
16.50  Lecture 6

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow

Though conceptually simple, a rocket engine is in fact physically a very complex device and 
difficult to represent quantitatively by mathematical models.  But the difficulty and high cost
of arriving at a successful design makes it essential that the  performance-limiting 
phenomena be described as accurately as possible.  It is no longer feasible to approach the
development of a new rocket engine by a purely cut-and-try method.

The range of phemomena that must be dealt with is suggested by the sketch.  They range
from the fluid dynamics of the pumping system through the very complex phenomena of
combustion to structures with heat transfer rates beyond those experienced anywhere other
than in reentry from space. 
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To deal with this complex situation, we use models that represent adequately the phenomena
we want to deal with, while suppressing other phenomena.  Some models we will find useful
are those for:

1) Turbopumps
2) Injectors
3) Combus ion
4) Nozzle Flow
5) Heat Transfer
6) Structure of combustion chambers and nozzles
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Nozzle Flow

Let us focus on the Nozzle Flow first.  For this purpose we regard the combustor as just a
source of hot gas of known chemical composition, stagnation temperature Tc and stagnation 
pressure p .c

We have already used a very simple model to represent the result of this flow process.  
Assuming that the expansion was to zero pressure and therefore zero temperature we used 
conservation of energy to show that  

c = 2cpTc = 2 ! RT
! "1 c    (model 1)

where c was defined as the "exhaust velocity" meaning the velocity which, multiplied by the
mass flow rate, gives the thrust.  Now we want to explore the fluid mechanical processes in 
more detail, and also represent the characteristics of the gas more accurately.

The gas is in fact a mixture of gases resulting from the combustion process Its composition is 
specified in terms of mole fractions yi of species i or mass fractions xi of species i.

For example if the rocket burns H2 and O2 in a mixture ratio of 3 moles of H2 to 1 mole of
O2 to produce H20 and H2, (by mass O/F=32/(3x2)=5.3, comparable to O/F=6 in the Shuttle
SSME engine),

3H2 + 02 ! 2H2 0 + H2

then the mole fractions and mass fractions of H20 and H2 are as shown in the table.
 H2 H20
x 1/19 18/19
y 1/3 2/3

With these mole or mass fractions we can compute the properties of the gas mixture, such as
the specific heats, the gas constant and γ.

The fluid-mechanical and heat transfer phenomena that are of importance to describe are:

1) The effects of nozzle shape on flow
2) The effects of chemical reactions during the flow
3) The heat transfer from the flow to the nozzle
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Effect of Nozzle Shape 
 
The phenomena that influence the coupling between nozzle shape and the flow can be 
divided into two general classes, first those associated with the gas dynamics and second 
those associated with the properties of the gas. Depending on how accurately we attempt to 
model each of these, our model of the flow can vary enormously in complexity.  The range of 
possibilities is shown schematically in the figure, where sophistication of the modeling 
increases away from the origin along two axes, one measuring gas dynamics, the other fluid 
properties.  

 
Along the gas dynamic axis the description can range from the simple channel flow model 
that we will discuss here to very sophisticated three-dimensional descriptions of the transonic 
flow.  Similarly along the properties axis the range is from the thermally and calorically 
perfect gas model we will use (often called the "ideal gas") to full kinetic description of the 
effects of chemical reactions that occur as the gas flows through the nozzle. The simplest 
model of all (Model 1) equates the kinetic energy of the exhaust flow to the thermal energy 
in the chamber 
 
Here we will limit the discussion of the coupling of flow to the geometry of the nozzle to a 
simple model (Model 2) at the origin.  The implications of the more complex phenomena will 
then be discussed separately through two more models.  Model 5 will deal with the effects of 
chemical reactions, and Model 3 with the effects of nozzle shape other than the simple area 
variation. Model 4 will represent some special chemical and fluid mechanical aspects of solid 
rocket motors. 
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Model 2: Channel Flow of Perfect Gas

The channel flow model (often erroneously referred to as "one-dimensional flow") is one in 
which the entire flow is considered to be in a single stream tube having a mass flow that is 
constant along the axis of the stream tube. The stream tube is considered to be narrow 
enough that the angle of the walls to the axis may be considered small, the gas properties 
nearly constant across the stream tube, and the components of velocity normal to the axis 
small enough that their squares are negligible compared to that of the streamwise velocity. 

If the cross-sectional area of the streamtube is denoted A(x), the conservation of mass 
becomes

ρuA(x) = m
.

= constant (1)

The conservation of energy becomes

h u2
+ = h (Note: v

2

<<1)
2 c u2

or if the specific heat is assumed constant.

cpT
u2

+ = c
2 pTc (2)

The final relationship defining the flow is a connection between two of the thermodynamic 
properties of the fluid. In general this is a description of the variation of the entropy of the 
fluid along the flow direction.  For our simple model we assume that the flow is Isentropic  
(Adiabatic and Reversible).  The entropy is referred to a reference state which we take to be 
the chamber condition.  Conventionally, we assume that the velocity in the chamber is low 
enough that this is also the stagnation condition in the chamber.

s ! s
T

c = " c dT
p ! R!n p =

T
0

c T pc
so if s is constant, and cp is as well,

c p
!n Tp ! R!n = 0
Tc pc

and from this it follows that

T p
R

= ( )C p p ! "1

= ( ) !

Tc pc pc (3)

where
c

! " p ; cp-cv=R
cv

We want to manipulate these three relationships to arrive at an expression giving the 
variation of Mach number with A, hence with x.  We begin by expressing equation (2 )in the 
form:

T u2 ! " 1 u2c = 1 + = 1 + M2 , M2 !
T 2cpT 2 "RT
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and then from (3) 
p  c !

= (1 "1 !

+ M2 ) ! "1  
p 2

With these we can write (1) in the form, 

p p T 1 T pm
.
= !uA = uA = c M "RT c  

RT pc T R c Tc Tc

= (1 ! "1 ! 1

+ M2 )
" +
! "1 2 p

M c !T / RA  
2 T c

c

m
.

! M
= p

A c RT 1 ! +1  
c (1

! "
+ M2 )2( ! "1)

2

For given (and constant) pc and Tc, this expression gives the mass flow per unit area as a 
function of the Mach number M.  Since the mass flow is constant, we have the desired 
expression for M as a function of A(x). 

We see that the mass flow per unit area, ρu, is proportional to the stagnation pressure and 
inversely proportional to the square root of the stagnation temperature. 

It is both conventional and useful to plot the function of Mach number in ratio to its value at 
the point in the flow where M=1. The value of ρu at this point we call ρ

" +
u*. It is given by

1

* " # " +1 '

(!u) p % 2(" '1)
= c RT $ 2 & 

C

Then the ratio is  
" +1

$ 1 ' 
2(" #1)

" +
!u A* & ) 

= = M
* & 2

1 ) !u A  1 " #& + M 2 ) 
% 2 ( 

This function of M is shown in the figure. 
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Some of the dominant features are: 

1) There is a maximum in the mass flow per unit area at M=1. 

2) For M<1, ρu (and also u) increases with M, so M increases with decreasing A. 

3  For M>1, ρu (and also u) decreases with M, so M increases with increasing A. 

We note however that p always decreases with increasing M.  It follows that if we want to 
increase M from a small value to one in excess of 1, as we do in a rocket nozzle, the nozzle 
should be shaped as in the sketch at the beginning of the lecture, with a convergence to a 
minimum area "throat", followed by a divergence. 

For given pc and Tc, the area of the throat controls the mass flow. 

To get an idea of the required throat size we can evaluate the (dimensional) factor in front of 
the function of M for a set of typical values.  

Say pc = 100 atm = 107 N/m2

Tc = 3000°K
! = 1.2  

 R = 8.32x103  = 640 J/kg/K
13

 
!p =107 1.2 = 7.91x103c kg /m2 /s  
RTc (640)(3000)

 
We define the throat of the nozzle as the point of minimum area, where M=1 and call the 
area there At.  Then
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m
.

! 2 ! +1

= ( )2( ! "1)  
pc At RTc ! +1)

The conclusion that the point of minimum area in the nozzle controls the mass flow is valid 
beyond the limits of our simple ideal gas mode.. More generally, we define a quantity c* by 

m
. p! cAt  that is a measure of the mass flow per unit area at the throat. For the ideal gas 

c*
model, 

RT 1 ! +1

c* c ! += ( )2(! "1)  
! 2

For the example above, 
(640)3000 2.2c*= ( )5.5

1.2 2
! 2138m / s

In general c* depends only on the propellant combination and pc. 

One further condensation of these formulas that is sometimes useful is to define the 
2 " +1

quantity  ! = " ( )2(" #1) , which is close to 0.65 for most values of γ, and then write 
" +1

c* RT
= c p; m ˙ = c At

! c*
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