
16.512, Rocket Propulsion 
Prof. Manuel Martinez-Sanchez 

Lecture 23: Liquid Motors: Stability (High Frequency); Acoustics 
 

 
Combustion Instability: High Frequency 
 
Methods of Analysis for High Frequency Instabilities 
 

Prior to the advent of large-scale computations, the most successful 
theoretical development in this area was the “sensitive time lag theory” of L. Crocco 
[26]. More than a detailed physical theory, this was a model in which a few basic 
parameters were introduced from intuitive considerations, and then used to correlate 
experimental observations on stability thresholds. The principal parameter was the 
sensitive time lag, during which the various rates which eventually resulted in 
vaporization at the total time lag τT  after injection were assumed to vary with 
pressure, velocity, stoichiometry, etc. This variation was characterized by means of 
other important parameter, the “sensitivity index”. For pressure sensitivity, this is 
 

( )Rates
n

P

∂
=

∂

ln

ln
      (1) 

 
and the definition of  is such that the variations in gas generation rate due to this 
sensitivity are given locally by 

τ

 

   m m P t P t
n

t Pm

τ τ
• •

•

− ∂ − −
= − =

∂
'( ) '( )     (2) 

 
Similar sensitivity indices can be introduced for velocity, etc. Once this parameterization 
is accepted, it is only a matter of mathematical modeling to obtain the stability limits of 
a given acoustic wave or cavity. This modeling could be linear or even allow for non-
linearities in the gas dynamics. It is one of the strengths of this theory that the acoustic 
part of the problem, namely, combustor geometry, steady state combustion and heat 
release, etc. are separated from the unsteady combustion effects, which allows for 
generalization of test results and accumulation of meaningful stability data. 
 

The results of calculations using the linear sensitive time lag theory are 
displayed as shown in Fig. 1 (Ref. 26). 
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Fig 1. An n - τ  diagram, showing instability zones for various modes. 

 
 
Here are shown the loci of marginal stability for severe modes of a combustor, 

on a map of interaction index n vs. sensitive lag τ . Each point on one of the lines 
corresponds to a particular oscillation frequency, and these frequencies are found to 
be within 10% of the undisturbed acoustic frequency of the mode. The goal of the 
designer is to manipulate the factors influencing n and 

±
τ  in order to place the 

operating point outside all the stable regions of the various modes. 
 

The parameters  and n (into which is lumped the modifying effects of 
velocity or other sensitivities) are basically empirical, and a large data base has been 
laboriously accumulated on their dependencies upon many design factors. As an 
example, Figs. 2(a) and 2(b) (Ref. 26) show data on 

τ

τ  for coaxial injectors, for 
which n 0.5 throughout. ≅
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Starting with the early of Priem and Guentert [29], these methods have been 
progressively replaced by detailed numerical time-dependent simulations of the 
combustion process. The complexity of these processes is such that, even now these 
simulations still contain large elements of modeling and approximation, and are 
generally limited to one or two selected spatial dimension plus time. 
 

A recent example of this approach is described in Ref. 30. Here the emphasis 
is on the tangential acoustic modes. A detailed 2-D fluid mechanical model (in the 
transverse plane) is coupled to a series of empirically derived droplet vaporization 
laws for UDMH and N2O4. The flow is turbulent, modeled using a K-ε  approximation, 
and the drops are allowed to slip, exerting drag forces which are computed from 
empirical drag coefficients, and also modifying the vaporization rates due to 
convective heat transfer. The drop-heating transients are ignored. The computations 
yield detailed time histories of all the fluid parameters, and comparisons to limited 
test data on parametric effects of pressure and injector type are found to be 
favorable. 
 

A similar computation, but for longitudinal modes only, is described in Ref. 27. 
Here the spatial dependence is on one dimension only (axial), but the droplet 
interactions are calculated in somewhat more detail, including drop thermal inertia. 
These calculations show strongest instability when the ratio of the acoustic period to 
the droplet vaporization time is 0.15, which, as noted before, can be interpreted as 
indicating a “sensitive” time lag which is a fraction (0.1-0.2) of the total vaporization 
time. The calculations also show cases of entropy wave excitation, for which the 
frequency corresponds closely to the convective time in the chamber. 
 

In what follows, we provide a simplified analysis of the acoustic effects of 
several combustion-related phenomena (heat release, mass addition, etc.), and then 
use this in conjunction with Crocco’s theory for an assessment of stability in a simple 
1-D situation. Some general conclusions about stability and destability effects are 
also drawn from the acoustic analysis. 
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Acoustic equations with heat and mass addition, fluid forces, and molecular mass 
changes. 
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Assume small perturbations about a uniform steady background, (with µ, m ,f, q): 
 

'ρ ρ ρ= + , u u , u'= + p p p'= + , T T T '= + , 'µ µ µ= +     (5) 
   

u 0=  (6) 

 
              0 
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2nd order 
 
Linearizing then, 
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(13) into (10): 
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Sub. Into (8) 
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Differentiate w.r.t. t: 
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but, from 12,   
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Subtract, divide by ρ : 
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M ' M
c m q p
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2
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Adding heat, adding mass, or having a decrease rate of molecular mass, all are (up 
to factors) equivalent acoustic disturbances. 
 

To close the problem, one needs to relate the perturbations (m, q, f, '
t
µ∂
∂

) to 

the state variables ( p', ',u ',T 'ρ ), by looking at the particular mechanisms 
(vaporization, combustion, etc), and how they depend on pressure, velocity, and so 
on. 
 
 
General Conditions for Instability 
 
Looking at Eq. (19), we see that the effects of gas mass generation m, heat 

generation q and molecular mass change '/
t

µ µ∂
−  are similar. All of them have the 

effect of increasing the local volume, and we suspect therefore that when these 
quantities (acting together) peak when the pressure also peaks, we will have 
unstable

∂

 condition. 
 
To examine this, define the quantity 
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and ignore for now the local disturbing forces f. Then 
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For a sinusoidal wave of the type 
 

         (25) ( )i t kx
ep '(t ) R p e ω
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with ω  complex and k real, we then have 
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∧
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2

∧

∧
≡ =

i Q
; h

kc kc p

ων       (27) 

 
 
and re-write (26) as  hν ν+ − =2 2 1 0      (28) 
 
 
which has the complex solution  21= − ± +hν h     (29) 
 
 

We now ask what form h should have for stability. First, we note that at the 
stability threshold, ν  is real, and so ( )h /ν ν= − 21 2  must also be real. From (27), 

this means that i Q  must be in phase (or counter-phase) with 
∧ ∧

p , namely, “volume 
addition rate” must be 90o ahead of or behind pressure oscillations: 
 
 

 
 
 

More generally, re-write (28) as hν
ν

+ − =
1

2 0 , and put explicitly , R Ih h ih= +

R Iiν ν ν= + : 
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Separate real and imaginary parts: 
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From (31b),  
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This shows that whenever , Ih > 0 Iν < 0 . Since 0−= <∼ I Rt i ti t
Ip ' e e e ,ω ωω ν  

implies instability. Also, from (27b),  implies Ih > 0

R

Q

p

∧

∧

⎛ ⎞
⎜ ⎟ >
⎜ ⎟
⎝ ⎠

0 , which means that the 

“volume addition rate” Q(t) must have a positive projection on pressure p’(t), 
namely, a part in-phase with it. This is a confirmation of the physical intuition that 
releasing “volume” when pressure is high must be de-stabilizing. We repeat that this 
may mean heat addition, gas addition (vaporization) or molecular mass reduction 
rate (decomposition of complex molecules). 
 

Let us now consider briefly the effect of body forces f. Returning to (19) and 
defining the complex quantity. 
 

  i f

k p
ρ

∧

∧
=         (33) 

 
we can see that (28) is expanded to the form 
 
  ( )hν ν ρ+ − =2 2 1 0        (34) 

 
For neutral conditions (stability threshold), we must have real ν ν I( = 0), so, 

taking the imaginary part of (34), 
 
  I Ihν ρ+ =2 0

I

        (35) 
 
In the absence of forces, we found that  would lead to instability. We see now 
that if 

Ih > 0

I hρ ν= −2 , which is negative, then the process stabilizes at least to the point 

of neutral stability. From (33), the conclusion is that 

R

f

p

∧

∧

⎛ ⎞
⎜ ⎟ <
⎜ ⎟
⎝ ⎠

0  is stabilizing, i.e., the 

body forces should be in the backwards direction (against H velocity) when pressure 
is high, and vice-versa.  
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Looking at one instant of time vs. distance: 
 

 
 
 
So, the body forces are in quadrature with the pressure gradient force ( ), and 
are taking energy away from the wave motion. 

P−∇

 
 
The “Sensitive time lag” theory (Harrje and Reardon, p.1) 
 
Basic scenario: 
 

- Drops injected at Tt τ−  complete evaporation and combustion at 
 

- However, from Tt τ−  to t τ− , no complete evaporation occurs, only 
“precursor processes”. τ ≡ ”sensitive lag.” 
 

- The rate of evaporation + combustion during τ  is sensitive to pressure and/or 

velocity. For p, ( )∂
≡

∂

ln rates
n

ln P
      (1) 

(n= “sensitivity index”). 
 

- The duration τ  of actual evap. + comb. changes in time, in response to these 
rate changes. However, the total mass burnt is that of the drop, and it is 
assumed their mass (and their number) are independent of P, υ  in the 
chamber. 

 
 
Say, R is the relevant rate. Under “quiet” or “mean” conditions, R R= . When P P≠ , 
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Express that the total mass burnt in ( )t ,tτ−  is always the same, equal to 

that burnt under mean condition 
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⎝ ⎠
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−

−
− = − ∫
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Let now, specifically, m be the rate of gas generation from liquid (local, per 
unit volume). The liquid injection rate is constant, equal to m . The gas generated in 
(t, t+td) is mdt. This gas originates from liquid that reached its “maturity” for 
vaporization between t τ−  and ( t τ− )+d ( t τ− ), and since liquid arrives at m , 
 
  m dt = m d ( t τ− ) 
 
 

  m m d
dtm

τ−
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=

P t P tm m
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τ
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( ) ( )− −
=

P ' t P ' tm'
n

m P

τ
or, in terms of perturbations,     (6’) 

here replacing τ  by τ is ok.  
(2nd order error) 

 
 
NOTE: Eq. (3) is wrong in Harrje and Reardon. 
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Control of Instabilities 
 

Despite all efforts at avoidance through design, the need remains for devices 
that will help damp the many potential modes of instability in any given rocket 
combustor. A new technology for active control is now evolving [31], in which 
feedback controlled acoustic generators are used to cancel unstable waves. Since the 
growth can be detected at small amplitude, it may not be necessary to inject very 
large acoustic powers for this purpose. Nevertheless, the mainstay of current 
practice is based on passive damping methods. A good description of these methods, 
with design guidelines, is given in Ref. 32. 
 

The most important high frequency stabilization devices are injector head 
baffles and acoustic absorbers. Baffles are radial or circumferential barriers attached 
to the injector head and extending 0.1-0.2 diameters in the axial direction. An 
example of a baffled injector is that of the SSME (Fig. 3, from Ref. 2). The exact 
mechanism by which baffles enhance stability is not well understood, which has led 
to some divergence in design. It appears that the effect is related to the sensitivity 
of the droplet velocity cross-over point, which occurs quite close to the injector face, 
and it may involve disruption of the tangential gas motion associated with tangential 
modes, or shifting of the local acoustic frequencies to values above the characteristic 
drop vaporization frequencies. 
 

Acoustic absorbers are cavities on the chamber walls with relatively narrow 
connecting channels to the chamber, so as to dissipate power during pressure 
oscillations in their vicinity. Their action is much better understood than that of 
baffles, and designers can proceed with some confidence, using methods described, 
for example in Ref. 32. Absorbers are often located on the cylindrical walls, near the 
injector, or as “corner slots” between injector and cylinder. They can also take the 
form of a continuous double wall with an array of holes periodically arranged to 
connect to the chamber. The absorption coefficient of a well-designed absorber can 
be high over a relatively wide frequency band, so as to contribute damping to the 
most prevalent modes. Sometimes several different absorbers are used, each tuned 
to a different frequency. Fig. 4 (Ref. 32) shows a baffled injector with corner 
absorbers, and Fig. 5 (Ref. 32) shows an extended acoustic liner. 
 
A simplified analysis of an acoustic absorber is described next. 
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Acoustic Absorbers: Resonators 
 

The schematic shows a device 
which is a variation on the 
Helmholtz Resonator concept. 
 

Consider first the half-
cycle during which flow is leaving 

the resonator ( >0). The 
pressure inside the resonator is 
PR, while at the entrance to the 
narrow inlet duct, it is 

•

m

21
2

= −'
R RP P vρ , due to the 

(subsonic) acceleration towards 
the inlet. The density changes δρ  

can be equated to 2cδρ /  (c = 
speed of sound in the resonator).  

 
 
The mass balance is then 
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and the momentum balance in the duct is  
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or, using , 
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⎜ ⎟
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Consider next the other half-cycle, when the cavity is filling (m <0). The 
pressure at the chamber-side of the duct, which is now the flow inlet is 

•

( 21
2

= − −'
c cP P vρ ) , whereas that at the exit of the duct is now just PR. Eq. (1) still 

holds, whereas the momentum balance is now 
 

 

   
2

22

• •⎛ ⎞
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⎜ ⎟
⎝ ⎠

i
R C
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We now differentiate (2) and (3), and unify the two half-cycle momentum equations 
as 
 

   
2

2 2

•
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⎜ ⎟
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Substituting Eq. (1) here, 
 
 

   
2

2
2

•
• •

•

+ + = −i i c
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c m
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    (4) 

 
 

This equation is non-linear in , but we can obtain reasonable results for steady 

state operation if we replace 

•

m
•

m  by its time average over one cycle. The analysis 

reduces them to that of a forced linear oscillator, except that m
•

 needs to be 

calculated self-consistently rather than being a prescribed quantity. 
 
 

                        
 
 
Assume solutions of the form 
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Eq. (4) becomes 
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while Eq. (1) gives 
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and solving (6) and (7) together, 
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From this, the natural frequency of the oscillations is seen to be = i
n

R

A
c

L V
ω  (9) 

and the damaging factor ζ  is given by 

2
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For the “rectified sine wave” (t), we can see that 
•

m 2
∧

• •

=m
π

m , and from (7) and (8), 
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Using 
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equation for 
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cPδ  of the pressure fluctuations in the 

chamber. The algebra is simpler in non-dimensional terms. Define 
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We then obtain ( ) ( )
22 2 2

2 42 21
m 1 1

2

• ⎛ ⎞
2 4⎡ ⎤= − − + − +⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

i

R

c A
p

V

ρ
ν ν

ω
ν , and substituting in 

(10), the damping ratio is 
 
 

( ) ( )

2 2
2

2 42 2 2

2

1 1
=

− + − +

p /

p

νζ      (14)   
4ν ν ν

 
 
Several points can now be made: 
 

(a) For any frequency, the damping increases with pressure fluctuation intensity. 
This is a favorable circumstance because we need the damping most when 
combustion is rough. Mathematically, this is a consequence of the non-
linearity of the equation. Physically, energy is dissipated both during 
aspiration and during expulsion of gas from the cavity, (by the mixing out of 
the jet kinetic energy), and it is clear that more energy is dissipated when the 
driving pressure differences are stronger. 
 

(b) Although the algebra is still tedious, differentiation of (14) shows that ζ  is 

maximum at ν = 1, i.e., when the cavity is tuned in resonance with the 
pressure fluctuations (by selecting parameters so that nω ω= ). Putting ν = 1 
in (14) gives 

21
2

2

∧

= =
c

R
MAX

i

P
V

p /
L A c

δ
ζ

π ρ
            (15) 

 
which again shows ζ  increasing with fluctuation intensity. 
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(c) Since we should design for resonance for the given ω , the dimensions should 

satisfy i

R

A
LV c

ω
=

2

2
. Eq. (15) can then be put in the two equivalent forms 

 

   
1 2 2

∧ ∧

= =
c c

R
MAX

i

P P
V

L A

δ δ
ζ ω

ω π ρ π ρ
    (16) 

 
 

This indicates we should use short inlets, large cavity volumes and 

small inlet areas (subject to i

R

A
LV c

ω
=

2

2
). 

 
As an indication of what is possible, consider 1% fluctuations on a 

pressure Pc such that c
g c

P
R T

ρ
=  is  6 2 28 3

3000 1 25 10 m s
0 02

= × = ×cP .
. /

.ρ
. The 

acoustic frequency to be damped is at f = 2000 Hz, or 2 12 5000= π =f ,ω m/s. 

Then from the first of Eqs. (16), we can obtain critical damping ( MAXζ = 1 ) by 
choosing an inlet length 

 
 

  ( )4 31 2 1 2
1 25 10 7 2 10 m 7 2mm

12 500

∧

−= = × = × =
c

MAX

P
L . .

,

δ

ω ζ π ρ π
.  

 
 

which appears reasonable. To ensure resonance, then, we need to select. 
 
 

  
( )

2 6

2 2 2 3

1 2 1 25 10
1 34m

12 500 7 2 10−

× ×
= = =

× ×
�c cR

i

R TV c . .
.

A L L , .

γ
ω ω
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A possible choice of geometry is then to take an inlet diameter of, say, 5mm, and a 
cavity volume 
 

 2 5 31 34 0 005 2 63 10 m 26 3 cm
4

−= = × =RV . . . .
π 2  

 
If this is shaped as a cubic cavity, its side is about 3 cm. These dimensions are 
sketched (roughly to scale) below. 
 
 

 
As a final note, remember that the 
“lumped parameter” idealization 
used in the theory may not be very 
precise. Only semi-quantitative 
accuracy is to be expected, but the 
trends should be correct and the 
analysis can be used for preliminary 
design, to be refined through 
numerical simulation or physical 
testing. 
 
 
 
 
 
 
 
 
 

 
 
How many acoustic dampers: 
 

 21
2

•

= +R Rm v P Vδξ δ ρ δ =R  

 

 
( ) 1

2

•

= +R R
R

d d P
m v v V

dt dt

δξ δ
δ δ  

•

=
i

m
v

Aρ
 

•

=
i

m
v

A
δδ
ρ

 

 
With no dissipation 
 

 (
•

= −i
R C

Ad m
P P

dt L
)   

•

= i
R

Ad m
P

dt L
δ δ   

i

L
m

A
δ

•

 

 

 
2

•

= − R RV dP
m

dtc
   

2 •

= −R

R

d P c
m

dt V
δ

δ   
2
R

R

V
P

c
δ  
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( )
2

22 2
2

0 0
• •⎛ ⎞⎛ ⎞ ⎛ ⎞+ = × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

R
R R R

i i

Pd L d L
m V c c m V P

dt A dt Ac
δ

δ δ =δ  

 

  
( )

( )

2
22

2
2

2 222 2

•

•

⎛ ⎞ +⎜ ⎟
⎝ ⎠ ⎛ ⎞= = +⎜ ⎟

⎝ ⎠

R R
i R

R R
i

L
c m V P

A VL
m P

Ac c

δ δ
ζ δ

ρρ ρ
δ  

 
 
With dissipation 
 
 

 
2

• •

•
⎛ ⎞
⎜ ⎟
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i
R

i

m m
Ad m

P
dt L A

δ
δ δ

ρ
  

2 •

i

c L
m

A
δ  

 

 
( ) 2 •

= −R

R

d P c
m

dt V

δ
δ    R RV Pδ  

 
 
 

( )
2

22

2

2 2 22 2

• •

•

⎡ ⎤⎛ ⎞ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥ ⎛ ⎞⎣ ⎦ = ⎜ ⎟

⎝ ⎠

R R
i

i

d L
c m V P mdt A

m
c A

δ δ

δ
ρ ρ

 (energy dissipation rate) Rζ  

 
 

Average  

3

2 22

•

•

=R

i

m

Aρ
ε    m m

π

∧
• •

=
2

 

 
 

At resonance, δ
∧
• ∧

= − i
c

A
m P

L
   

2 ∧

• •
= −i i

c

L A A
P

m m

ρ ρ
δ  

 
 

   
2

2• ∧

•
= i

c

A
m P

m

ρ
δ

π
  22• ∧

= i cm Aρ δ
π

P  

 
 

  
33 2 3 22

2
2 2

1 2 1 2
22

• ∧⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

/ /
i

R i c c
i

A
A P P

A
ρ δ δ

π πρ ρ
ε

∧
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Average chamber acoustic energy 

2

2

∧

=
c

c c

P
V

c

δ
ξ

ρ
 

 
 

( )
3 22

2
3 2

1 1 2 2
2 2 2 2

•

∧∧

⎛ ⎞= = =⎜ ⎟ π⎝ ⎠
i iR

I /ch.
cc

cc c

A NAN c
N c

V PV P

ζ ρ ρ∆ω
πξ ρ δδ

 

 
 

contribution of ωI of 
chamber, due to N 
resonators 

Also, ( ) ( )= = i
n nc R

R

A
c

LV
ω ω  

 
 

( ) 2

3

1

2
= =I ic

c
n c

N A
c

V

∆ω
∆ζ

ω π

1

cP c
ρ
δ π

2

3

1

2 ∧
=R

R i
i c

c

LV N c
LV A

A V P

ρ

δ
 

 
 

2 2000Hz= ×ω π   
4

2 6

1 25 10 1
1201.2 1.25 10

×
= =

× ×
cP .

c
δ
ρ

 Example 

 

   37 2 10 m−= ×L . 5 32 63 10 m−= ×RV . 6 225 10 m
4

−= ×iA
π

 

 
and say  3V 0 1 m=c .

 
1

2
=

∋
c∆ζ

π
3 5 67 2 10 2 63 10 25 10 120 2 7 10 N

0 1 4
− − −× × × × × = ×

N
. . .

.
π 5−  

 
 
So,for c .∆ζ = 0 1 , need 3730 dampers. 
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Say l = 4 cm 
      D = 40 cm 
 

 

2
= TD l

N
l

π  
2 3730 16

475cm
40
×

= = =
×T

N l
l

Dπ π
 

 
 

Not enough room 
 

Can get .∆ζ 0 02∼ �  in  1m=Tl

16.512, Rocket Propulsion   Lecture 23 
Prof. Manuel Martinez-Sanchez              Page 21 of 21 


