
16.50  Lecture 5

Subjects: Non-Chemical rockets; Optimum exhaust velocity 

1) Non-chemical rockets

A shared characteristic of all non-chemical propulsion systems is that the energy and 
propellant mass are separate initially
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There are several possible energy sources:

1)  Solar
a)  Photovoltaic
b)  Solar thermal
c)  Solar pressure

2)  Nuclear
a)  Fission
b)  Radioisotope
c)  Fusion?

There are also many ways to bring the mass and energy together to produce thrust, but all
behave according to the rocket equation.
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or breaking the final mass into its constituent parts,
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There are 2 general categories of systems, Thermal and Electrical, separable according to 
whether the energy is available in electrical or mechanical form, or only as thermal
energy at some limiting temperature.

A. Thermal

Here the energy is used directly to heat the propellant, which is then expanded 
through a nozzle to produce thrust.  
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Now there is a chamber temperature Tc, limited by the energy source, and the exhaust
velocity is given approximately by:

c2 2cpTc = or c ! 2 " RcpTc ! T
2 " #1M c

What limits Tc? 

1)  Source Temperature  e.g. Tsun = 6000°K
2)  Materials 

So for these we generally want low M, e.g., H2 !  2H.  For a nuclear thermal rocket

H2

graphite

cT <~ 3000°K

c < 8500 m/s

Figures of merit are: a)  Specific impulse, c; b)  Thrust per unit mass, F
mengg
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B. Electrical
 
If the energy is available in electrical form, then there is no limit in principle on c (other 
than the speed of light) and in practice we can achieve very high c with good efficiency 
by using any of a number of electrical accelerators.

The system requirement is to produce a ΔV on a payload, mpay.  In the absence of gravity 
m

loss, 
"V

final = e
!
c , so why not make it very close to 1 by increasing c?  To see the answer 

mtot

we must analyze the whole system, and take account of the mass of the energy source.
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The total mass of the system can be broken out as: 
mtot = mpay + melect + mprop + meng + mstruct

so that ratio of final mass to initial mass is 
m "V

final ! +
c

mpay melect +meng +m= e = struct

mtot mtot

The Figure of Merit for such a system is 
m "V

pay = e
!
c

m
! elect +meng +mstruct

mtot tot

Let us neglect meng + mstruct for the moment, compared to m
m  + m

elect (or simply redefine m  to 
include eng struct, which makes sense for some missions).

pay

We know that:
F = m ˙ c  

and the power P is

P m ˙ c
2 Fc

! =
2 2

Define a specific weight m
!e "

elect , and an initial acceleration a F
P o = . Then

mtot
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or finally in terms of the minimum number of dimensionless parameters,
m "V

pay = e
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c ! (# eao"V c)( ) (1)
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Here the group (! eao"V )  is determined by technology level 
2

(!e ) , the mission 

requirement (ΔV) and how fast we want to achieve it (ao).  So we should consider this 
relation a way to find copt to maximize mpay/mtot , given ΔV, ao and αe.

Differentiating,

m
! ( pay )
m "V#tot c $a "# (V = e + o V c)( )2 = 0
(" 2) "! V
c
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c opt = (#ao!V )  (2)
2

which we must solve for the optimum c/ΔV). For graphical presentation, let us eliminate the

group (!ao"V )  between (2) and (1):  
2

m "V
pay = e

!
c V(1 "! ) (3)

mtot c
Equations (3) and (2) are represented below over a broad range of ΔV/c:
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So we see that it only makes sense to choose !V c<1  or >1  for such systems.  This is 
c !V

because for !V >1  the exponential is so small it outweighs the term representing melect.  c

Expanding the range 0 < (!V )
c opt <1,

  

Let us take a look at the meaning of these results:  
V1) If we choose a  and have given  and V, this gives us the (!o αe Δ )
c opt , and in turn the

m
maximum pay .   

mtot

2) For given ΔV and !Vαe, increasing ao (for a faster mission) increases ( )
c opt , which reduces 

mpay .
mtot

m
3) For given ΔV and a0 , reducing αe (lighter power plant) increases pay .

mtot

Take an example:
  
Suppose that the mission gives as a requirement  ΔV = 104 m/s and technology enables αe = 
melect  = 20 kg/kW  = 0.020 kg/W
P
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aThen ! e o"V  = 100 ao where ao is in m/s2.
2

We can still choose how fast we want to do the mission, within limits.  We know that the

upper limit of ! eao"V  = 1/e= .368.  So for the assumed mission and technology, 
2

a100ao=! e o"V !.368.  This implies ao !.00368  m/s2 or 3.8x10-4 g's and for this maximum
2

m
available acceleration, pay m

 = 0, not a very useful result!  Suppose we insist on pay  = 0.5.  
mtot mtot

This gives (!v )  = .3, which in turn implies !eao"v = .07. The acceleration is then ao = 
c opt 2

.07  = 7x10-4 m/s2 = 7x10-5 g's.  This is only about 1/5 the maximum acceleration, but now
100
we have lots of payload. 

The time required to achieve the ΔV is  
"V

mpr m
!

opellant 0 (1! e c ) ct = = 1
"V

= ( ! e
!
c )

 m! F / c a0
and for our example, 

104 / 0.3t = "4 (1" e
"0.3) 7

7 !10
! 1.23!10 s.= 142 days

 
This type of propulsion requires patience! Note that for a H2, 02 rocket,

m #V m 104
pay ! e

" "
c " struct ! e 4500".1 !.0084  

mtot mtot

So we would probably use 2 stages.  But the main point is the very much smaller payload to 
total mass ratio of the chemical system. In addition, if the coasting period for a chemical
rocket is very long, as in an interplanetary transfer, a continuous low thrust can in many cases
accelerate the mission.
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