
Lecture AC 2

Aircraft Longitudinal Dynamics

• Typical aircraft open-loop motions

• Longitudinal modes

• Impact of actuators

• Linear Algebra in Action!
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Longitudinal Dynamics

• For notational simplicity, let X = Fx, Y = Fy, and Z = Fz

Xu ≡
(
∂Fx

∂u

)
, . . .

• Longitudinal equations (1–15) can be rewritten as:

mu̇ = Xuu + Xww − mg cos Θ0θ + ∆Xc

m(ẇ − qU0) = Zuu + Zww + Zẇẇ + Zqq − mg sin Θ0θ + ∆Zc

Iyyq̇ = Muu + Mww + Mẇẇ + Mqq + ∆Mc

– There is no roll/yaw motion, so q = θ̇.

– The control commands ∆Xc ≡ ∆F c
x, ∆Zc ≡ ∆F c

z , and ∆Mc ≡ ∆M c

have not yet been specified.

• Rewrite in state space form as




mu̇
(m − Zẇ)ẇ

−Mẇẇ + Iyyq̇

θ̇


 =




Xu Xw 0 −mg cosΘ0

Zu Zw Zq + mU0 −mg sin Θ0

Mu Mw Mq 0
0 0 1 0







u
w

q
θ


 +




∆Xc

∆Zc

∆Mc

0







m 0 0 0
0 m − Zẇ 0 0

0 −Mẇ Iyy 0
0 0 0 1







u̇
ẇ

q̇

θ̇


 =




Xu Xw 0 −mg cos Θ0

Zu Zw Zq + mU0 −mg sin Θ0

Mu Mw Mq 0
0 0 1 0







u
w

q
θ


+




∆Xc

∆Zc

∆Mc

0




EẊ = ÂX + ĉ descriptor state space form

Ẋ = E−1(ÂX + ĉ) = AX + c
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• Write out in state space form:

A =




Xu

m
Xw

m
0 −g cos Θ0

Zu

m−Zẇ

Zw

m−Zẇ

Zq+mU0

m−Zẇ

−mg sinΘ0

m−Zẇ

I−1
yy [Mu + ZuΓ] I−1

yy [Mw + ZwΓ] I−1
yy [Mq + (Zq + mU0)Γ] −I−1

yy mg sin ΘΓ

0 0 1 0




Γ =
Mẇ

m − Zẇ

• To figure out the c vector, we have to say a little more about how the control
inputs are applied to the system.
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Longitudinal Actuators

• Primary actuators in longitudinal direction are the elevators and the thrust.

– Clearly the thrusters/elevators play a key role in defining the steady-
state/equilibrium flight condition

– Now interested in determining how they also influence the aircraft mo-
tion about this equilibrium condition

deflect elevator → u(t), w(t), q(t), . . .

• Recall that we defined ∆Xc as the perturbation in the total force in the X

direction as a result of the actuator commands

– Force change due to an actuator deflection from trim

• Expand these aerodynamic terms using the same perturbation approach

∆Xc = Xδe
δe + Xδp

δp

– δe is the deflection of the elevator from trim (down positive)

– δp change in thrust

– Xδe and Xδp are the control stability derivatives
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• Now we have that

c = E−1




∆Xc

∆Zc

∆Mc

0


 = E−1




Xδe
Xδp

Zδe
Zδp

Mδe
Mδp

0 0




 δe

δp


 = Bu

• For the longitudinal case

B =




Xδe

m

Xδp

m

Zδe

m−Zẇ

Zδp

m−Zẇ

I−1
yy [Mδe

+ Zδe
Γ] I−1

yy

[
Mδp

+ Zδp
Γ
]

0 0




• Typical values for the B747

Xδe
= −16.54 Xδp

= 0.3mg = 849528

Zδe
= −1.58 · 106 Zδp

≈ 0
Mδe

= −5.2 · 107 Mδp
≈ 0

• Aircraft response y = G(s)u

Ẋ = AX + Bu → G(s) = C(sI − A)−1B

y = CX

• We now have the means to modify the dynamics of the system, but first
let’s figure out what δe and δp really do.
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Elevator (1◦ elevator down – stick forward)

• See very rapid response that decays quickly (mostly in the first 10 seconds

of the α response)

• Also see a very lightly damped long period response (mostly u, some γ, and

very little α). Settles in >600 secs

• Predicted steady state values from code:

14.1429 m/s u (speeds up)

-0.0185 rad α (slight reduction in AOA)
-0.0000 rad/s q

-0.0161 rad θ
0.0024 rad γ

– Predictions appear to agree well with the numerical results.

– Primary result is a slightly lower angle of attack and a higher
speed

• Predicted initial rates of the output values from code:

-0.0001 m/s2 u̇
-0.0233 rad/s α̇
-1.1569 rad/s2 q̇

0.0000 rad/s θ̇

0.0233 rad/s γ̇

– All outputs are at zero at t = 0+, but see rapid changes in α and q.

– Changes in u and γ (also a function of θ) are much more gradual – not

as easy to see this aspect of the prediction

• Initial impact Change in α and q (pitches aircraft)

• Long term impact Change in u (determines speed at new equilibrium
condition)
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Thrust (1/6 input)

• Motion now dominated by the lightly damped long period response

• Short period motion barely noticeable at beginning.

• Predicted steady state values from code:

0 m/s u

0 rad α
0 rad/s q

0.05 rad θ
0.05 rad γ

– Predictions appear to agree well with the simulations.

– Primary result is that we are now climbing with a flight path
angle of 0.05 rad at the same speed we were going before.

• Predicted initial rates of the output values from code:

2.9430 m/s2 u̇

0 rad/s α̇
0 rad/s2 q̇

0 rad/s θ̇
0 rad/s γ̇

– Changes to α are very small, and γ response initially flat.

– Increase power, and the aircraft initially speeds up

• Initial impact Change in u (accelerates aircraft)

• Long term impact Change in γ (determines climb rate)
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Figure 1: Step Response to 1 deg elevator perturbation – B747 at M=0.8
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Figure 2: Step Response to 1/6 thrust perturbation – B747 at M=0.8
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• Summary:

– To increase equilibrium climb rate,
add power.

– To increase equilibrium speed, increase
δe (move elevator further down).

– Transient (initial) effects are the opposite
and tend to be more consistent with
what you would intuitively expect to
occur
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Modal Behavior
• Analyze the model of the vehicle dynamics to quantify the responses we saw.

– Homogeneous dynamics are of the form Ẋ = AX, so the response is

X(t) = eAtX(0) – a matrix exponential.

• To simplify the investigation of the system response, find the modes of the

system using the eigenvalues and eigenvectors

– λ is an eigenvalue of A if

det(λI − A) = 0

which is true iff there exists a nonzero v (eigenvector) for which

(λI − A)v = 0 ⇒ Av = λv

– If A (n×n), typically will get n eigenvalues and eigenvectors Avi = λivi

– Assuming that the eigenvectors are linearly independent, can form

A
[

v1 · · · vn

]
=

[
v1 · · · vn

]



λ1 0
. . .

0 λn




A T = TΛ

⇒ T−1AT = Λ , A = TΛT−1

– Given that eAt = I + At + 1
2!(At)2 + . . ., and that A = TΛT−1, then it is

easy to show that

X(t) = eAtX(0) = TeΛtT−1X(0) =
n∑

i=1
vie

λitβi

– State solution is a linear combination of the system modes vie
λit

eλit – determines the nature of the time response

vi – determines the extent to which each state contributes to that mode

βi – determines the extent to which the initial condition excites the mode
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• Thus the total behavior of the system can be found from the system modes

• Consider numerical example of B747

A =




−0.0069 0.0139 0 −9.8100
−0.0905 −0.3149 235.8928 0

0.0004 −0.0034 −0.4282 0
0 0 1.0000 0




which gives two sets of complex eigenvalues

λ = −0.3717± 0.8869i, ω = 0.962, ζ = 0.387, short period

λ = −0.0033± 0.0672i, ω = 0.067, ζ = 0.049, Phugoid - long period

– result is consistent with step response - heavily damped fast re-

sponse, and a lightly damped slow one.

• To understand the eigenvectors, we have to do some normalization (scales
each element appropriately so that we can compare relative sizes)

– û = u/U0, ŵ = w/U0, q̂ = q/(2U0/c)

– Then divide through so that θ ≡ 1

Short Period Phugoid

û 0.0156 + 0.0244i −0.0254 + 0.6165i
ŵ 1.0202 + 0.3553i 0.0045 + 0.0356i
q̂ −0.0066 + 0.0156i −0.0001 + 0.0012i

θ 1.0000 1.0000

• Short Period – primarily θ and α = ŵ in the same phase. The û and q̂
response is very small.

• Phugoid – primarily θ and û, and θ lags by about 90◦. The ŵ and q̂

response is very small ⇒ consisitent with approximate solution on AC 2–1?

• Dominant behavior agrees with time step responses – note how initial con-

ditions were formed.



Spring 2003 16.61 AC 2–14

0.96166   0.54017

  1.0803

30

210

60

240

90

270

120

300

150

330

180
0

0.067282

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180
0

0
5

10
15

−
1

−
0.5 0

0.5

Perturbation States u,w,q

tim
e (sec)

S
hort P

eriod

0
100

200
300

400
500

600
−

1

−
0.5 0

0.5 1

Perturbation States u,w,q

tim
e (sec)

P
hugoid

uwq

uwq

Figure 3: Mode Response – B747 at M=0.8




