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Friction in Lagrange’s Formulation 
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Generalized Forces Revisited 

 
• Derived Lagrange’s Equation from D’Alembert’s equation: 
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• Define virtual displacements  
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• Substitute in and noting the independence of the jqδ , for each 
DOF we get one Lagrange equation: 
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• Applying lots of calculus on LHS and noting independence of 

the iqδ , for each DOF we get a Lagrange equation: 
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• Further, we “moved” the conservative forces (those derivable 

from a potential function to the LHS: 

1
i i i

p
i i

x y z
ir r r r

x i

r

y zd L L F F F
dt q q q q q=

   ∂ ∂ ∂∂ ∂
− = + +  ∂ ∂ ∂ ∂ ∂  

∑
& 


 

 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on Notes by Blair 2002) 2 



16.61 Aerospace Dynamics Spring 2003 

• Define Generalized Force: 
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• Recall that the RHS was derived from the virtual work: 
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• Note, we can also find the effect of conservative forces using 
virtual work techniques as well. 

Example 
• Mass suspended from linear spring and velocity proportional 

damper slides on a plane with friction.   
 
• Find the equation of motion of the mass. 
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• DOF = 3 – 2 = 1.   
 
• Constraint equations:  y = z = 0. 
 
• Generalized coordinate:  q 
 

• Kinetic Energy:  21
2

= &T mq  

 

• Potential Energy:  21 sin
2

q mgq= −V k θ  
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• Lagrangian:  2 21 1 sin
2 2

L T V mq kq mgq= − = − +& θ  

 
• Derivatives: 
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• Lagrange’s Equation: 
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• To handle friction force in the generalized force term, need to 

know the normal force  Lagrange approach does not 
indicate the value of this force. 

 
mgFs

Fd

FfN

mq&&o Look at the free body diagram.  
 
o Since body in motion at the time 

of the virtual displacement, use 
the d’Alembert principle and 
include the inertia forces as well 
as the real external forces 

 
o Sum forces perpendicular to the motion:  cosN mg θ=  
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• Recall Wδ δ= ⋅F s

q

.   Two nonconservative components, look 
at each component in turn: 
 
o Damper:  W cqδ δ= − &  
 
o Friction Force: 
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• Total Virtual Work: 
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• The generalized force is thus:  
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• And the EOM is: 
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• Note:  Could have found the generalized forces using the 
coordinate system mapping: 
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o  
o For example, the gravity force: 
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Rayleigh's Dissipation Function 

 
• For systems with conservative and non-conservative forces, 

we developed the general form of Lagrange's equation 
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with L=T-V and  
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• For non-conservative forces that are a function of , there is 

an alternative approach. Consider generalized forces  
q&
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where the are the damping coefficients, which are dissipative 
in nature  result in a loss of energy 

ijc

 
• Now define the Rayleigh dissipation function 
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• Then we can show that  
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• So that we can rewrite Lagrange's equations in the slightly 

cleaner form 

0
r r r

d L L F
dt q q q

 ∂ ∂ ∂
− + = ∂ ∂ ∂ & &

 

 

 
• In the example of the block moving on the wedge,  

21
2

F cq= &  

sin
rq

d L L F mq kq mg cq Q
dt q q q

 ∂ ∂ ∂ ′− + = + − + = ∂ ∂ ∂ 
&& &

& &
θ  

 
where 

rqQ now only accounts for the friction force. ′
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