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Lecture 34: Performance to GEO 
 

 
∆V Calculations for Launch to Geostationary Orbit (GEO) 
 
Idealized Direct GTO Injection
(GTO = Geosynchronous Transfer Orbit) 
 
Assumptions: 
 

- Ignore drag and "gravity" losses 
- Assume impulsive burns (instantaneous impulse delivery) 
- Assume all elevations α>0 at launch are acceptable 

 
Launch is from a latitude L, directed due East for maximum use of Earth's 

rotation. The Eastward added velocity due to rotation is then 
 

R E Ev R cosL 463 co= Ω = sL  (m/s)     (1) 
 

If the launch elevation is α, and the desired velocity after the first burn is V1, 
the rocket must supply a velocity increment 
 

2 2
1 1 R 1 RV V v 2V v cos∆ = + − α       (2) 

 
 

 
 
 

The trajectory will then lie in a plane LOI through the Earth's center which 
contains the local E-W line. In order to be able to perform the plane change to the 
equatorial plane at GEO, we select the elevation α such as to place the apogee of the 

transfer orbit (GTO) at the GEO radius 
1/32

GEO 2

T
R  42,200 km

4

⎛ ⎞
= µ =⎜ ⎟π⎝ ⎠

(T = 24 hr,  = 3.986×10µ 14 m3/s2) 
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Since OL is perpendicular to OI, the view in the plane of the orbit is: 
 
 

 
 
 

The polar equation of the trajectory is p
r

1 e cos
=

+ θ
 , > 0 

 

In our case  (corresponding to 
Ep R=

2
π

θ = ). The elevation is given by 
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( )2/2
/2

dr e sin
tan e

r d 1 e cosθ=π
θ=π

⎛ ⎞⎛ ⎞ θ⎜ ⎟α = = =⎜ ⎟ ⎜ ⎟θ + θ⎝ ⎠ ⎝ ⎠
 

 
 
and, in turn, the eccentricity follows from (at θ π= ) 
 

E
GEO

R
R

1 e
=

−
   E

GEO

R
e 1

R
= −  

 

and so E

GEO

R
tan 1 0.849

R
α = − =     ;          (3) 

0

40.3α =

 
The angular momentum (per unit mass) is Eh p R= µ = µ  . 

 
Equating this to  ,  

E 1R V cosα

 

1
E

V cos
R
µ

α =         (4) 

 
(i.e., the horizontal projection of the launch velocity is the local orbital speed, for any 
apogee radius,  in this case) GEOR
 
 

Combining (3) and (4),  
2

E
1

E GE

R
V 1 1

R R O

⎡ ⎤⎛ ⎞µ ⎢ ⎥= + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

    (5) 

 
 
and this can now be substituted in (2): 
 
 

2

2E
1 R

E GEO

R
V 1 1 v 2v

R R

⎡ ⎤⎛ ⎞µ µ⎢ ⎥∆ = + − + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

R
ER

 

 
 

2 2

E
1 R

E E GE

R
V v 1

R R R

⎛ ⎞ ⎛ ⎞µ µ
∆ = − + −⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠ O

⎟      (6) 

 
 
Upon arrival at I, there will have to be a second burn that will simultaneous 

accelerate the rocket to GEO
GEO

v
R
µ

= , and rotate the plane to equatorial (Δ). i=L
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The apogee velocity is , given by a,GTOv

 

( )GEO a,GTO 1 E ER v = V cosα R = Rµ        (7) 

 
 

and so a GEO a,GTO GEO a,GTOV v v 2v v cos2 2∆ = + − ∆i  

 
 

E E
a

GEO GEO GEO

R R
V = 1+ - 2 cosL

R R R
µ

∆              (8)  

 
 
This second burn is probably provided by the spacecraft itself, or else by the 
launcher's upper stage. 
 
 
IDEALIZED TWO - BURN GTO INJECTION 
 

One difficulty with the direct injection scheme is the fact that GEO insertion at I 
must occur on the first pass, because the GTO perigee is actually below the Earth's 
surface (see Fig. 2). Most operators prefer a temporary parking of the spacecraft in a 
GTO orbit which has a perigee above the ground, so as to make functional tests and 
adjustments prior to the final apogee burn (over a period of 2-4 weeks). A 
modification of the launch sequence to accommodate this is: 
 
(1) Fire Eastwards with α selected for a low apogee ( 200 km above ground) at the 

equatorial crossing. 
∼

(2) Fire again at equatorial crossing to raise the apogee to RGEO (no plane change) 
(3) At one of the apogee passes, perform the final (circularization + plane change 

burn). 
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The formulation is very similar to the previous case. 
The elevation α is now given by  
 

E

p

R
tan 1

R
α = −         (9) 

( = perigee radius ). pR ER 200km+�
 
This gives a very shallow trajectory, which is unrealistic; but it is a fair 
approximation to a real high-elevation launch, followed by a rapid rotation during the 
rocket firing. For , . PR -R = 200km∈

01.74α =
 
 

 
 
 
Eqs. (5) and (6) still hold, with the quality  replaced by , and so GEOR pR

 
 

2 2

E
1 R

E E P

R
V = - v + 1-

R R R

⎛ ⎞ ⎛ ⎞µ µ
∆ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

     (10) 

 
 
which is now smaller, since we are going to a much lower apogee (at r ). p

 
At this apogee (at the equatorial crossing), we have, as in Eq. (7), 
 

E
a

p

R
v

R

µ
=         (11) 

 
and we next need to effect a second rocket firing that will increase velocity to that 
for the GTO perigee: 

GTO

GEO
P

p p GEO

2R
v

R R R
µ

=
+

       (12) 
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No plane change is involved yet, so 
 

GEO E
2

p p GEO P

2R R
V

R R R R

⎡ ⎤µ
∆ = −⎢

+⎢ ⎥⎣ ⎦
⎥      (13) 

 
 
This places the spacecraft on an elliptical GTO orbit, still in the original plane, with 
apogee at . The speed at this apogee is: GEOR
 

P
a,GTO

GEO P GEO

2R
v

R R R
µ

=
+

      (14) 

 
 
and so,  
 
 

2 2
a GEO a,GTO GEO a,GTOV v v 2v v cos∆ = + − L  

 
 

P P
a

GEO GEO P GEO GEO P GEO

2R 2R
V 2

R R R R R R R
µ µ µ

∆ = + −
+ +

cosL  

 
 

P P
a

GEO P GEO P GEO

2R 2R
V 1 2 cos

R R R R R
µ

∆ = + −
+ +

L     (15) 
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Some numerical comparisons 
 
We will illustrate these  by considering launches to GEO from two different 
locations:  

V 's∆

 
(1) Near the Equator, on at the French kouron complex, and  
(2) From mid-latitude, as from Café Canoveral ( ). 0L 28.5=

 
(1) Equatorial Launch 
 
Option (a): Ground to LEO (300 km), plus LEO-GEO Hohman transfer. No plane 
changes. Launch to the East. 
 

N N1 2 R 3 4

GEOcircularizationGTOinjectionToLEO, 0

V V V V V V
α=

∆ = ∆ + ∆ − + ∆ + ∆���	��
  

 
V∆  = (8084 – 463) + (10,151 – 7725) + (3071 – 1573)  

 
= 7,621 + 2,426 + 1,498 = 11,545 m/s
 

Notice this is more than to Escape from mean Earth ( V 11,200m / s∆ � ) 
Option (b): Direct injection into GTO from ground 
 

 

N N1 2

0launchtoR 42,200km GEOcircularization
( 463m / s for rotation)

V V V
α= =
−

∆ = ∆ + ∆  

 
= (10,420 – 463) + (3071 – 1573) = 9,957 + 1,498 = 11,455 m/s
 

(2) Launch from L = 28.5o. Launch to East, R 407m / sυ =  
 
Option (a): Direct injection to GTO, circularization + plane change at GEO. 2 firings, 
 

 

N N
0

1 2

GEOcircularizationLaunchwith 40.3
andplane change

V V V
α=

∆ = ∆ + ∆  

 
 = 10,070 + 2,102 = 12,172 m/s 
 
Note the two penalizations for latitude: the elevated launch increased , and the 
plane change at GEO increases 

1V∆

2V∆ . 
 
Option (b) Direct injection with 3 firings (LEO at 300km) 
 

 

N N N1 2

Launchtoa300kmapogee Firingtoraise apogee toGEO Circularization
Planechange

V V

+

∆ = ∆ + ∆ + ∆V 3V  

 
= 7,512 + 2,605 + 1,830 = 11,947 m/s 
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Is it true that plane change should be all done at end of GTO? 
 
Actually, a small turning combined with initial 1V∆  (say, from LEO) costs very little 

loss, even though V is then large. Try splitting into a V∆ 1i∆  and 2 1i i i∆ = ∆ − ∆  
 
 

1 GTO 1 GTO

2 2
1 c p c pV v v 2v v cos i∆ = + − ∆ 1  

 
        1 2V V V∆ = ∆ + ∆  

( )
2 GTO 2 GTO

2 2
2 c p c aV v v 2v v cos i i∆ = + − ∆ − ∆ 1  

 
 

( )
( )

1 2

1 1 2 2

c 1 c a 1

2 2 2 2
1 c c 1 c c 1

2v V sin i 2v V sin i id V
0

d i 2 v V 2v V cos i 2 v V 2v V cos i i

+ ∆ + ∆ − ∆∆
= −

∆ + − ∆ + − ∆ − ∆

P

P P a a

=  

 

1c
1

v
R
µ

= , 
2c

2

v
R
µ

= , 2
p

1 1 2

2R
v

R R R
µ

=
+

, 1
a

2 1 2

2R
v

R R R
µ

=
+

 

 
 

Call 2

1

R
R

ρ =  

 
 

( )

( )

11

1 1

1 1 2
sin i i2 sin i

11

2 2 1 1 2 2 1 2
1 2 cos i cos i i

1 1 1 1

ρ ∆ − ∆∆
ρ + ρ+ ρ ρ

=
ρ ρ

+ − ∆ + − ∆ − ∆
+ ρ + ρ ρ ρ + ρ ρ + ρρ

 

 
 
 
2 ρ

1 + ρ
2 1

sin i∆
ρ

( )1 2

2 2 1 2
1 2 cos i i

1 1

⎡ ⎤
+ − ∆ − ∆ =⎢ ⎥

+ ρ + ρ ρ⎢ ⎥⎣ ⎦ 1 + ρ
( )2

1

2 2
sin i i 1 2 cos i

1 1

⎡ ⎤ρ ρ
∆ − ∆ + − ∆⎢ ⎥

+ ρ + ρ⎢ ⎥⎣ ⎦
 
 

42200
6.14265

6370 500
ρ = =

+
  

2
1.31148

1
ρ

=
+ ρ

 

 
 

( )

( )

1
1

1
1

0.52916
Sin 28.5 i1.31148Sin i 6.14265

11 1.71999 2 1.31148Cos i 1 0.28001 2 0.52916Cos 28.5 i
6.14265

− ∆∆
=

+ − × ∆ + − × − ∆
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( )
( )

11

1 1

0.16280Sin 28.5 iSin i

2.71999 2.62296 i 1.28001 1.05832Cos 28.5Cos i

− ∆∆
=

− ∆ − − ∆
 

 
 

0
1i 2.26∆ =  optimum    0

2i 26.24∆ =

 
 

( )
1

1 2
c op

V 2 2 1 1 2 2 2
1 2 cos i cos

v 1 1 1 1

⎛ ⎞∆ ρ ρ
= + − ∆ + + − ∆⎜ ⎟⎜ ⎟ + ρ + ρ ρ ρ + ρ ρ + ρρ⎝ ⎠

i  

 
 

1

1 2
c op

V 1
2.71199 2.62296cos i 1.21001 1.05832cos i

v 6.14265

⎛ ⎞∆
= − ∆ + −⎜ ⎟⎜ ⎟

⎝ ⎠
∆

= +

 

 
0.30178 0.23227 0.53405=  -  small improvement 

 
Compare to same with  = 0 1i∆
 

1c ref

V
0.29838 0.23868

v

⎛ ⎞∆
= +⎜ ⎟⎜ ⎟

⎝ ⎠
0.53706=  -  small improvement 
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Example: Effects of doing a small plane change 2i∆  simultaneous with the second 
(apogee-raising) firing in a 3-impulse direct GTO injection. 
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1 2 3 4 5 6 7 8 9 10
1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

0.1

0.15

0.2

0.25

(R2-RE)/RE=0.05

Di2(deg)

(R2-RE)/RE=

d
V
To

t/
vc

E

Total dV for three-impulse launch from L=28.5 deg to GEO. Here vcE =sqrt(mu/RE)



 
 
 
 

16.512, Rocket Propulsion   Lecture 34 
Prof. Manuel Martinez-Sanchez              Page 11 of 13 

1 2 3 4 5 6 7 8 9 10
Di2(deg)

(R2-RE)/RE=

(R2-RE)/RE=

0.05

0.25

d
V
1
/v

cE

0.945

0.95

0.955

0.96

0.965

0.97

0.975

dV1 for three-impulse launch from L=28.5 deg to GEO. Here vcE=sqrt(mu/RE)
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1 2 3 4 5 6 7 8 9 10
0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Di2(deg)

(R2-RE)/RE=0.05

(R2-RE)/RE=0.25

dV
2/

vc
E

dV1 for three-impulse launch from L=28.5 deg to GEO. Here vcE=sqrt(mu/RE)
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Di2(deg)
1 2 3 4 5 6 7 8 9 10

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.25(R2-RE)/RE=

(R2-RE)/RE=0.05

d
V
3
/v

cE

dV3 for three-impulse launch from L=28.5 deg.to GEO. Here, vcE=sqrt(mu/RE)


