Lecture AC 2

Aircraft Longitudinal Dynamics

Typical aircraft open-loop motions
Longitudinal modes
Impact of actuators

Linear Algebra in Action!
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Longitudinal Dynamics

e [or notational simplicity, let X = F,, Y = [, and Z = F,

_ (OF,
= (25)...

e Longitudinal equations (1-15) can be rewritten as:

mu = X,u—+ X,w—mgcosOyf + AX,
m(w — qUy) = Zyu+ Zyw+ Zyw + Z,q — mgsin 00 + AZ,

I, = Myu+ Myw + Myw+ Myq+ AM,

— There is no roll/yaw motion, so g = 6.

— The control commands AX, = AFS, AZ, = AFY, and AM, = AM°
have not yet been specified.

e Rewrite in state space form as

mu X, Xu 0 —myg cos O U AX,

(m—Zy)w | | Z, Zy, Zy+mUy —mgsin© w AZ.

—Myw + 1,4 M, M, M, 0 q AM,

0 0 0 1 0 0 0
m 0 0 0 U X, X 0 —mg cos O u AX,
0 m—Z2;, 0 0 w | | Ly Zw Zg+mUy —mgsin By w . AZ.
0 —-My I, 0 q M, M, M, 0 q AM,
0 0 0 1|6 0 0 1 0 0 0

EX = AX+é descriptor state space form

X = EYAX +&) =AX +¢
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e Write out in state space form:

Xu Xw O

m m

Zy Ly Zq+mU0
m—Zu-, m—Zu-, m—Zw

LM, + Z,T) | I My, + Z,T) | I [ My + (Z, + mUp)T]
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—g cos O

—mg sin B¢
m—Zu-,

-1 .
—1I,, mgsin O

e To figure out the c vector, we have to say a little more about how the control

inputs are applied to the system.
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Longitudinal Actuators

e Primary actuators in longitudinal direction are the elevators and the thrust.

— Clearly the thrusters/elevators play a key role in defining the steady-
state/equilibrium flight condition

— Now interested in determining how they also influence the aircraft mo-
tion about this equilibrium condition

deflect elevator — w(t),w(t),q(1),...

Rudder

5.(+) ) i
r +y Elevator Mleron
Sa(¥)

e Recall that we defined AX,. as the perturbation in the total force in the X
direction as a result of the actuator commands

— Force change due to an actuator deflection from trim
e Expand these aerodynamic terms using the same perturbation approach

AX,. = X565e + X5p5p

— 0, is the deflection of the elevator from trim (down positive)
— 0, change in thrust

— X5, and X;, are the control stability derivatives
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e Now we have that

e For the longitudinal case

L, [Ms, + Z5T)

e Typical values for the B747

X5, = —16.54
Zs, = —1.58 - 10°
M;, = —5.2-107

e Aircraft response y = G(s)u

X =AX +Bu — G(s)=C(s[ — A)'B

y=0CX

X5 Xs,
Zs, Zs
Ms, Ms, op
0 0
Xsp
Zs,
m—Zw
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X;, = 0.3mg = 849528
Z(sp ~ 0
M5p ~ 0

e We now have the means to modity the dynamics of the system, but first
let’s figure out what J, and ¢, really do.
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Longitudinal Response

e Final response to a step input u = /s, y = G(s)u, use the FVT

,hjgi)(t) = llin[l)s(G(S)E)

S

= lim y(t) = G(0)a=—(CA™'B)a

e Initial response to a step input, use the IVT

-

y(07) = lim s (G(S)E) = lim G(s)u

S §500
— For your system, G(s) = C(sI — A)"'B+ D, but D =0, so
}_1;1% G(s) — 0

— Note: there is NO immediate change in the output of the motion
variables in response to an elevator input = y(07) =0

e Consider the rate of change of these variables y(0")
y(t) = CX = CAX + CBu
and normally have that CB # 0. Repeat process above! to show that

y(0") = CB1, and since C = 1,

§(0*) = Ba

e Looks good. Now compare with numerical values computed in MATLAE®
Plot u, a, and flight path angle v = 6 — a (since ©y = 7y = 0)
See AC 1-10

!Note that C(s] — A)'B+D=D+SB 1 €A B |
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Elevator (1° elevator down — stick forward)

e See very rapid response that decays quickly (mostly in the first 10 seconds
of the o response)

e Also see a very lightly damped long period response (mostly u, some v, and
very little «). Settles in >600 secs

e Predicted steady state values from code:

14.1429 m/s wu (speeds up)
-0.0185 rad «a (slight reduction in AOA)
-0.0000 rad/s ¢
-0.0161 rad 6
0.0024 rad v

— Predictions appear to agree well with the numerical results.

— Primary result is a slightly lower angle of attack and a higher
speed

e Predicted initial rates of the output values from code:

-0.0001 m/s* @
-0.0233 rad/s &
-1.1569 rad/s* g
0.0000 rad/s 0
0.0233 rad/s 7

— All outputs are at zero at ¢ = 07, but see rapid changes in o and q.

— Changes in u and «y (also a function of #) are much more gradual — not
as easy to see this aspect of the prediction

e Initial impact Change in o and ¢ (pitches aircraft)

e Long term impact Change in u (determines speed at new equilibrium
condition)
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Thrust (1/6 input)
e Motion now dominated by the lightly damped long period response

e Short period motion barely noticeable at beginning.

e Predicted steady state values from code:

0 m/s wu
0 rad «
0 rad/s ¢
0.0 rad @
0.05 rad v

— Predictions appear to agree well with the simulations.

— Primary result is that we are now climbing with a flight path
angle of 0.05 rad at the same speed we were going before.

e Predicted initial rates of the output values from code:

2.9430 m/s*
0 rad/s &
0 rad/s* ¢
0 rad/s 0
0 rad/s 7+

— Changes to « are very small, and ~y response initially flat.

— Increase power, and the aircraft initially speeds up

e Initial impact Change in u (accelerates aircraft)

e Long term impact Change in v (determines climb rate)
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Step response to 1 deg elevator perturbation
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Figure 1: Step Response to 1 deg elevator perturbation — B747 at M
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Figure 2: Step Response to 1/6 thrust perturbation — B747 at M=0.8
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Summary:

—To increase equilibrium climb rate,
add power.

— To increase equilibrium speed, increase
de (move elevator further down).

— Transient (initial) effects are the opposite
and tend to be more consistent with
what you would intuitively expect to
occur
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Modal Behavior

e Analyze the model of the vehicle dynamics to quantify the responses we saw.

— Homogeneous dynamics are of the form X = AX, so the response is
X(t) = e X(0) — a matrix exponential.
e To simplify the investigation of the system response, find the modes of the
system using the eigenvalues and eigenvectors
— )\ is an eigenvalue of A if
det(A\l — A) =0
which is true iff there exists a nonzero v (eigenvector) for which
M—-Av=0 = Av=)X

— If A (n xn), typically will get n eigenvalues and eigenvectors Av; = A\v;

— Assuming that the eigenvectors are linearly independent, can form
Al 0

A{Ul vn} — [vl Un
0 An
AT = TA

=T 'AT =A , A=TAT"
— Qiven that et = J + At + %(At)2 + ..., and that A = TAT~!, then it is
easy to show that
X(t) = eAtX(O) — TeAtT_lX(O) =3 e B,
i=1

— State solution is a linear combination of the system modes v;e!

et — determines the nature of the time response
v; — determines the extent to which each state contributes to that mode

(; — determines the extent to which the initial condition excites the mode
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e Thus the total behavior of the system can be found from the system modes

e Consider numerical example of B747

—0.0069 0.0139 0 —9.8100
—0.0905 —0.3149 235.8928 0
0.0004 —0.0034 —0.4282 0

0 0 1.0000 0

A=

which gives two sets of complex eigenvalues

A= —0.3717+0.8869i, w = 0.962, ¢ = 0.387, short period

A= —0.0033 £0.0672i, w = 0.067, ¢ =0.049, Phugoid - long period

— result is consistent with step response - heavily damped fast re-
sponse, and a lightly damped slow one.

e To understand the eigenvectors, we have to do some normalization (scales
each element appropriately so that we can compare relative sizes)

—a=u/Uy, w=w/U, q¢=q/(2U/c)
— Then divide through so that 6§ = 1

Short Period Phugoid
U 0.0156 + 0.02441i —0.0254 + 0.61651
w 1.0202 + 0.3553i 0.0045 + 0.03561i
q —0.0066 + 0.01561 —0.0001 + 0.00121
0 1.0000 1.0000

e Short Period — primarily § and o = w in the same phase. The u and ¢
response is very small.

e Phugoid — primarily 6 and @, and 6 lags by about 90°. The w and ¢
response is very small = consisitent with approximate solution on AC 2-17

e Dominant behavior agrees with time step responses — note how initial con-
ditions were formed.
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Perturbation States u,w,q
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Figure 3: Mode Response — B747 at M=0.8
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Summary

e Two primary longitudinal modes: phugoid and short-period

e Impact of the various actuators clarified:

— Short time-scale

— Long time-scale

MATLAB®is a trademark of The MathWorks, Inc.



