
16.512, Rocket Propulsion 
Prof. Manuel Martinez-Sanchez 

Lecture 32: Orbital Mechanics: Review, Staging 
 

 
Mission Planning, Staging 
 
The remaining lectures are devoted to Mission Planning and Vehicle Design, which in 
reality occurs even before the rocket engines are fully specified (although iterations 
continuously proceed throughout the process, and engine characteristics do affect 
the mission plan). 
 
Very roughly, the iteration steps in planning a launch mission are: 
 

(a) Estimate the required ∆ TOTALV  using impulsive thrusting formulae, plus add-
ons for gravity losses, drag losses, turning losses, etc. 
 

(b) Distribute this ∆  optimally among vehicle stages (since all orbit launches 
so far require multiple stages in order to avoid carrying empty tankage in the 
later stages). 
 

TOTV

(c) Using the mass fractions from (b), perform more detailed flight simulations 
and refine the partial and total ∆V  for the mission. 

 
 

During stage (b), the total ∆V  is assumed to be unchanged when the mass 
distribution for the stages is varied. This is not strictly true, because often the 
mission optimization leads to changes in the altitude and velocity at which the 
various firings are executed and, as we will see, this may alter the various ’s.  ∆V
This is the role of stage (c) above. 
 

Another point to be made is that “stages” and “firings” may not map one-to-
one. A given stage may be turned off, allowed to coast, and then re-ignited. Or the 
firing of two consecutive stages may occur with no interruption (or minimal 
interruption), so that both can be idealized as occurring in the same place. As long 
as the ’s are still regarded as insensitive to mission profile details (as per the 
comment above), these distinctions do not impact the stage mass calculations, but 
they can be of great practical importance nonetheless. 

∆V

 
Impulsive Thrusting-Gravity Losses. Because of the large accelerations imparted by 
rocket engines, their firings are usually short, from under one minute to about 10 
minutes. In fact, there is a performance incentive in minimizing the firing time, as 
long as the accelerations remain below structural or other limits. This can be most 
easily seen in the context of a vertical ascent against gravity. The vehicle’s equation 
of motion is then (ignoring drag) 
 

   = −
dv

m F mg
dt

      (1) 

 

and   
dm

F mc c
dt

•

= = −       (2) 
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dv d ln m

c g
dt dt

= − −       (3) 

 
and integrating, 
 

   0
0

m
V V V c ln gt

m
∆ = − = −      (4) 

 

The “ideal”, or gravity-free velocity increment is the familiar 0
ideal

m
V c ln

m
∆ =  (5) 

 
But the presence of gravity reduces the velocity increment by ∆ =GravityV gt  (6) 

 
which can be made insignificant if t is short, but can be very important otherwise. In 
the limit when the thrust is barely enough to cancel weight, the vehicle just hovers 
indefinitely with no velocity gain. 
 

In practice, the significant item is the fuel used in the firing, which is 
contained in the mass ratio m0/m.  

 
The common procedure is then to first ignore gravity, as if the firing was 

impulsive (t=0), and calculate the ∆V  required for the mission under this 
assumption. In our simple ascent example, the “mission” is to reach a velocity V, 
starting at V0, and so the impulsive ∆V  is simply V-V0. From (4) then 
 

o
imp.

m
c ln V gt

m
= ∆ +       (6) 

 
and so the extra  is added on as a correction, with the implication of 
additional fuel being used for a given V-V0. 

∆ =Grav.V gt

 
In a more general ascent trajectory (but still over a “flat Earth”, since gravity 

losses occur only near the beginning of flight, before the path becomes nearly 
horizontal) we would have 
 

       = − γ
dv F

      (7) gsin
dt m

 
  

 
γ
= −

d
V γgcos

dt
   (8) 
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Here we assumed thrust to be aligned with velocity. This is called a gravity 
turn, and is not the most general maneuver. It is, however, the most economical 
strategy for turning, since any lateral component of thrust uses propellant without 
adding flight energy. 
 

Formal integration of (7) now gives 
 

t
0

0

m
V c ln g sin dt

m
∆ = − γ∫      (9) 

 
and so the gravity loss is 
 

   ∆ = γ∫
y

Grav.
0

V gsin dt       (10) 

 
 

Of course, the particular ( )tγ  to be used here must come from simultaneously 

solving (8) with (7). This solution cannot be done in simple analytical terms when 
thrust is constant, since a nonlinear 2nd order differential equation is involved. But, 

interestingly, there is a relatively simple solution when he thrust acceleration =
F

a
m

 

is assumed constant (i.e., throttling down as mass is consumed). Although this is not 
a very realistic option, it still is useful in giving information about the initial rotation 
of the trajectory near the ground, which happens before the mass has time to 
change much. 
 
Eliminate time by dividing Eqs. (8) and (7) by each other, which separates the 
variables V and : γ
 

   
dV a gsin

d
V gcos

− γ
= − γ

γ
      (11) 

 
 

We introduce =
a

n
g

 and also change angle variable to 

 

 
π γ⎛ ⎞Γ = −⎜ ⎟

⎝ ⎠
tan

4 2
; 

− Γ
γ =

+ Γ

2

2

1
sin

1
;  

Γ
γ =

+ Γ2

2
cos

1
 

 

 
Γ

γ = −
+ Γ2

2d
d

1
         (12) 

 
The variable  varies between 0 when  (initial configuration) to 1 when 

 (orbit insertion). Substituting in (11) and simplifying, 

Γ γ = 090

γ = 00
 
 

   ( ) 2

dV d 2 d
n 1

V 1
Γ Γ Γ

= − +
Γ + Γ
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which can be integrated to 
 
  
        (13) ( )−= Γ + Γn 1 2V C 1  
 
 Here C is a constant of integration. The solution (13) satisfies V = 0 when Γ  
= 0 (vertical start) for all C (n>1), so C must be calculated by imposing a particular 
trajectory angle  (or ) at some specified velocity V (or, from later results, at 
some time or altitude). 

γ Γ

 
The time t is calculated from Eq. (8): 
 

   ( )n 2 2V d C
dt 1 d

gcos g
−γ

= − = Γ + Γ Γ
γ

 

 
or, imposing t = 0 at  = 0. Γ
 
 
    

− +⎛ ⎞Γ Γn 1 n 1C

 
 
 

Similarly, the altitude 

 

   d

 
 

or, with z = 0 at Γ  = 

 
 
We can use this mode
relationships (12), 
 

   ∆

 
 

or   ∆

 
 
We could now use (14
given angle (Γ ). Alter
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       (14) = +⎜ ⎟− +⎝ ⎠
t

g n 1 n 1
 

z follows from = γ
dz

V sin
dt

: 

( )
2

2n 3 2n 1C
z V sin dt d

g
− += γ = Γ Γ Γ  

0 
− +⎛ ⎞Γ Γ

= −⎜ − +⎝ ⎠

2 2n 2 2n 2C
z

g 2n 2 2n 2 ⎟       (15) 

l to calculate gravity losses. Starting from (10), and using the 

GV g=
2

2

1

1

− Γ

+ Γ0

C
g

Γ

∫ n 2 21−Γ + Γ( )dΓ  

− +⎛ ⎞Γ Γ
= −⎜ − +⎝ ⎠

n 1 n 1

G

C
V

g n 1 n 1 ⎟
      (16) 

) to calculate the constant C by specifying the time to turn to a 
natively, we can eliminate C by division of (16) and (14): 
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2
F

G
2
F

n 1
1

n 1V gt
n 1

1
n 1

−
− Γ

+∆ =
−

+ Γ
+

      (17) 

 

where ( )Γ = Γ γF F , and  is the angle reached at t, starting from γF

π
γ =

2
 at t = 0. 

 
 As an example, say n = 3, γ =  (0

F 20 ΓF = 0.7002). We find from (17) 
 

   2GV
5.94 m/s

t
∆

=  

 
and if t = 60 sec., , which is a substantial loss. GV 357 m /∆ = s
 
 
 An alternative procedure would be to set the velocity VF reached when . 
Eliminating C now between (13) and (16) gives 

γ = γF

 
 

   

Γ
−

− +∆ =       (18) 
+ Γ

2

G F 2

1
n 1 n 1V V

1
 
 
Say n = 3, VF = 1,500 m/s, . We calculate γ = 0

F 20 ∆ =GV 380m / s  in this case. 
 
 
Maximum Dynamic Head (“Max-q”) During Ascent 
 

Aerodynamic forces are proportional to 21
q . Initially,  and ρ  is high. 

Later, V increases, but ρ  decrease. There is a point of “max-q” in between, which is 
important for design. 

V
2

= ρ V 0�

 
 
Assume Vertical flight . Neglect drag: 
 

dv
m F mg

dt
= −   ( )dv F

g n 1 g
dt m

= − = −   
⎛ ⎞

≡⎜ ⎟
⎝ ⎠

F
n

mg
 

dz
v

dt
=    or ( )dv

v n 1 g
dz

= −  

 
   
   Assume n = const.  (F ∼m) 
 

    ( )
2v

n 1 gz
2

= −   
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Atmospheric “Lapse Rate”  “Adiabatic Lapse Rate” 
 

Also,      = − Γ0T T z a
p g

g 1 g
10K /km

c R
γ −

Γ < Γ ≡ =
γ

∼  

 

and   
g

p
dp gdz gdz

R T
= −ρ = −  

( )
= −

− Γg 0

dp gdz
p R T z

 

 

 
( )0

g 0

d T zdp g
p R T

− Γ
= +

Γ − Γ z
  

g

g
R

0 0

p z
1

p T

Γ⎛ ⎞Γ
= −⎜ ⎟
⎝ ⎠

 

 

      
g

g
1

R

0 0

z
1

T

−
Γ⎛ ⎞ρ Γ

= −⎜ ⎟
ρ ⎝ ⎠

 

 
 
 
           (19) ( )

g

g
12 R

0
0

v z
q 1 n 1 gz

2 T

−
Γ⎛ ⎞ρ Γ

= = ρ − −⎜ ⎟
⎝ ⎠

 
 
 
 
 

For qMAX 
dlnq

0
dz

=    0

g

0

Tg 1
1 0

zR z1
T

⎛ ⎞Γ
−⎜ ⎟⎛ ⎞ ⎝ ⎠− + =⎜ ⎟⎜ ⎟ ΓΓ⎝ ⎠ −

 

 
 
 

 
g 0 0

g
R T T

Γ
− +

0

1
z T

Γ
+ − 0=    =

MAX

g 0
q

R T
z

g
   (20) 

 
 

, ,  g = 9.8 m/s2 
0T 290K�Air: Rg 287 J /Kg /K=

 
  z   8,490m=

MAXq

 

Then MAX 0
0

q 1
T
Γ

= ρ − g 0R T
( )

g

g
1

R

n 1 g
g

−
Γ⎛ ⎞

⎜ ⎟ −
⎜ ⎟
⎝ ⎠

g 0R T

g
 

 
 

( )
−

ΓΓ⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

g

g
1

R
g

MAX 0

R
  q 1       (21) n 1

g
P

Some altitude, regardless of 
acceleration or lapse rate. 

 
           (proportional to acceleration) 
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Say Γ =  6K /km gR 0.006 x287
0.176

g 9.8

Γ
= =  

 
and n = 3 

( ) ( )
1

1
0.176

MAX 0q 1 0.176 3 1 P 0.808 atm
−

= − − =  

 
 

1 atm     ( )20.808x 14.7x12 1710psf= =  

 
 

 

Also, then ( )Max q
2v 2 n 1 g= − g 0R T

g
  ( )= −

γq

' 2
Max

2
M n 1  (based on C0, at ground) 

 
 

Based on local T, ( ) ( )2 0
Max q

0

2 n 1T2 1
M n 1

T
1

T

−
= − =
γ γ Γ

− g 0R T

g

 

 
 

( )
q

' 2
Max

g

2 n 1
M

R
1

g

−
=

Γ⎛ ⎞
γ −⎜ ⎟
⎝ ⎠

  
( )

=
−

2 2 x2
M

1.4 1 0.176
   Max qM 1.862=

 
 
 
Drag Losses: Like gravity losses, drag losses are important only near the ground, 
peaking somewhat above . Therefore, they should be estimated and added 

to the 1st stage ∆  budget alone. The “drag loss” is defined by analogy to  as the 
decrease in velocity due to the accumulated drag deceleration: 

( MAXz q )
V ∆ GV

 

    
∞

∆ =       (22) ∫
" "

D
0

D
V dt

m

 
Drag is D = q CD A, where A is the frontal area, and CD varies with vehicle 

shape and Mach number (from about 0.02 at low M to a peak of perhaps 0.15 in 
transonic flow, then decreasing again). For estimation purposes only, we will use a 
mean =D DCC  and write (22) as 
 

    D 0
D

0

mA C dz
V q

M m v∫∆ =      (23) 
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Our estimate will be based on quantities evaluated at , and an effective MAXq

( )MAXz 3z q∆ ∼ : 

 

    
( )
( )

MAX

D MAX0
D MAX

0 Mq

3z qmA C
V q

m m v q
⎛ ⎞

∆ ⎜ ⎟
⎝ ⎠

�
AX

   (24) 

 

The “ballistic coefficient” D

0

A C
M

 can be related to the vehicle length L and its mean 

density ρ . Assuming an given shape with (Volume) = 
2
3

 AL, we find 

 

    D

0

A C 3 C
M 2 L

= D

ρ
      (25) 

 

The mass ratio 
v

0 c
m

e
m

−
=  can be estimated using ( )v 2 n 1= − g  and so  

 
( )−

−⎛ ⎞
=⎜ ⎟

⎝ ⎠

g 0

MAX

2 n 1 R T

0 c

q

m
e

m
     (26) 

 
Using as well the values found previously for  and MAXq ( )MAXz q , and 

simplifying, our approximate expression is 
 

 
( ) g 0

g

g
1 2 n 1 R TR

g0 c
DD g 0

RPn 1
V 4.5 C R T 1 e

2 ggL

− −Γ −Γ⎛ ⎞−
∆ −⎜ ⎟

ρ ⎝ ⎠
�    (27) 

 
For an example, take =DC 0.1 , n = 3, T0 = 290 K, ρ  = 500 Kg/m3 (half the 

water density),  = 6 K/km = 0.006 K/m, and c = 3,000 m/s. We calculate Γ
 

    
( ) (D

1060
V m

L m
∆ � )/ s

s

     (28) 

 
For a large vehicle (say, L = 30 m) this is small ( DV 35 m /∆ = ). But for a 3 

m. vehicle this amounts to , a substantial loss. The difference can be 
traced to the larger Area/Volume of the smaller vehicle. 

DV 353 m / s∆ =

 
To conclude, note the dependence ∆ −DV n∼ 1 , which shows that fast-

accelerating vehicles, like interception missiles, suffer more drag losses than slowly 
accelerating ones. There is here a tradeoff with gravity losses, which vary in the 
opposite manner. 
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Optimum Staging 
 
 
 
 
 
 

si i iM M= ε  
ii 1 L i iM M M+ = = λ  

 

  
i

i

i i i

V
L

L S f iM M  M e M
∆

−

+ = =

 
+i 1M

 
 

∆−+ = −
Vi

Cii 1
i

i

M
e

M
ε    −

− −

=L n 1 2 L

n 1 n 2 1 1

M M M M
....

M M
 

M M

 

 
∆

−

=

⎛ ⎞
⎜ ⎟= π − ε
⎜ ⎟
⎝ ⎠

i

i

V
n

CL
ii 1

1

M
e

M
 

 
 
Maximize subject to  (assume ∑ ∆ = ∆i

i
V V εi  is independent of M . In reality it may  i

           depend on absolute mass.) 
 
 

 
i

i

V
CL

i i
i i0

M
ln V ln e V

M

∆
−

i

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟φ = − α ∑ = − ε − α ∆⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
∑  

 

For each i, 

∆
−

∆
−

−
∂φ

=
∂∆

− ε

i

i

i

i

V
c

i
V

i c
i

1
e

c
V

e

− α   
∆⎛ ⎞

⎜ ⎟= − − ε
⎜ ⎟α ⎝ ⎠

i

i

V
c

i i

1
c 1 e  

 
 

i
i i

i

1
1

c
V C ln

⎛ ⎞+⎜ ⎟α⎜ ⎟ 
∆

+ = ε
α

i

i

V
c

i
i

1
1 e

c
     ∆ =  

⎜ ⎟ε
⎜ ⎟
⎝ ⎠

 
 

Then, find α  from 
n

i
i

i 1 i

1
1

c
c ln V

=

⎛ ⎞+⎜ ⎟α⎜ ⎟ = ∆
⎜ ⎟ε
⎜ ⎟
⎝ ⎠

∑   , then find ∆ iV  from 

 
 

16.512, Rocket Propulsion   Lecture 32 
Prof. Manuel Martinez-Sanchez              Page 9 of 16 



Assuming ci = c (same all stages), then 

     

n

n

i 1 i i

11 11
cV cln ln

c =

⎡ ⎤⎛ ⎞⎛ ⎞ +⎢ ⎥+ ⎜ ⎟⎜ ⎟ α∆ α ⎝ ⎠⎢ ⎥⎜ ⎟= = ⎢ ⎥ε π⎜ ⎟ ε
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥⎣ ⎦

∑  

( )
∆⎛ ⎞+ = π ε⎜ ⎟α⎝ ⎠

1n V
n nc

ii

1
1 e

c
  

V
nc

i G

1
c e

1

∆
+

−
α =

− < ε >
  ( )< ε > = π ε

1
n

G ii
 

 
 

⎡ ⎤ ∆⎛ ⎞ ⎡∆ = + − ε = < ε > + − ε⎢ ⎥⎜ ⎟ ⎢ ⎥α⎝ ⎠ ⎣⎣ ⎦
i i

1 V
V c ln 1 ln c ln ln

c n
⎤
⎦

ic
  i iV V

ln
c nc
∆ ε∆

= −
< ε >

 

 
 

So, 
i

nV
V V ncn n nln

ncL i nc
i i ii 1 i 1 i 1

I OPT

M e
e e

M

∆
−ε⎛ ⎞∆ ∆− −⎜ ⎟ −<ε>⎝ ⎠

= = =

⎛ ⎞⎡ ⎤ ⎛ ⎞⎛ ⎞ ε ⎛ ⎞ ⎜ ⎟⎢ ⎥= π − ε = π − ε = π ε −⎜ ⎟ 1⎜ ⎟ ⎜ ⎟< ε > < ε >⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎣ ⎦ ⎝ ⎠

⎜ ⎟  

So, less  when stage is less structurally efficient. ∆ iV
 
 

∆
−⎛ ⎞⎛ ⎞

= − < ε >⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

nV
L nc

I OPT

M
e

M
 

 
 
Note:  
 
 

L

0

M
ln

M
0

V

⎛ ⎞
∂ ⎜ ⎟
⎝ ⎠α = <
∂∆

Meaning of  

 
 
Generally: Max   given  

=
i

i 1 to n
f(x )

= <

=j i j
j 1 to m n

g (x ) G  j j
j

f gφ = − λ∑  

 
 

j i
j i i          and 

i ii i

G g
dG dx dx

x x

∂ ∂
= =

∂ ∂∑ ∑
∂∂

= ∑ λ
∂ ∂

j
j

j
i i

gf
x x

 

 
 

⎛ ⎞∂ ∂∂
∂ = = ∑ λ = λ = λ⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑ ∑ ∑ ∑i i
i j i j i j j  

ji i j i ji i i

g gf
f dx dx dx dG

x x x

 

j
j at optimum

f
G

⎛ ⎞∂
λ =  ⎜ ⎟⎜ ⎟∂⎝ ⎠

So, 

Sensitivity of payload ratio to overall 
∆V  changes (after re-optimizing) 
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Review of Orbital Dynamics  (Single center) 
 

 
 
 

p
r

1 ecos
=

+ θ
  (  from perigee) θ

 
 
 
 

⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

2
c

e 1
a a

b
 ; 

 

Apoapse (apogee, aphelion): a

p
r

1 e
θ = π → =

−
 a p

1 1
r r p 2a

1 e 1 e
⎛ ⎞+ = + =⎜ ⎟− +⎝ ⎠

 

Periapse (perigee, perihelion): p

p
0 r

1 e
θ = → =

+
 

2

2
p 2

1 e
=

−
a 

  
 → ( )= − 2p a 1 e  

 
( ) (p ar a 1 e ,r a 1 e= − = + ) →  

“true anomaly”
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Energy Conservation:  21
v E

2 r
µ

− =  ( )µ = GM  

 

At perigee 
( )

2
p

1
v E

2 a 1 e
µ

− =
−

 

At apogee 
( )

2
a

1
v E

2 a 1 e
µ

− =
+

  
( )

( )

2

p

a

E
v a 1 e

v E
a 1 e

µ
+

−⎛ ⎞
=⎜ ⎟ µ⎝ ⎠ +

+

  * 

 
 
 
Angular momentum conservation:  θ =r v h  (or 2r hθ = ) 
 
 at perigee: ( ) ph a 1 e v= −  

 at apogee: ( ) ah a 1 e v= +   ** 
p

a

v 1 e
v 1 e

+
=

−
 

 

equate (*) = (**) ( )

( )

2 E
a 1 e1 e

1 e E
a 1 e

µ
+

−+⎛ ⎞ =⎜ ⎟ µ−⎝ ⎠ +
+

 
( ) ( )

+ µ + µ⎛ ⎞ + = +⎜ ⎟− −⎝ ⎠ −

2

2

1 e 1 e
E E

1 e a a 1 e1 e
 

 

   ( )
( ) ( )
⎡ ⎤+ µ +⎛ ⎞⎢ ⎥− = −⎜ ⎟− −⎢ ⎥ ⎝ ⎠−⎣ ⎦

2

2

1 e 1 e
E 1 1

a 1 e 1 e1 e
 

 
 

 4e
E

( )21 e− ( )a 1 e

µ
=

−

2e−

( )1 e−
  µ

= −E
2a

  indep. of e (given a) 

 
 

and then 
( )

2
p

2 1
a 1 e a a 1 e

µ µ µ +
υ = − =

− −
e   a

p
p a p

2r1 e
v

a 1 e r r r
µ + µ

= =
− +

 

      and  p
a

p a p

2r1 e
v = =

a 1 e r r r
µ − µ

+ +
 

 
 

and  ( ) ( )21 e
h a 1 e a 1 e

a 1 e

⎡ ⎤µ +
= − = µ −⎢ ⎥

−⎢ ⎥⎣ ⎦
 or = µh p  
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Period   θ =�2r h
 

( )r r d= θ
1

dA
2

  =
dA h
dt 2

  =
h

A T
2

 =
2A

T
h

 

 
 

= π = π −2 2A ab a 1 e    
3/2a

     ( )= µ − 2h a 1 e  

 
 
 
 
 
 
 
 
 
 
 
 

Velocity: From energy conservation 21
v

2 r 2a
µ µ

− = −  

 

   2
v  

r a
µ µ

= −

 
 

h
v

rθ =   
( ) ( )

θ

µ − µ +
= =

= θ�

2
a p a pa 1 e r r / r r

v
r r

r

 ( )µ −µ µ
= − − = �

2

r 2

a 1 e2
v r

r a r
 

 
 
 

Time in orbit:  ( )
( ) ( )

2
2

2 2 2

a 1 ed h
1 e cos

dt r a 1 e

µ −θ
= = + θ

−
  → ( )t t= θ  

         
 
 

T 2= π
µ

 indep. of e

not easy – Lambert’s prob. 
(except for full orbit) 
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Path angle: 
 

 
 
 
 
 
 

 ( )r
e sinv dr

tan
v r d 1 e cosθ

+ θ
γ = = = +

θ + θ
 

 
 
 
 
 
 
 
 

 
 

Circular orbits      r a= → v
r
µ

=   
32 v r

T 2
v

⎡ ⎤π
= = π⎢ ⎥

µ⎢ ⎥⎣ ⎦
 check, 

 
 
 
Time in orbit (elliptic case) 
 
 

( )
( )θ µ

= +
−

2

33 2

d
1 e cos

dt a 1 e
θ  

      2
2

1 c  os 1
cos

2 2 1 t
+ θ θ

= =
+

 
 

( ) ( )3 23 2

d
dt

1 e cosa 1 e

µ θ
=

+ θ−
    θ

=tan t
2

 −
θ = − =

+ +

2

2 2

2 1
cos 1

1 t 1 t
t  θ =

+ 2

2dt
d

1 t
 

 
 

  ( )
( ) ( )

2 2

2 22 2
2

2 1 t dt 2 1 t
dt

1 e 1 e1 t e et 1 t
1 e

+ +
2

+ −⎛ ⎞+ + − +⎜ ⎟+⎝ ⎠

= =  

16.512, Rocket Propulsion   Lecture 32 
Prof. Manuel Martinez-Sanchez              Page 14 of 16 



 

Define E by −
=

+
2 21 e E

t tan
1 e 2

 +
=

−
1 e E

t ta
1 e 2

n   
2

1
dE1 e 2dt

E1 e cos
2

+
=

−
 

 

( )33 2

2
dt

a 1 e

µ
=

− ( )

2

2 2
2

1 e E
1 tan

1 e 2
1 e E

1 tan
2

+
+

−
+ ⎛ ⎞+⎜ ⎟

⎝ ⎠

1 e dE / 2
1 e
+
− 2 E

cos
2

 

 
+

+µ − − + − + + −⎛ ⎞ ⎛−= = + = +⎜ ⎟ ⎜− + −+ + ⎝ ⎠ ⎝⎛ ⎞+⎜ ⎟
⎝ ⎠

2
2 2 2

2 2
3

2

1 e E
1 tan1 e 1 e E 1 e E 1 e 1 cosE 1 e 1 cosE1 e 2dt dE cos sin dE dE

2 1 e 2 1 e 2 1 e 2a 1 e 1 eE
1 tan

2

⎞
⎟
⎠

 
( )−µ − ⎛ ⎞= − =⎜ ⎟− −+ ⎝ ⎠ −

2

3 2

1 e cosE1 e 1 e
dt cosE dE

1 e 1 ea 1 e 1 e
dE  

 
 

µ
= −

3
dt E e sinE

a
    (t from perigee passage) 

 
 

−
⎛ ⎞− θ

= ⎜ ⎟⎜ ⎟+⎝ ⎠

1 1 e
E 2  tan tan

1 e 2
with               

 

                     from which    
− θ θ−− + −
+= = =

−

− θ θ
+ + + + −

+

22 2

2 2

1 eE 1 tan1 tan 1 e (1 e) tan
1 e 22 2

2
sE

E 1 e
1 tan 1 tan 1 e (1 e) tan

2 1 e 2 2

co  

 
 

2 2 2

1 e
1 cos (1 cos )1 cos 1 et cos cos 1 t t cosE

1 e1 cos 1 cos (1 cos )
1 e

−
+ θ − − θ− θ +θ + θ = − = =

−+ θ + θ + − θ
+

 

 
 

+
=

+ θ
2e 2cos

cosE
2 2e cos

θ         + θ
=

+ θ
e cos

co       sE
1 e cos

cosE e
cos

1 e cosE
−

⇒ θ     =
−

−
+ θ =

−

21 e
1 e * cos

1 ecosE

 
 

So, directly 
 
 

µ −
= θ −

−

2 3 2
2

3 2 2

(1 e )
dt d (1 e cosE)

a (1 e )
         − − − −

θ = =
− −

2 2 2(1 e cosE) (cosE e) 1 e sinE
sin

1 e cosE 1 ecosE
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2

3 2 2

1 1 e
dt (1 e cosE) dE (1 ecosE)dE

a 1 e 1 e

µ −
= − = −

− −
           − 21 e sinE

−1 e cosE
θ =

sinE
d

−(1 e cosE +) ( cosE −

− 2

e sinE)

(1 e cosE)
 

 
µ

= −
3

t E e sinE
a

      −
− θ =

−

2
2 1 e dE

1 e d
1 e cosE

 

 

From (**)   
2a(1 e )P

r
1 e cos

−
= =

+ θ 2(1 e )−
(1 e cos ) r a(1 e cosE)− θ = −  

 

 
 
 

− = −ae acosE r( cos )θ  
 
a − =(cosE e) a − θ(1 e cosE)cos  
 

−
θ =

−
cosE e

cos
1 e cosE
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