16.50 Propulsion Systems HWK#10

Problem

Consider the design of a single-stage turbine with axial inlet and exhaust flow. The flow coefficient is specified as $\phi=0.8$, and the power coefficient is fixed at $\psi=1.6$. From experience, we expect at this condition a turbine component efficiency of $\eta_{t}=0.93$. The combustor exit temperature is $T_{t4}=1800\,K$, and the flow should be choked at the stator exit.

- (a) Calculate the degree of reaction and the flow angles, and draw the velocity triangles to scale.
- (b) Calculate the absolute entering velocity V_b , the axial velocity w, the rotor velocity ωr and the total temperature drop ΔT_r . Taking the estimated efficiency into account, calculate the pressure ratio π_r .
- (c) The Zweiffel coefficient Ψ_Z should be 0.8. Calculate the axial solidities σ_x of stator and rotor, and sketch a few stator and rotor blades in cross section (use velocity triangle results to set some of the angles).

Concept questions

- (1) If the blade speed you calculate seems excessive, suggest possible changes to the design parameters and point out pros and cons.
- (2) What would happen to π_t if the engine were throttled such that the temperature T_{t4} is reduced? State your assumptions.

MIT OpenCourseWare http://ocw.mit.edu

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.