineering capability. The basic process flow of the simulated facility is shown in Figure 1.
Five students and a facilitator (the “customer” in the flow chart) sit at a manufacturing table.
Four of the students have manufacturing jobs. One student plays the part of the parts buyer; he or
she accepts parts orders and conveys them to the supplier, who sits at a distant table with all of
the suppliers for the other tables. This sets both a physical and psychological barrier to
integration of the parts supplier into the enterprise team.

Each student sit at a “facility” which has all of the equipment and instructions necessary for them
to participate in the simulation. Figure 2 shows a manufacturing facility (consisting of a visual
work package showing what Legos to assemble, ordering forms and a storage area for parts, a
“factory” with assembly rules and timers, and financial reporting forms), a supplier facility
(consisting of order fulfillment paperwork and parts bins, from which the student must fill
orders), and the Lego aircraft produced. The students at the manufacturing stations use sand
timers to represent the underlying capability of the manufacturing plant; this prevents the
simulation from degenerating into a race or favoring students with high manual dexterity or Lego
experience. As can be seen in Figure 1, the workload is highly imbalanced (some students must
assemble many more parts, and/or wait for a much longer timer) in the initial state.

A simple financial system tracks the income from selling aircraft, penalties due to low quality
manufacture (i.e. incorrectly assembled aircraft), the fixed cost of the facilities, the variable cost
of the parts used (or scrapped), and, later in the simulation, the cost of capital improvements.
Engineering (which is explicitly included in the full LEV simulation) is included as an overhead
charge—its usefulness becomes apparent only late in the simulation. The financial data is
collected at the end of each round and recorded on either a simple paper form or a small Excel®
spreadsheet. Figure 3, taken from instructional material, illustrates the financial system.

" See http://lean.mit.edu/ click Products, then LEV Simulation
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Figure 1. Process Map of Simulation in Initial State

Figure 2. Simulation Equipment — Manufacturing and Supplier Facilities, Lego Airplane
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Figure 3. Simulation Financial Metrics as Illustrated in Instructional Materials

The students work for 12-minute rounds building as many aircraft (Figure 2) as they can within
the constraints of the system, which are numerous. They must manage an inventory of parts, and
order them using an initially clumsy system of ad-hoc paper orders, working through a
middleman (the warehouse). They are also initially restricted to a fixed and unbalanced work
load among the manufacturing plants, and the Lego airplane they are building initially is a poor
design for both manufacturing (it has too many small parts) and customer satisfaction (it has a
mechanically weak tail section, and is too expensive, partially as a consequence of the large
number of parts).

Using the Simulation

The simulation is used for more than half of the teaching time of a single day of the Lean
Academy. The simulation is run in 12-minute rounds, during which the students fully immerse
themselves in the simulated enterprise, and try to meet customer demand for the Lego aircraft.
The students do a round of the simulation to learn its mechanics, and another to stabilize
production in the initial state. Typically, they are able to produce 2-4 aircraft in the second
round. After collecting financial data (initially dismal-—the numbers in Figure 3 are typical) they
hear a short lecture on lean tools and then do an analytical exercise on the enterprise. A
somewhat idealized outcome of such an exercise is shown in Figure 4. This is a value stream
map of the facility shown in Fig. 1. It differs from Fig. 1 in following the value flow from the
nominal decision to build another airplane, through the inventorying and ordering of the parts, to
the assembly of the plane. It includes key data—in this case, the amount of time spent at both
the mandated tasks (i.e. the hourglass time) and the “wasted” time spent on paperwork, checking
inventory, etc.

Having analyzed the system, the students use lean principles such as 5S, visual control, standard
work, takt time, balanced single-piece flow, and elimination of non-value added tasks to improve

"5Sis an approach to workplace organization. Its name comes from 5 Japanese words, interpreted in English as
Sort, Straighten, Scrub, Systematize, and Standardize.
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the initial state. The simulation allows a very large number of possible options at this stage. The
major categories of improvement actions for this stage of the simulation are shown in Table 1,
with their corresponding lean principles, and typical student actions. Note other improvements
are possible (i.e. increasing capacity through large capital investments) but they are not good
answers. The students are mentored away from poor solutions (using, for example, simple
calculations using the financial system) but many good-to-excellent solutions are possible.
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Figure 4. A Value Stream Map derived from the Simulation Processes. Data are Times in Seconds.

Table 1. First Set of Lean Improvements

Simulation Improvements

Lean Principles

Typical Student Actions

Organize Activity

58S, Visual Control,
Standard Work

Clean up worksite, organize
inventory, standardize
sequence of ordering,

assembly, and paperwork

Balance Workload between
Facilities — this requires an
“engineering request”
(approved by instructor)

Takt time, Single-piece Flow,
Balanced Work

Move work between plants to
balance work at 120 sec and
12-13 parts

Change (improve, eliminate,
or move) facilities — this
requires “corporate approval”
(also by instructor)

Eliminate Unnecessary Tasks,
Single-piece Flow, Just-in-
Time Delivery

Demolish “warehouse;” freed
student moves orders and parts

Modernize parts order system
by eliminating paperwork —
requires “corporate approval”

Eliminate Unnecessary Tasks,
Standard work

Upgrade parts ordering system
and standardize orders to
single-plane sets
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Typically, the first set of improvements allows the students to achieve a 50% or better increase in
production rate, to 5-6 aircraft. This improvement is, however, almost never achieved
immediately. The students get a visceral lesson in the “worse-before-better” effect. The
disruption caused by the change, and the fact that work habits and relationships (particularly in
the supply chain) must change to take advantage of the new state, mean that additional effort is
required. This is almost entirely interpersonal effort, involving communication, understanding
roles and responsibilities, and synchronizing and coordinating actions. It is by working together
to implement the improvement project, and operating the improved enterprise, that the necessary
team bonds are built that allow the system to actually function up to its capacity.

A second round of improvements introduces the Lean Engineering practice of Design for
Manufacturing and Assembly (DFMA) in a simplified form. The students are allowed to
redesign the aircraft for increased product quality and reduced part count. They are not allowed
to change the exterior mold line, however, putting a constraint on the solution set, and making
cooperation with the suppliers vital, as they have the capability (not hidden, but not pointed out
to the students either) to supply large Lego bricks that can reduce the number of total parts
necessary to produce the aircraft. These have the added benefit of eliminating joints and hence
weak points in the design, increasing “customer satisfaction.” In the interest of pedagogy, the
realism of the full LEV simulation is considerably relaxed—the redesign effort is assumed to
proceed quickly and to be paid for out of engineering overhead. In the full LEV simulation,
considerable time, effort, and expense go into the simulated engineering process.

At this time, the students are also stressed by “changes in the market.” The demand for planes
goes way up (to 12 planes per round) but the price that the customer is willing to pay goes down
by about 20%. This provides further motivation to both redesign the aircraft, and assure a
smooth transition to the new state. Finally, the students usually notice (and are mentored to the
point if they do not) that the supplier will be severely stressed by the parts demand for 12
airplanes, and so cooperative work goes into perfecting the supply chain, usually involving a
formal implementation of a kanban inventory management system, managed by the former
warehouse person. Table 2 summarizes the options and typical choices made by the students.

Typically, the second set of improvements goes much smoother, as the students have built up
experience in enterprise change and have developed effective working relationships. The
students actually get quite competitive at this stage, motivated to bend the rules to produce the
absolute maximum number of aircraft. The final result, which almost always takes only one
round to achieve, is 8-14 aircraft, with a “theoretical” production of 12 considered ideal.
Producing 14 aircraft involves no cheating, but it does require bending several rules—an
amusement for the class, but not a good lesson in standard work or working to customer demand.

The simulation concludes with the collection of a final round of financial data, showing the
impact of the lean improvement on the “bottom line” even when improvement costs are taken
into account. Figure 5 shows a typical group’s production and financial results in the five
rounds that make up a typical simulation day.
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Table 2. Final Set of Lean Improvements

Simulation Improvements

Lean Principles

Typical Student Actions

Airplane may be redesigned
within a constant exterior
mold-line

Lean Engineering, DFMA,
Supplier Integration

Reduce part count by 10 (to 28
per plane) using large Lego
blocks available to suppliers

Balance Workload between
Facilities (again)

Takt time,
Single-piece Flow

Move work between plants to
balance work at 60 sec and 7-9
parts, including using excess
capacity at final assembly to
install some exterior parts
(e.g. landing gear)

Change (improve, eliminate,
or move) Facilities

Takt time,
Single-piece Flow

Students find they must
increase capacity at some
manufacturing plants (but can
now justify it economically)

Further Modernize Supply
Chain

Standard work, Just-in-Time,
Kanban

Implement a two-bin Kanban
inventory management system
throughout enterprise

2400 12
2000 1 110
& —
g 1600 1 T8 2
w =
= 1200 | 16 o
e 8
(1] =
£ 800 + 14 3
% a
S 400 1 12 ¥
= o
S £
a O 0 <
-400 + 12
-800 -4

Figure 5. Production and Financial Performance for a Typical Team.
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Simulation-based learning

The simulation is used as a tool for teaching complex lean concepts. At its most basic, it is a
mode of active learning, discussed in the companion paper by Candido et al.[3] More
specifically, the goals for the simulation include 1) increased comprehension of the curriculum,
2) better understanding of the context and holistic, system-spanning nature of the material, 3)
learning though experience via use of the simulation as a practice field, and 4) increased student
involvement and enthusiasm for the material. It was assumed that the simulation would have
additional benefits (e.g. that non-traditional learning styles would be engaged, that teamwork and
collaborative learning would be fostered, etc.), but these were not pursued as deliberate goals.

There is a small but fairly definitive literature that indicates that simulations and “games” help
students comprehend material better than lectures or non-participatory graphical presentations.
Controlled studies of learning of geology and cell biology [4] and electromagnetism [5,6] have
shown students who learn through a computer simulation environment have better knowledge
retention than those learning through lecture or static web-based learning. Computer “games”
have also been shown to improve outcomes measured by behavior—students learning through
simple games are more likely to eat healthy foods [7], and are more likely to take necessary
medicines [8], than those instructed with lecture or reading materials.

This literature concentrates on specific desired outcomes or learning points, and (like most of the
other literature in the field) uses computer-based simulations or games. It is, however,
reasonable to assume that the goal of increasing comprehension of the curriculum can be
obtained. The second goal, of creating a context, i.e. a mental model of what the material is
actually for, is supported in literature as a goal [9], but there are no controlled studies the authors
are aware of proving that simulations are a good way of achieving this goal. The situation with
the third goal, of creating a practice field for experience, is also supported as a goal [10]. There
is good evidence that a good simulation will get students involved and engaged with the material
(or at least with the simulation) [11] but this literature is mostly focused on computer games
without regard for educational utility.

The literature is supportive of our approach, but there is not direct parallel between the situations
covered in the literature that we are aware of and our complex, multi-facetted, real-world
simulation. There is also very little information available on the specific problems of teaching
“lean” knowledge. As pointed out in the companion paper by Murman ef al. [12], Lean
Thinking is “a field that is based upon knowledge gained from practice—as contrasted to
traditional engineering disciplines that are based upon knowledge from science and
mathematics.” This puts particular emphasis on practical demonstrations that can be used to
impart this kind of knowledge with some credibility. Existing examples tend to be
demonstrations (as opposed to full simulations with many options to affect the simulated
enterprise), and tend to focus on a single learning point. Included in this category are the “Beer
Game” [13] which demonstrates supply chain instability, and dice games that demonstrate the
effect of variability on simple processes [3]. Efforts with goals similar to ours are ongoing, such
as simulations adapted to teach lean manufacturing [14], or created to teach lean shipbuilding
[15]. Simulations have also been used effectively to teach design concepts and processes [16].
A colleague has recently created an ingenious classroom exercise that allows students to redesign
a fairly complex system—the students use lean methods to optimize the design class they are
taking based on the needs of the project selected for the term [17].
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Simulations as a Practice Field for CDIO learning

Given the lack of direct guidance from literature, the simulation was created based on experience
with project-based learning that is at the heart of the CDIO method. As a consequence, there is a
very strong link between the simulation and CDIO concepts. The link is reinforced by the fact
that most process improvement methods* themselves suggest a set of actions that sound very
much like CDIO. One of the earliest examples is the Plan-Do-Check-Act (PDCA) cycle
pioneered in the 1930s by Walter Shewhart [18] and later associated (as the Plan-Do-Study-Act,
PDSA) with the work of W. Edwards Deming [19]. The Six-Sigma method encourages a
Define-Measure-Analyze-Improve-Control (DMAIC) cycle [20]; Process Reengineering
suggests Mobilization-Diagnosis-Redesign-Transition cycles [21]. The simulation is actually
taught around a similar set of actions that are deliberately identical to none of the above to avoid
dogmatic debates. Here, we will cast the simulation teaching in terms a Comprehend-Design-
Implement-Operate cycle.

Comprehend

Rather than Conceive (the appropriate first step in a new design) the students must come to an
understanding of the current state of the process and the (unmet) user needs. The students first
use value stream mapping to understand the basic flows of material and information through the
system. This information must then be quantified by collecting data on key aspects of the
system. This data includes the time that it takes to do various steps; the capacity of various

steps; the user needs; and evidence of process pathology such as inventory and idle time. The
students are challenged to discover this data from within the simulation environment, much as
design course students must “data hunt” before serious Design work can begin. The artifact from
this step is a value stream map—an idealized version is shown in Figure 4.

Design

The challenge is now for the students to redesign the system to meet user needs. The analog to
original design work is fairly strong at this step. The students need to understand and quantify
user needs, brainstorm possible approaches to the problem, understand the “physics” of the
environment, and analyze proposed solutions to confirm that they are feasible and meet user
requirements. In this case, the user needs are expressed in terms of quality products produced by
the system at an acceptable rate and price; the brainstorming is open ended, although somewhat
constrained by the simulation; the physics are the limits of the simulated system, most of which
have been discovered in the previous phase; and the analysis is in terms of production rates and
costs, including the costs to change the system. The students are encouraged to trade several
design options, selecting one or two that can meet user needs at minimum cost.

Implement

The idea behind this step is conceptually similar to that of a design class: that the actual
implementation of the (re)design contains a different set of lessons than its analysis. In a
hardware-oriented design the implementation details are often physical. In the simulation, the
mechanical changes (i.e. moving capacity from one station to another) are straightforward; it is

* There are several competing methodologies for the improvement of existing processes. Their differences are
beyond the scope of this paper; they all share the purpose of understanding an existing process, designing and
implementing improvements, and following up in some way.
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the organizational and people issues that create extra learning from the Implement phase. Just as
a physical design that looks good on paper may run into difficulties when complex parts are
machined or small bonds are expected to take large loads, the organizational designs are often
challenged by unanticipated difficulties like shifting constraints (a new bottleneck appears when
an old one is cleared) or communication difficulties (“I was waiting for you to order the parts”).
In either case, the students learn about both the implementation process itself, and the effects
their design had on “implementability.”

Operate (and Iterate)

The ultimate payoff from any design is its operation to achieve an end. This is perhaps the one
lesson that is easier to understand in a production system than a piece of hardware, as the output
of the operation of the simulated production system is very tangible. The students learn a
continuation of the implementation lesson—that even when a new state is achieved, it needs
constant “care and feeding” to perform as designed. Again, this tends to involve communication
issues such as spotting, communicating and fixing anomalies in a timely fashion.

In the simulation, the students go through two full CDIO cycles, so the intermediate Operate
stage becomes the basis for the next round of analysis and improvement. Until the improved
system is actually in operation, the Comprehend step in the next cycle has little meaning. This
cycling between improvement, stable operation, and the next round of improvement is at the
heart of Lean and other continuous process improvement techniques, and understanding it
experientially is a major take-away for the students. The second operating experience, on the
other hand, is mostly an enthusiasm builder—the students get the pleasurable experience of
“flow” in both the lean production and psychological senses of the word [22].

Evaluation

The Lean Academy course modules are assessed by the students using daily feedback sheets
which provide both quantitative (-2 to +2 satisfaction scoring) and qualitative (comments)
feedback. The student feedback indicates overwhelming satisfaction with the simulation
experience. Figure 6 shows the quantitative feedback results collected from 6 academies with a
total of 194 responding students. The students were asked to rate each teaching module or
activity in the Lean Academy on a scale from -2 to +2, where -2 meant the module “actively
detracted from the experience” and +2 meant the module “provided positive reinforcement of the
concepts.” The simulation is compared to other active participation modules, and to lecture-
based modules. The circles represent the mean score from 194 responses in each category, with
the size of the circle approximately reflecting a 90% confidence interval. The bars show the
range from the highest-scored individual activity or lecture to the lowest within each category.
Clearly, the simulation rated significantly higher in student satisfaction than not only any other
type of activity, but also any individual activity.

The satisfaction with the simulation was consistent across all sites, and was not significantly
affected by variation in instructors and facilitators. This is in contrast to the relative ranking of
the lectures and other activities, which did vary by site, and the satisfaction scores of the lectures,
which were strongly affected by the identity of the lecturers.
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The qualitative feedback indicated that the learning objectives of the simulation were met. The
feedback collected included an open-ended question “what did we do well today?” Of 182
surveys distributed, 42% of students either did not return the survey, left the question blank, or
mentioned something other than the simulation in this category. 58% (106 written responses)
explicitly mentioned the simulation. The comments were broken down into five categories,
selected based on a preliminary scan of the feedback. The first was “good” comments,
complementing the simulation itself but not specifying why. Next were comments on the
students’ feelings about the simulation experience, including words such as “exciting,”
“stimulating,” or “fun:”

I really enjoyed the simulations with the Legos. This made time fly.

... SO good and SO cool. One of the most enlightening engineering experiences I've had.

Next were comments that indicated the simulation helped reinforce, illuminate, or clarify the
course material:

... helped with application of what we learned in lecture
It took a while to get the concepts but it finally clicked during the 2 segment [of the simulation]
Next, comments that indicated that hands-on learning, practice, or exercise helped:

Hands on — Excellent. Telling someone how something works is fine. Having someone do it
teaches it

LOVED the simulations. Figuring stuff out yourself makes things make much more sense

Finally, comments on interactions fostered with the learning group and/or the instructors:

Created a good sense of camaraderie
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The results are shown in Figure 7. The results indicate that, asked an unbiased question,
significant numbers of students volunteered that that the simulation met the goals of increasing
comprehension, learning through hands-on experience, and increased enthusiasm and personal
involvement. These are three of the four goals listed above. The fourth, better understanding of
the context and holistic, system-spanning nature of the material, was not mentioned by any
student. The fact that the simulation was done on the second day, when the students were not
ready for integrative thinking, may have influenced that result. Also, other context-setting
exercises within the Lean Academy (e.g. plant tours) may have overshadowed this function of
the simulation.

Bonding
3%
Hands On

19%
Good
40%

Iluminating

25%
Exciting
13%

Figure 7. Types of Positive Written Responses Referring to Simulation (N=106)

These results show student satisfaction with the simulation, and indicate that, at least for some
students, the learning objectives of the simulation were met.

Caveats

The first caveat concerns this study more than the simulation. The data used to evaluate the
simulation here measured only student satisfaction, not learning outcomes. Outcomes (the
VALUE scores) were measured as part of the LAI Lean Academy [3] [12] but they do not
distinguish between the learning from the simulation and that from other modules. The best we
can say is that the simulation is a highly regarded component of a course with good outcomes.

The simulation is not without cost. The first is literal—it takes around two thousand dollars to
collect the necessary materials, and there is some difficulty doing so.® The simulation has
suffered from one of the lessons it teaches—the dangers of supply chain instability. The
necessary Legos are no longer entirely available from the Lego company, and must be procured
from the (fortunately thriving) on-line secondary market. Worse is the investment in trained
personnel. The simulation requires a facilitator at each of the tables of six students, and a master

¥ On the other hand, this should be contrasted with the expense of creating a computer-based simulation, which is in
the millions of dollars for anything beyond a very simple (and therefore not credible) visual simulation.
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facilitator to run the whole show. Training a table facilitator requires (typically) experiencing
the simulation as a participant, followed by a few hours of follow-on training; training a master
requires several experiences as a table facilitator and ideally a session training under an existing
master. Much of this difficulty can be traced to the origins of the simulation as a customization
of the even more complex LEV training simulation. Several rounds of improvements (mostly
simplifications and clarifications) have now been done with the Lean Academy variant, but it is
still a complex simulation, not a simple training demo or “game.” This reflects a basic tradeoff
in simulation design, in that a simulation of a moderately complex interdependent system
(multiple independent activities that must be coordinated) with a realistic context (e.g., industrial
process flows and nomenclature, formalized improvement methods, functional financial
accounting system, etc.) involves more detail and effort than a simulation designed to focus on
meeting a single learning objective.

From the student point of view, the limited negative feedback received illustrates a general point
about simulations. In response to the question “what could we do better,” asked at the end of the
day on which the simulation took place, only 29% of students volunteered any answer. Of these,
more than half were complaints about the simulation mechanics—the clarity of the instructions,
the quality of the facilitation, or the availability of needed materials. Most of these complaints
came from two sites, one of which suffered a parts shortage due to a misplaced bag of Legos, and
one of which suffered from incorrect advice from a few of the table facilitators. Both problems
were quickly corrected and had no effect on either the success of the simulation or the
satisfaction scores, but they left an impression. The general principle, expressed frequently
although, to the knowledge of the authors, unconfirmed by controlled studies, is that educational
simulations are not always robust. Small problems can detract from the student experience,
and too many problems can “crash” the experience, resulting in frustration instead of learning.
Handling problems is highly dependent on skilled facilitators and instructors. The
aforementioned parts-shortage problem was actually converted into a learning point about supply
chain limitations, the spotting and communication of early signs of difficulties (the suppliers
knew they were running out), and adaptable enterprise responses to them. Even with this “save,”
the students did notice the unplanned problems and it detracted from the simulation’s credibility.

The remaining complaints illustrate another point. They included some comments that the
simulation took too much time, but these comments were balanced by ones that suggested
cutting other activities during simulation day to allow more simulation time. Several students
felt “left out” because they were given supplier positions—a deliberate teaching point designed
into the simulation! Finally several students expressed frustration that the other teams indulged
in “creative accounting” to make their results look better—again, the dark side (whether or not
the accusations had merit) of the deliberate competition set up between the tables. The
generalized point is that this sort of activity will always be a balance, with no one solution being
ideal for all learning styles and personalities.

" To paraphrase Alex Miller of U. of Tennessee, the author of a product development simulation, simulations “work
great, except when they don’t.”
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Conclusions

A complex simulation of an aerospace enterprise is used as a teaching tool and practice field for
a class in lean process improvement techniques. The simulation and the way in which it was used
were designed with cognizance of, but not direct heritage from, existing work on educational
simulations. The intent was for the simulation to provide increased comprehension of the
curriculum, context, hands-on experience, and increased student enthusiasm. The process
improvement techniques themselves have a systematic, CDIO-like approach. The class did two
cycles of lean process improvement, interpreted here as Comprehend, (re)Design, Implement and
Operate, on the simulated system. The experience of many classes over several years indicates
that the simulation has been very successful. Student feedback reinforces this view; the
simulation ranks significantly above all other teaching modules in the class in student
satisfaction. Student written comments further indicate that the simulation is meeting its learning
objectives. This satisfaction comes at a price in terms of expense and instructor and facilitator
effort. The simulation is not immune from known difficulties of simulation-based education; it
is vulnerable to disruption by mistakes or poor facilitation, and it cannot simultaneously satisfy
every learning style.
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