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Aircraft Dynamics

e First note that it is possible to develop a very good approximation of a key
motion of an aircraft (called the Phugoid mode) using a very simple balance
between the kinetic and potential energies.

— Consider an aircraft in steady, level flight with speed U, and height hy.
The motion is perturbed slightly so that
Uy — U=Up+u (1)

— Assume that F = %mU 2 4 mgh is constant before and after the pertur-
bation. It then follows that

gAh
U~ —I—
Uo
— From Newton’s laws we know that, in the vertical direction
mh=L—-W

where weight W = mg and lift L = $pSCLU? (S is the wing area). We
can then derive the equations of motion of the aircraft:

. 1
mh =L —W = 5pSOL(U2 — U2 (3)
1 1
= §PSCL((U0 +u)’ = Us) = QPSCL(QUUO) (4)

Ah
~ —pSC, (QTOUO) — (pSCrg)Ah (5)

Since h = Ah and for the original equilibrium flight condition L = W =

5(pSCL)UE = myg, we get that

pSCry _,, ( 9 )2
m U()

Combine these result to obtain:

AL+ QAR =0 , Q~ %ﬂ
0
— These equations describe an oscillation (called the phugoid oscillation)
of the altitude of the aircraft about it nominal value.

<& Only approximate natural frequency, but value very close.
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e The basic dynamics are the same as we had before:

— i N '_)I
F=muv. and T=H

1 - B
= —F=49. + Bgxuz Transport Thm.
m
- 5B —
= T=H + BoxH Note the notation change
e DBasic assumptions are: Xe {_

1. Earth is an inertial reference frame
2. A/C is a rigid body
3. Body frame B fixed to the aircraft (7, j, k)

e Instantaneous mapping of ¥, and ?/& into the body frame is given by

Blg — Pi+Qj+ Rk 0. =Ui+Vj+Wk

P U
= BIC(.)B: Q :>(UC)B: V
R w

e By symmetry, we can show that I, = I, = 0, but value of I, depends on
specific frame selected. Instantaneous mapping of the angular momentum

H=Hj+H,j+ HFE

into the Body Frame given by

Hgp=|H,|=]0 I, 0||Q
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e The overall equations of motion are then:

e _ 3P4 Bigeq
m
| El U ] 0 -R Q][ U]
= —|F,| =|V|+| R 0-P||V
ml R W —Q P 0||W
U+QW — RV
= | V+RU - PW
W+ PV — QU
o B o
T = H + BlgxH
L I..P+I.R 0 —R Ql[L., 0 1I.][P
- | M| = 1,,Q +| R 0 —-P 011, 0|lQ
N I.R+1I,P -Q P O0||I. O L.||R

= I,,Q +PR(I,, — I..) + (R?> — PH)I,,

e C(learly these equations are very nonlinear and complicated, and we have
not even said where I' and T' come from. = Need to linearize!!

— Assume that the aircraft is flying in an equilibrium condition and we will
linearize the equations about this nominal flight condition.
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e But first we need to be a little more specific about which Body Frame we
are going use. Several standards:

1. Body Axes - X aligned with fuselage nose. 7 perpendicular to X in
plane of symmetry (down). Y perpendicular to XZ plane, to the right.

2. Wind Axes - X aligned with v.. Z perpendicular to X (pointed down).
Y perpendicular to X7 plane, off to the right.

3. Stability Axes - X aligned with projection of v, into the fuselage plane
of symmetry. Z perpendicular to X (pointed down). Y same.

X-AXIS
(BODY)

X-AXIS
(STABILITY)

e Advantages to each, but typically use the stability axes.

— In different flight equilibrium conditions, the axes will be oriented dif-
ferently with respect to the A/C principal axes = need to transform
(rotate) the principal Inertia components between the frames.

— When vehicle undergoes motion with respect to the equilibrium, the
Stability Axes remain fixed to the airplane as if painted on.
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e C(Can linearize about various steady state conditions of flight.

— For steady state flight conditions must have

—

F= ﬁaero + ﬁgravity + F;thrust =0 and f =0
<& So for equilibrium condition, forces balance on the aircraft
L=WandT =D
— Alsoassume that P=Q=R=U=V =W =0

— Impose additional constraints that depend on the flight condition:

& Steady wings-level flight — & = ¢ = O="0=0

e Key Point: While nominal forces and moments balance to zero, motion
about the equilibrium condition results in perturbations to the forces/moments.

— Recall from basic flight dynamics that lift Lg = Cjag , where:

& C) = lift coefficient, which is a function of the equilibrium condition
& ap = nominal angle of attack (angle that the wing meets the air flow).

— But, as the vehicle moves about the equilibrium condition, would expect
that the angle of attack will change

a = qay+ A«
— Thus the lift forces will also be perturbed
L' = Cllag+ Aa) = L + ALY

e (Can extend this idea to all dynamic variables and how they influence all
aerodynamic forces and moments
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Gravity Forces

e Gravity acts through the CoM in vertical direction (inertial frame +7)

— Assume that we have a non-zero pitch angle 0
— Need to map this force into the body frame
— Use the Euler angle transformation (2-15)

[ 0] | —sin®
) W) Il i Sy

e For symmetric steady state flight equilibrium, we will typically assume that
=0y, ¢=o,=0, so
— sin @0
F = mg 0
cos O

l
|
78,
“‘*a* o\3

e Use Euler angles to specify vehicle rotations with respect to the Earth frame

© = Qcosd — Rsin®
d = P+Qsin®tan©® + Rcosd tan O
U = (Qsin® + Rcos®)secO

— Note that if ® ~ 0, then © ~ Q

e Recall: & ~ Roll, ©® =~ Pitch, and ¥ ~ Heading.
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Linearization

e Define the trim angular rates and velocities

P U |
Q‘ (ve) =

wp =

R

which are associated with the flight condition. In fact, these define the type
of equilibrium motion that we linearize about. Note:

— Wy = 0 since we are using the stability axes, and

— Vo = 0 because we are assuming symmetric flight

e Proceed with the linearization of the dynamics for various flight conditions

Nominal Perturbed = Perturbed

Velocity Velocity = Acceleration

Velocities U, U=Uy+u = U=1u
Vo =0, V=w = V=2

Angular Rates Py =0, P=p = P=p
Qo =0, Q=q = Q=q

Ry =0, R=r = R=r

Angles Oy, ©=0y+60 = ©=40
dy =0, b =0 = b =9

vy =0, U =1 = U =1
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e Linearization for symmetric flight U = Uy +u, V) = Wy =0, Fy =
Qo = Ry = 0. Note that the forces and moments are also perturbed.

F + AF,|

3=

F)+AF,

3=

.+ AF|

3=

1 AF,
= — | AF,
T AF,

e Attitude motion:
I
M
N .

AL |
= | AM
AN |

[ L.P+ 1.k +QR(I..

U+QW —RV ~ G+ qu—1v~ 14

V+RU—-PW =~ 0+rUy+u)—pw ~ 0+rU

W+PV—-QU ~ w+pv—qUy+u) = w—qU
U
?'J—f—TU() 2
?l)—qUo

- Iyy) + PQIm
Iny ) ‘|'PR(I$:C o IZZ) + (R2 o P2)Ixz

| LR+ 1,.P +PQ(Iyy I..) — QRI,,
I,,q 5
L+ L

Key aerodynamic parameters are also perturbed:

Total Velocity Vi = (U +u)? +0* +w?)? = Uy + u

Perturbed Sideslip angle [

sin ' (v/Vy) =~ v /Uy

Perturbed Angle of Attack o, = tan '(w/U) ~ w/U

e To understand these equations in detail, and the resulting impact on the
vehicle dynamics, we must investigate the terms AF, ... AN.
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RotazonTal

VZE

Figure 1: Perturbed Axes. The equilibrium condition was that the aircraft was angled up by
By with velocity Vyo = Up. The vehicle’s motion has been perturbed (X, — X) so that now
© = Oy + 6 and the velocity is Vy # Vrg. Note that V7 is no longer aligned with the X-axis,
resulting in a non-zero w and w. The angle v is called the flight path angle, and it provides
a measure of the angle of the velocity vector to the inertial horizontal axis.
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e We must also address the left-hand side (F, T)

— Net forces and moments must be zero in the equilibrium condition.

— Aerodynamic and Gravity forces are a function of equilibrium condition
AND the perturbations about this equilibrium.

e Predict the changes to the aerodynamic forces and moments using a first
order expansion in the key flight parameters

AF, = AU AW — AW AO + ... SAO 4+ AFY
ou = Taw S Tt T e st T T e 2P T A
oF; - OF; - OFa - oy +.+ +8F‘ge + AF¢
= u w —W e
oU ow ow 00 00 ’
— % called a stability derivative. Is a function of the equilibrium con-

dition. Usually tabulated.

— Clearly an approximation since there tend to be lags in the aerodynamics
forces that this approach ignores (assumes that forces only function of
instantaneous values)

— First proposed by Bryan (1911), and has proven to be a very effective
way to analyze the aircraft flight mechanics — well supported by numer-
ous flight test comparisons.
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Stability Derivatives

e The forces and torques acting on the aircraft are very complex nonlinear
functions of the flight equilibrium condition and the perturbations from
equilibrium.

— Linearized expansion can involve many terms w, u, i, . .., w, W, w0, . . .

— Typically only retain a few terms to capture the dominant effects.

e Dominant behavior most easily discussed in terms of the:

— Symmetric variables: U, W, @ and forces/torques: F}, F., and M

— Asymmetric variables: V', P, R and forces/torques: F,, L, and N

e Observation — for truly symmetric flight Y, L, and N will be exactly zero
for any value of U, W, @)

= Derivatives of asymmetric forces/torques with respect to the symmetric
motion variables are zero.

e Further (convenient) assumptions:

1. Derivatives of symmetric forces/torques with respect to the asymmetric
motion variables are zero.

2. We can neglect derivatives with respect to the derivatives of the motion
variables, but keep OF,/0w and M, = 0M /0w (aerodynamic lag in-
volved in forming new pressure distribution on the wing in response to
the perturbed angle of attack)

3. 0F,/0q is negligibly small.
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e Note that we must also find the perturbation gravity and thrust forces and

moments 9F9 9F9
Ll = —mgcos©y —=| = —mygsin O
00 0 00 0
e Typical set of stability derivatives.
W g w f Q R
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Figure 2: e corresponds to a zero slope - no dependence for small perturbations. No means no dependence for
any size perturbation.
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¢ Aerodynamic summary:

AF, = (an) u + (an) w = AF, ~u, w

ou
2A AL, ~uv, p,r
AF, ~u, w, w, q
AL~ 3, p,r
5A AM ~ u, w, w, q

AN ~ 3. p,r

e Result is that, with these force, torque approximations,
equations 1, 3, 5 decouple from 2 4, 6

— 1, 3, b are the n u, w,
and ¢
AF, mi
AFZ = m(ﬂj—(]U())
AM I,,q
(%) u+ (5 )gw + (%), 0+ AFS g
(95 +Q,)w+(“ﬂzu+@%)q+@F)9+AFc
(Gu)ou+ (Giv)ow + (aw)ow+ (862) q+AM?

are the lateral dynamics in v, p, and r
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Summary

e Picked a specific Body Frame (stability axes) from the
list of alternatives

= Choice simplifies some of the linearization, but the in-
ertias now change depending on the equilibrium flight
condition.

e Since the nonlinear behavior is too difficult to analyze,
we needed to consider the linearized dynamic behavior
around a specific flight condition

= Enables us to linearize RHS of equations of motion.

e Forces and moments also complicated nonlinear func-
tions, so we linearized the LHS as well

= Enables us to write the perturbations of the forces and
moments in terms of the motion variables.

— Engineering insight allows us to argue that many of
the stability derivatives that couple the longitudinal
(symmetric) and lateral (asymmetric) motions are small
and can be ignored.

e Approach requires that you have the stability derivatives.

— These can be measured or calculated from the aircraft
plan form and basic aerodynamic data.



