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Lecture 29: Rotordynamics Problems 
 

 
1. Turbopump Rotor Dynamics  

 
Because of high power density and low damping in rocket turbopumps, these 

machines exhibit in their most extreme form a variety of vibration effects, which are 
either absent or masked by normal damping mechanisms in other turbo machines. 
The low damping is especially prominent in liquid hydrogen pumps, because of the 
very low viscosity and density of this medium. Oil squeeze film dampers are 
precluded in any cryogenic medium. 
 

The general frame work of Rotor Dynamics is now well established, through a 
combination of classical analysis and detailed numerical simulation [49, 50, 51]. 
Intensive efforts on the application of these theoretical methods to a specific rocket 
turbopump are described by Ek[52], and were instrumental in pointing the way to a 
series of improvements that resolved a serious development problem in the SSME. 
The greatest difficulty in this field remains the precise characterization of the fluid 
forces acting on the rotor at components such as seals, turbines, or impellers. Once 
these are specified, numerical models of great power and versatility can be brought 
to bear for analyzing the dynamics of a given configuration. Because of the 
remaining uncertainties in the basic forces. Ek’s 1978 recommendation [52] remains 
valid today: “Prediction of stability in a new design must be viewed with skepticism. 
A prediction of instability should, however, be taken very seriously”. 
 
 
2. Forced and Self- Excited Vibrations 
 

Three are two types of rotor dynamics problems: 
 

(a) Resonances which usually occur when the rotating speed coincides with one of 
the natural (“critical”) frequencies of the rotor (including its supporting 
structure). These fall in the category of Forced Vibrations, in which an excitation 
force produces deflection responses of an amplitude which increases as the 
excitation frequency approaches a critical frequency. If the excitation is at exact 
resonance, the amplitude grows linearly in time at first, and then, if viscous 
damping exists, it approaches a limit which is inversely proportional to the 
damping factor. Removal of the excitation removes the response. The exciting 
forces are typically related to rotor mass imbalance or geometrical imperfections. 
Resonances rarely pose serious problems, unless the steady operating point lies 
very close to one critical. On the other hand, since the structure is made as light 
as practical, many natural modes usually exist, several of them either below or 
not far above the operating range. Efforts are made in the design phase to create 
a relatively wide range of resonance- free speeds around the normal operating 
point. Passage through criticals, if made rapidly enough, is not a severe 
condition. 
 

Table 3 (Ref [53]) shows the critical frequencies of the SSME fuel turbopump. 
Notice that several of the shaft modes are split into adjacent pairs of critical 
frequencies because of the lack of symmetry of the casing structural supports, 
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even though the bearing structure itself is symmetric. This asymmetry is in 
general a beneficial effect, and provides a sort of effective damping [54]. 

 
 

(b) Self- Excited Vibrations These are autonomous oscillations, in which the shaft 
vibrates at one of its natural frequencies (not equal to the shaft speed), and due 
to some positive feedback mechanism, absorbs energy from an external source 
(usually the fluid) into the vibrational mode. Exact balancing does not remove 
this type of vibration. Once initiated, if damping is insufficient, the vibration will 
increase exponentially in amplitude until some nonlinear mechanism intervenes, 
or until rubbing occurs. Self-excited vibrations are also called “rotor-dynamic 
instabilities” or “sub- synchronous vibrations”. The latter designation is due to the 
fact that they are most often observed in the lowest shaft mode when the 
rotating speed is well above the frequency of this mode. For some mechanisms of 
excitation, the ratio of the rotation speed at onset of instability to the frequency 
of the vibration excited is a simple integer, 

 
COUPLED HPFTP ROTOR AND CASE MODES 

 
Mode Frequency(Hz) Description 

1          - Rotor free spin, X 

2 47.0 Case rocking, Y 

3 100.8 Case rocking, Z 

4 196.4 Case rocking + bending, Y 

5 197.5 Diffuser torsion 

6 249.8 Case rocking + bending, Z 

7 287.6 Rotor translation, Y 

8 321.0a Rotor translation, Z 

9 375.1 Rotor rocking, Z 

10 424.0a Rotor rocking, Y 

11 463.7 Rotor axial, X 

12 488.7 Case + rotor rocking, Z 

13 513.6 Rotor bending, Y 

14 515.0a Rotor bending, Z 

15 554.8 Turbine case torsion, X 

16 574.7 Diffuser bending, Y 

17 577.4 Diffuser bending, Z 

18 599.4 Case + rotor rocking, Y 

19 650.4 Case torsion, X 

20 657.3 Case axial, X 

21 694.9 Turbine case bending, Z 
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or an excitation threshold exists at an integer multiple of the 
excited frequency [55]. However, thus is not universally the case, and, in fact, no 
such simple ratio or threshold seems to exist for the most important mechanisms 
(seal or turbine blade-tip effects). It is true, however, that the rate of energy 
input into the vibration increases with power level of the turbopump, and hence 
with its speed; thus, the machine damping may be sufficient to compensate for 
this effect at low rotation speeds, but, as speed increases, a threshold will 
appear, beyond which the operation is unstable. 

Table 3

 
The two types of vibration described can be easily distinguished in tests by 

plotting a series of vibration spectra at increasing rotational speed (a cascade 
diagram, Fig. 1). Here 

 

        
Fig. 1. A cascade diagram showing one mode only. Forced vibrations related 
to imbalance are seen at Ω = ω , with a resonance when crω = Ω . Also shown 

is a sub-synchronous, self-excited vibration at crΩ = Ω . 
 

 
ω  is the shaft speed,  is the angular frequency of the vibration, and  is the 
critical or natural frequency (only one shown). As indicated, no self-excited 
vibration is visible until  reaches some threshold, and then the instability 
becomes more and more prominent. The amplitude itself depends on conditions 
when the spectrum is taken (variation rate of 

Ω crΩ

ω

ω  dwell time at the given condition, 
etc.), but the frequency information is still quite useful. 
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3. Sources of Rotor-Dynamic Excitation: Cross-Coupled Forces 

                      
The most important excitation mechanisms are related to the production of 

cross-forces when the shaft is offset from its central location. Before describing some 
specific examples, the generic dynamic effects of these cross-forces will be 
discussed. 

 
Qualitatively, if a cross-force Fy results from a shaft offset ex, this force exerts a 
torque Fyex with respect to the nominal shaft center. It is well known that any linear 
vibration in the x-y plane can be resolved into a forward and a backward circular 
oscillations. Of these two, one (the forward component in Fig 2. is reinforced by the 
resulting torque Fyex, which, being produced by the displacement itself, will remain 
synchronized to it. This is the basic instability mechanism.  

 
 

 
 
 

For a simple linearized analysis, suppose the fluid effects are such that a 

general transverse displacement (ex,ey) and displacement rate  of the shaft 

produces forces (F

,
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The coefficients x xK and x yK  are the direct and cross-coupled stiffness, 

respectively. Notice that the cylindrical symmetry has been exploited to reduce to 
two the number of stiffness factors, and that a positive x xK  is restoring, and will 

augment the structural stiffness K0, although, in general, 0<<xxK K

,

. Similar 

comments apply to the damping coefficients ,xx xyC C  except that xxC may be of the 

same order as any additional damping C0. 
 

 
Define a complex displacement 

 
ex + i ey = z        (2) 

 

then   
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Add i x (3b) to (3a):  
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d damping xxC , if positive, reinforces the other machine damping C0, 
tability, whereas the cross-coupled stiffness x yK  is equivalent to a 

ng 0− Ωx yK . The cross-damping Cxy is seen to have relatively minor 

namics, since, as Kxx, it only affects the natural frequency, and not 
ecay rate. In some instances, the fluid-related stiffness is not 
can be exploited to help relocate the critical frequencies away from 
ges. This was, in fact, the approach taken in the SSME redesign [52]. 
al avenues for improving rotordynamic stability-increasing damping 
atural frequency are both exemplified on the right-hand side of Eq. 
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4. Some Examples of Cross-Coupled Force Generation 

 
Among the mechanisms which have been identified as contributors to the 

production of destabilizing cross-forces are (a) Pressure non-uniformity in labyrinth 
and other seals; (b) Non-uniform driving force in turbines due to tip leakage effects 
[59, 60]; (c) Non uniform pressure and driving force in pump impellers, also related 
to leakage effects [55, 56]. Other effects are reviewed in Ref [57]. Rather than 
attempting here a general coverage of this rather rich field, we will only explain in 
some detail the labyrinth seal and blade–tip effects, which, aside from their 
importance in practical cases, can be seen as prototypes of the relevant physics. 

 
(a) Labyrinth Seals. The existence of flow swirl at the entrance to an offset labyrinth 
seal (and, in modified form, to other seals as well) gives rise to a rotation of the 
pressure pattern produced by the offset, and hence produces cross-coupled forces. 
Two principal effects can be identified here [58]. One of these can be described as 
follows: the fluid in the gland of the seal (a single-cavity labyrinth, for simplicity) 
circulates azimuthally in the varying area created by the shaft offset (Fig. 3). 
 
 

 
Fig. 3: Kinematic quantities associated with a labyrinth seal. The shaft is spinning at 
an angular frequency , while simultaneously undergoing a circular precession of 
amplitude e and frequency Ω . 

ω

 
 
 

16.512, Rocket Propulsion                                                                       Lecture 29 
Prof. Manuel Martinez-Sanchez                                                                 Page 7 of 13 



 
If the tangential velocity V were constant (which is approximately true under 

some conditions), the circulating flux ( )ρ + δV l h  would need to be increasing with ϑ  

at points where the depth ( (h= sealing strip height, )+ δh ( )δ ϑ  = local gap) is 
increasing. This implies an excess of leakage from upstream of the seal into the 
cavity over that from the cavity to downstream of it, which is accomplished by a 
locally depressed P( . Thus, the pressure would be minimum at point C in Fig. 3. 

and maximum at point A. The net integrated pressure force is then rotated  from 
the shaft displacement in the direction of the swirl. Since the pressure pattern is 
anchored to the whirling gap pattern, it is clear that, for a given inlet swirl, the effect 
will depend on the whirling speed 

)ϑ

90D

Ω  and will, in fact, be zero when R VΩ = , because 
the gland fluid will then not move tangentially with respect to the whirling gap 
pattern. This argument is modified by the azimuthal variations induced on the 
velocity V, which were so far neglected. A more complete analysis [58] gives the 
force components parallel and perpendicular to the displacement as 
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where , and we have assumed incompressible, inviscid fluid and a circular 

whirling motion about the casing center with amplitude e. Aside from a negative 
iP P P∆ = −

xxK  
(in the notation of (Eq. 1), we see from (12) that positive xyK and xxC  are predicted. 

The presence of higher order terms in Ω  in Eq. 12 also indicated effective mass and 
other effects, but these have little dynamic impact. The main factors are related in 
this case through  

 
                        

               xxC = xy

R
K

V
        (13) 

 
and the simple case in which velocity variations are neglected is recovered when 

 
 

1
lh

Rδ
�   in Eq (11) and (12)                   s.

 
 

The second seal mechanism depends on the existence of friction between the 
circulating fluid and the rotor and casing surfaces (although the resultant cross-force 
is still a pressure, and not a frictional force). Because of friction, the mean tangential 
velocity V is usually slightly less than the inlet tangential velocity iV  and leakage 
fluid entering the gland from upstream will continuously add tangential momentum 
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to the gland fluid as they mix, in a manner similar to the operation of an ejector 
pump. This effect is strongest at point D (Fig. 3), where the gap is widest, and 

weakest at point B. Thus, a positive pressure gradient 
P∂

∂ϑ
 will exist at D, and a 

negative one at B, again leading to a pressure maximum at A and to a cross-force 
along the perpendicular axis ( )⊥ . Since this effect does not depend on fluid velocities 

relative to the whirling frame, it does not show whirl velocity dependence, and does 
not contribute to damping ( )xxC . A simplified analysis, neglecting tangential velocity 

variations, gives for this effect 
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Because of the importance of inlet swirl in promoting seal cross-forces, de-
swirling fins can be used ahead of the seal, if this is at all practical. Experiments [58] 
have validated the above cross-force mechanisms, while also pointing out the 
importance of other secondary effects, particularly for direct stiffness. 

 
Both force components are greatly magnified in smooth seals with very small 

clearance [52, 61]. Whether the added cross-coupling or the added stiffness is more 
important when one of these is substituted for a labyrinth, must be directly assessed 
through dynamic analysis for each specific case.  

 
 

(b) Turbine Blade-Tip Effects.  It was independently pointed by Alford [62] and 
Thomas [63] that the sensitivity of blade-tip losses to blade-tip gap in turbines 
should produce forward-whirling cross forces. The basic mechanism is simple: When 
the turbine rotor is offset from its center, the blades on the side where the tip gap is 
reduced will gain efficiency, and hence produce more tangential driving force than 
average, and the opposite will happen on the side where gap opens up. Integrating 
these forces around the periphery yields, in addition to the desired torque, a side 
force in the forward-whirling direction (see Fig. 4). It is easy to translate this 

argument into an explicit equation for the cross-force. Let 
( )/
−∂ η

β =
∂ δ H

   be the 

sensitivity of blade efficiency to relative tip clearance / Hδ , where δ  is the clearance 
and H is the blade height. This factor is of the order of 1-5, depending on design and 
operating point. 
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The tangential force f per unit length along the perimeter is then approximated as  
 

f f
H

⎛ ⎞δ − δ
≅ − β ⎜⎜

⎝ ⎠
⎟⎟       (16) 

 
although it must be pointed out that this equates work loss to efficiency loss, and 
hence it ignores pressure ratio variations also induced by the offset. The clearance 
perturbation δ − δ  varies in proportion to the offset e, and sinusoidally with 
azimuth  , and so, upon projection in the direction perpendicular to the offset, and 
integration, one obtains  

ϑ

 

2⊥ = π β = β
e Q

F R f
H R

e
H

     (17) 

 
where 2= πQ R f is the turbine torque. The direct force  is predicted to the zero. &F

 
The existence of these forces was confirmed experimentally in Ref. [64] and, 

in more detail, in Refs [59,60] where it was found that, in addition to the above 
mechanism, a second source of cross-forces is a tangentially rotated pressure 
nonuniformity is acting on the turbine hub. The contribution of this component is 
additive to the basic Alford/Thomas effect, and amounts typically to 40% of the total 
cross-force. In addition, both mechanisms also give stiffening force components 
(along with offset direction). 
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One important question which remains experimentally unanswered is whether 
or not the Alford/Thomas forces show a significantly sensitivity to whirl speed, i.e., 
whether they provide xxC  component for the stiffness matrix. The original argument 
would predict no such sensitivity. A fairly obvious extension, accounting for change 

 to the basic blade speed coseΩ ϑ Rω can be shown to yield a modified Alford factor 
  

1
'

Ω
β = β −

ψ ω
H
R

      (18) 

 

where 2( )Q m R
•

ψ = ω ω  is the turbine work coefficient, which is close to 2 for impulse 

turbines. Since 0.2H R ∼  and Ω ω  (whirl to spin ratio) is , we see that 0.5∼
' 0.05β ≈ β − , which would not be significant. Other velocity-dependent effects may 

arise form time lags in the azimuthal redistribution of flow approaching a whirling 
rotor; these would also be of order H R , but no direct experimental evidence exists 
for their magnitude. Ref [60] does provide a theoretical model for this effect however 
the Alford-Thomas forces can be very large, requiring damping log decrements of the 
order of 0.1 in typical rocket turbopumps. 
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