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Why do we need something different?

» Fast pace of technological change

« Reduced ability to learn from experience

« Changing nature of accidents

* New types of hazards

* |Increasing complexity and coupling

« Decreasing tolerance for single accidents
 Difficulty in selecting priorities and making tradeoffs

 More complex relationships between humans and
automation

« Changing regulatory and public views of safety
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STAMP

(System-Theoretic Accident Model and
Processes)

A new, more powerful accident causation model

Based on systems theory, not reliability theory

Treats accidents as a dynamic control problem (vs. a
failure problem)

Includes
— Entire socio-technical system (not just technical part)

— Component interaction accidents
— Software and system design errors
— Human errors
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Introduction to Systems Theory

Ways to cope with complexity

1. Analytic Reduction
2. Statistics

[Recommended reading: Peter Checkland,
“Systems Thinking, Systems Practice,” John
Wiley, 1981]
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Analytic Reduction

* Divide system into distinct parts for analysis

Physical aspects = Separate physical components

Behavior - Events over time
 Examine parts separately

 Assumes such separation possible:

1. The division into parts will not distort the
phenomenon

— [Each component or subsystem operates independently

— Analysis results not distorted when consider components
separately
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Analytic Reduction (2)

2. Components act the same when examined singly as
when playing their part in the whole

— Components or events not subject to feedback loops and
non-linear interactions

3. Principles governing the assembling of components
into the whole are themselves straightforward

— Interactions among subsystems simple enough that can be
considered separate from behavior of subsystems themselves

— Precise nature of interactions is known
— Interactions can be examined pairwise

Called Organized Simplicity
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Statistics

* Treat system as a structureless mass with
interchangeable parts

« Use Law of Large Numbers to describe behavior in
terms of averages

« Assumes components are sufficiently regular and
random in their behavior that they can be studied
statistically

Called Unorganized Complexity
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Complex, Software-Intensive Systems

 Too complex for complete analysis

— Separation into (interacting) subsystems distorts the
results

— The most important properties are emergent

« Too organized for statistics

— Too much underlying structure that distorts the
statistics

Called Organized Complexity
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Degree of
Randomness

Unorganized Complexity
(can use statistics)

Organized Complexity

Organized
Simplicity
(can use analytic
reduction)

Degree of “Complexity”

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.



Systems Theory

« Developed for biology (von Bertalanffly) and
engineering (Norbert Weiner)

« Basis of system engineering and system safety

— |CBM systems of the 1950s

— Developed to handle systems with “organized
complexity”
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Systems Theory (2)

 Focuses on systems taken as a whole, not on parts
taken separately

— Some properties can only be treated adequately in
their entirety, taking into account all social and
technical aspects

— These properties derive from relationships among
the parts of the system

How they interact and fit together

 Two pairs of ideas

1. Hierarchy and emergence
2. Communication and control
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Hierarchy and Emergence

 Complex systems can be modeled as a hierarchy of
organizational levels

— Each level more complex than one below

— Levels characterized by emergent properties

* Irreducible

« Represent constraints on the degree of freedom of
components at lower level

« Safety is an emergent system property

— It is NOT a component property
— It can only be analyzed in the context of the whole
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Example
Safety
Control
Structure

SYSTEM DEVELOPMENT

Congress and Legislatures
Government Reports
T Lobbying
Hearings and open meetings
Accidents

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Legislation l

gegL:::atigns Certification Info.
Ctan.f‘ar = Change reports
L et Ilcatlor; 4 Whistleblowers
egal penalties Accidents and incidents
Case Law
Company
Management
Safety Policy Status Reports
Standards Risk Assessments
Resources Incident Reports
Policy, stds. Project
Management

Hazard Analyses
Safety-Related Changes

Safety Standards l T Hazard Analyses
Progress Reports

Progress Reports

Design,
Documentation

Safety Constraints
Standards

Test reports

Operating Assumptions
Operating Procedures

SYSTEM OPERATIONS

Congress and Legislatures
Government Reports
T Lobbying
Hearings and open meetings
Accidents

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Legislation [

Regulations
Standards
Certification
Legal penalties
Case Law

Accident and incident reports
Operations reports
Maintenance Reports
Change reports
Whistleblowers

Company
Management

Safety Policy
Standards
Resources

Operations Reports

'

Operations
Management

Change requests
Audit reports

Problem reports

Work Instructions

Operating Process

Hazard Analyses

Test Requirements
9 Review Results

Implementation
and assurance

Safety Revised

Reports

operating procedures

| Human Controller(s) |

Automated
Controller

Hazard Analyses
Documentation
Design Rationale

Manufacturing
Management

Maintenance

Software revisions
Hardware replacements

[ Actuator(s) | [ Sensor(s) |

Physical
Process

Work safety reports

and Evolution

Procedufes | audits Problem Reports
chrk Iogs Ieldents -~
inspections Change Requests

Manufacturing Performance Audits

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to 13
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.
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Example: ACC - BCM Control Loop

Operator
Tactile input P
:I'actile Visual
'_“P'Jt Feedback
Instrument
Brake Pedal Sl

Braking CAN Message ACC Status
Signal

Braking Signal !

Brake Control

Tactile input

Accelerator
Pedal

Distance

ACC Module

Whee Module
Spee
Braking
Signal
Brake
Friction

' Braking Statu:‘
Vehicle Speed

Powertrain Control
Module

-

Electronic Throttle
Body

| Air
—3‘; Vehicle F
—

Target Vehicle Speed

Radar Uehmie

Acceleration Signal

[hrottle l T .
opening Throttle Position
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Courtesy of Qi D. Van Eikema Hommes. Used with permission.
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Example High-Level
Control Structure for
ITP

Policy
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Incident Reports

Controller A
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Safety Constraints

 Each component in the control structure has

— Assigned responsibilities, authority, accountability

— Controls that can be used to enforce safety
constraints

« Each component’s behavior is influenced by

— Context (environment) in which operating
— Knowledge about current state of process
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Communication and Control

* Hierarchies characterized by control processes
working at the interfaces between levels

« Control in open systems implies need for
communication
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Control processes operate
between levels of control

Goal condition
Control
Actions Controller —
Model condition
Observability
v condition
Actuator Sensor

&

Action condition
Feedback

» Controlled Process
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Every Controller Contains a Process Model

Controller Accidents occur when model of

Model of process is inconsistent with real
state of process and controller

Process provides inadequate control
actions
A
Control Feedback
Actions
Y Feedback channels are critical

-- Design
-- Operation

Controlled Process
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Relationship Between Safety and
Process Models

 How do they become inconsistent?

— Wrong from beginning
— Missing or incorrect feedback
— Not updated correctly
— Time lags not accounted for
Resulting in
Uncontrolled disturbances
Unhandled process states

Inadvertently commanding system into a hazardous state
Unhandled or incorrectly handled system component failures
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Relationship Between Safety and
Process Models (2)

* Accidents occur when models do not match process
and

— Required control commands are not given
— Incorrect (unsafe) ones are given

— Correct commands given at wrong time (too early, too
late)

— Control stops too soon or applied too long

Explains software errors, human errors, component
interaction accidents ...
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Relationship Between Safety and
Human Mental Models

* Explains most human/computer interaction
problems

* Explains many operator errors

* Also explains developer errors. May have incorrect
model of

— Required system or software behavior for safety
— Development process

— Physical laws

— Etc.
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Control input or

Potential Control
FlaWS \?\;(I:coer:g%lrirr]rﬁ?srsri?lagtion Missing or wrong

communication

with another Controller
Controller controller
Inadequate Control Process < >
Algorithm Model <
. (Flaws in creation, (inconsistent
Inappropriate, process changes, i ,
ineffective, or incorrect modification or mciﬁzﬁlrii’) or Inadequate or
missing control adaptation) missing feedback
action
Feedback Delays
v Actuator Sensor
Inadequate Inadequate
operation operation
A
Incorrect or no
Delayed information provided
‘i
operation Measurement
inaccuracies
Controller
Controlled Process Feedback delays
I »| Component failures
i . g
Conflicting control actions Changes over time >
Process input missing or wrong Process output

Unidentified or contributes to
out-of-range system hazard

disturbance
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STAMP:
System-Theoretic Accident
Model and Processes
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STAMP: Safety as a Control Problem

« Safety is an emergent property that arises when
system components interact with each other within a
larger environment

— A set of constraints related to behavior of system
components (physical, human, social) enforces that

property

— Accidents occur when interactions violate those
constraints (a lack of appropriate constraints on the
interactions)

« (Goal is to control the behavior of the components
and systems as a whole to ensure safety constraints
are enforced in the operating system.

© 2013 John Thomas and Nancy Leveson. All rights reserved.
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STAMP (2)

« Treats safety as a dynamic control problem rather than a
component failure problem.

— O-ring did not control propellant gas release by sealing gap in field
joint of Challenger Space Shuttle

— Software did not adequately control descent speed of Mars Polar
Lander

— Temperature in batch reactor not adequately controlled in system
design

— Public health system did not adequately control contamination of
the milk supply with melamine

— Financial system did not adequately control the use of financial
instruments

« Events are the result of the inadequate control

— Result from lack of enforcement of safety constraints in system
design and operations o6



STAMP (3)

* A change in emphasis:

‘preve llures”

l
“enforce safety constraints on system behavior”

* Losses are the result of complex dynamic
processes, not simply chains of failure events

* Most major accidents arise from a slow migration of
the entire system toward a state of high-risk

— Need to control and detect this migration

27
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Summary: Accident Causality

 Accidents occur when

— Control structure or control actions do not enforce
safety constraints

« Unhandled environmental disturbances or conditions
« Unhandled or uncontrolled component failures
« Dysfunctional (unsafe) interactions among components

— Control actions inadequately coordinated among
multiple controllers

— Control structure degrades over time (asynchronous
evolution)

28
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A Third Source of Risk

« Control actions inadequately coordinated among
multiple controllers

Boundary areas

A 4

Controller 1 [ Process 1

A

Controller 2. "I Process 2

A

Overlap areas (side effects of decisions and control actions)

»
>

Controller 1 [

A

Process

A 4

Controller 2 [

A
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Uncoordinated “Control Agents”

“SAFE STATE”
TCAS provides coordinated instructions to both planes

Control Agent
(TCAS)

Instructions Instructions

Source: Public Domain. OpenClipArt.

Control Agent
(ATC)
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Uncoordinated “Control Agents”

“SAFE STATE”
ATC provides coordinated instructions to both planes

Control Agent
(TCAS)

Source;:/Public Domain. OpenClipArt.

Instructions Instructions

Control Agent
(ATC)
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Uncoordinated “Control Agents”

“UNSAFE STATE”
BOTH TCAS and ATC provide uncoordinated & independent instructions

Control Agent
(TCAS)

Instructions Instructions

No Coordination

Source: Public Domain. OpenClipArt.

Instructions Instructions

Control Agent
(ATC)
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hospital reports, input from medical community
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Inadequate Enforcement
of Safety Constraints on
Process Behavior

Inadequate
Control

Y

Hazardous
Process

Hazardous System State

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.
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Uses for STAMP

« More comprehensive accident/incident investigation and
root cause analysis

« Basis for new, more powerful hazard analysis techniques
(STPA)

« Safety-driven design (physical, operational, organizational))
— Can integrate safety into the system engineering process

— Assists in design of human-system interaction and interfaces

« QOrganizational and cultural risk analysis
— Identifying physical and project risks
— Defining safety metrics and performance audits
— Designing and evaluating potential policy and structural improvements
— ldentifying leading indicators of increasing risk (“canary in the coal mine”)
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