
GPS Integrity Monitoring

∗ Tom Temple

May 10, 2005

Abstract

This paper seeks to explore the potential of evolutionary algo­
rithms for determining hard error bounds required for the use of GPS
in safety-of-life circumstances.

1 Introduction

The Global Positioning System (GPS) has proved to be very useful in
a number of applications. Aircraft navigation is among the most im­
portant. But in the safety-of-life circumstance of precision approach
and landing, we do not have sufficient guarantees of accuracy. While
differential GPS (DGPS) is precise enough much of the time, a con­
troller needs to be able to put strict error bounds on the position
estimate in order to be able to use DGPS for precision approach or
landing. This paper explores the use of an evolutionary algorithm to
determine these error bars.

2 Problem Specification

Rather than solve the “Is it safe to land, or not?” question, I will at­
tempt to answer a slightly more general problem, “What is the worst

∗Lincoln Laboratory

1

Figure 1: The 2-dimensional projection of the distribution of positions calculated
from subsets of the pseudo-ranges. The green triangle is the estimate using all of
the pseudo-ranges and the red x is the true position. The axis are in meters.

that the error could be?” Given a set of satellite ranges, we would like
to estimate an upper bound on position error. We are allowed to un­
derestimate the bound no more than once in 10 million trials. Simul­
taneously, one would want the service to be available as much of the
time as possible. In other words, we would like to keep overestimation
to a minimum while maintaining the strict rule on underestimation.

As the number of satellite ranges available increases, the set of equa­
tions that the receiver must solve become increasingly over-specified.
The goal is to use this over-specification to generate a number of par­
tially independent estimates of position. The distribution of these
estimates can be used to estimate the distribution from which the po­
sition measurement (using all satellites) was selected.

Figure 1 shows the two-dimensional projection of the distribution
of twenty subset positions. As one might expect, the true position lies
within this distribution. Given such a distribution, the goal is to draw
the smallest circle that surely contains the true position.

2

3 Previous Work

I am primarily building on work by Misra and Bednarz[3]. They pro­
posed an algorithm, called LGG1, which consists of three elements.

•	 A method of selecting subsets of satellites with good geometries

•	 A characterization of the distribution of subset positions

•	 And a “rule” function that turns this distribution into an error-
bound.

They demonstrated that such an algorithm, if sufficiently conser­
vative, could give an error bound that was sufficiently stringent. If the
rule function was a linear function, the error bound was sufficiently
stringent regardless of the underlying range error distribution. The
recent subject of my research has been testing and improving the al­
gorithm.

I retain all three elements of LGG1 algorithm but will change each
of them. For this work I will be focusing on determining the rule
function. I will explore using an evolutionary algorithm to determine
a rule function that exploits more expressive characterizations of the
subset position distributions.

The original algorithm used a single metric to quantify the distri­
bution of subset positions. The number that it used was the distance
between the furthest two positions and they called it “scatter.” The
rule was a constant times this scatter. Such a rule could be found
quickly given a dataset with millions of error–scatter pairs.

4 Current Extention

The current work seeks to explore using a more expressive descrip­
tion of the subset position distribution. We would like to utilize the
fact that there is much more information in the distribution than the
scatter metric. So rather than characterize the distribution with one

3

summary number, I use a set of what I am going to call “p-scatters”
computed as follows.

p �1/p ��
|x − ˆ|x

Sp =
n

You will note that S2 is the standard deviation and S∞ is similar to
the metric proposed by Misra. A value p need not be an integer nor
be positive. In this paper, the values of p that are used are chosen
by hand. Choosing the “best” values of p is a problem with which I
am still grappling. Future work will tell whether a learning algorithm
can be applied to determining which values are the most telling of the
distribution.

One property desirable in a rule function is that it be scale indepen­
dent. If all the errors double, the scatter should double and the error
bound should also double. A quick check reveals that the p-scatters
have this property. So will the rule function as long as it is a linear
combination of the p-scatters. This means our rule function can be
represented as a vector of weights. We have reduced the problem to a
parameter estimation problem.

4.1 Parameter Estimation

The main idea is that the subset position distribution is somehow sim­
ilar to the distribution from which the estimate is sampled. If we can
determine how the distributions are related, we can use the position
distribution to estimate the error distribution and determine an error
bound. If the errors were truly Gaussian, we could simply estimate
the standard deviation, S2, and simply multiply it by six and call it a
day. Alas, they are not and it will not be so easy.

In general, parameter estimation problems consist of finding “opti­
mal” values for the parameters. “Optimal” values can be defined as
those that maximize or minimize some function, for instance, mini­
mize the squared error, or maximize the margin of classification. The
sense of optimal in this case is more tricky. Our value function on
(error estimate) error is very non-linear. To the negative side of zero

4

Figure 2: The cost associated with making errors in our error-boundestimate.

it has a value that is 10 million times the value on the positive side
(see Figure 2).

Given a set of p-scatters, consider the space of p-scatters with one
additional dimension, namely error length, as the “vertical” axis. Now
imagine that we plot 10 million data points in this space. The current
problem is the same as finding the best hyperplane such that all the
points fall bellow this plane. If we demand that this hyperplane, with
normal n̂ pass through the origin (as we must if our rule is going to
be linear) then we could define “best” to mean the one for which

�
−n̂ · d

d∈scatter data

is minimized. In high dimensional scatter-spaces and with millions of
data points, there is no tractable way to find such a plane analytically.

This was the problem that I was pondering when Justin presented
learning the parameters of the chess evaluation function by means of
an evolutionary algorithm[1]. The parameters in chess are not eas­
ily defined by a optimization problem. You want parameters that
maximize the probability of winning the chess game! Just like in my
problem, the algorithm wants to minimize a function that it cannot
simply compute. If an evolutionary algorithm could find the chess
values, I decided it would be worth a try on my scatter weights.

5

5 Evolutionary Algorithm

5.1 Simulation Framework

For other facets of my research, I had already developed a simulation
framework that models a GPS constellation and receiver. The simula­
tion can provide pseudo-range snapshots for given times and locations
on the earth. These pseudo-ranges are selected from a pre-determined
error distribution. The position error is the distance between the true
position and the one computed by the modeled receiver. The sub­
set distribution is generated by giving the receiver 20 subsets of the
pseudo-ranges. The run-time of the simulation is linear in the num­
ber of subsets. For the current work, 20 seemed sufficient to estimate
scatter while not being taking overly long. The quality of a subset is
determined by its Dilution of Precision (DOP) which is a function of
its geometry. I defined a cutoff DOP of 3 above which subsets are not
considered. 1

5.2 Population Details

I used a population of 100 individuals although the computational ex­
pense of increasing this number is relatively minor. An individual in
the population consists of a vector of weights, θ. A trial consists of sim­
ulating a pseudo-range snapshot and computing the scatter metrics,
φ. Then for each member of the population we compute φT θ = ε�

max
,

the estimated maximum error. If ε� is less than the true error, the
max

individual is killed. If ε� is less than the threshold for a safe landing
max

(10 meters in this case), the individual is given a point. On an intu­
itive note, these cases can be considered to be crashes and successful
landing attempts, respectively. 2 All of the remaining cases (i.e. when

max
is greater than both the true error and the safety threshold) are ε�

1The constellation consists of 48 satellites in 6 orbital planes which, to a receiver,
is similar to the one we can expect to see when GPS and Galileo are simultaneously
operational. The receivers are always between the Arctic and Antarctic circles. The
pseudo-range error distribution is a mixture of Gaussian .9N (0, 1m) + .1N (0, 3m) which
is roughly ten times the range error typically exhibited by DGPS.

2Technically, crashes are only cases when the estimate is bellow the safety threshold
while the error is not. However with different thresholds or error scaling, any under­

6

those cases when a landing was not attempted. Hence, the number
of points that an individual has is equal to the number of successful
landings they have had.

A generation consists of 100 such trials. At the end of a generation,
the individuals who are still living create progeny in proportion to the
number of points that they have accrued. The children are created by
mating or by mutation. Mating consists of a random blending of the
weights of the parents while mutation consists of adding random varia­
tion to the parent. The decision of whether to mate or mutate is made
randomly for each child. As pointed out by Jeremy and Justin[2], the
proportions (1:1 in this case) were selected arbitrarily. This is a point
where “meta-evolution” could potentially reap dividends.

5.3 Convergence

There was a serious problem with this setup. There is not enough
experience in 100 trials to weed out the overly aggressive individuals.
This means that the population would be dominated by the most ag­
gressive pilots and then be wiped out when a difficult case came along.
We would need on the order of 10 million trials to be confident that
we had exposed them to sufficient variation. But generating 10 mil­
lion new trials for each generation would take far too long. To fix this
problem, before seeing the 100 new cases on which virility would be
based, first an individual would have to survive a set of torture tests
drawn from the most difficult trials seen previously. Initially, this set
was filled with 100,000 ordinary trials but then they were gradually
replaced by the most difficult ones encountered during evolution. In
addition to solving the stated problem, it also ensured that future
generations would be able to survive all of the hard trials that earlier
generations had seen. In other words, without this addition, gener­
ations might forget how to deal with cases that their ancestors had
survived.

In the lecture given by Jeremy, Justin and Jennifer, they described

estimate could result in a crash. Therefore all such instances are considered to be crashes.

7

reducing the variation inherent in mutation over the course of evolu­
tion to ensure convergence[1]. While this ensured convergence, it did
not ensure a satisfactory convergence. If the population converged too
far, it tended to be wiped out by rare (once every 1,000 generations)
but very difficult new cases.

The first fix for this was to keep an evolution history that allowed
de-evolution. A difficult case might require that the entire population
de-evolve a long way before there were members who could survive.
This typically would only be a very small number of individuals. With
so few members, there was very little variation as well as no way of
comparing fitness. In other words the sole survivor might be the sort
who never attempts a landing.

In the end, I decided to avoid convergence. Instead, I tried to maintain
the variance of the population at a constant level. This is accomplished
by having the frequency and magnitude of mutations stay constant.
The problem with that is that there is no time when the evolution ap­
pears done. Another problem is that the evolution might be unable to
settle down into a narrow minima. The benefit is that there is always
substantial variation in the population. It is very seldom that it is
forced to de-evolve. Similarly, if the population is very badly thinned,
the variation will quickly return.

6 Experimental Results

Since a simulation to adequately demonstrate the required reliability
of 1 error per 107 trials takes about a week, I did not have time to run
at that level of accuracy. Instead I used a reliability on the order or 1
per 105 . The number of trials per generation was set at 100 with the
lower reliability in mind and will likely be increased for longer simula­
tions. Each evolution consisted of 1500 generations. Then they were
tested against a test suite consisting of 105 trials. As of yet, there is
no rigor in determining these numbers. Rather, they were chosen to
be large enough to be meaningful while small enough to allow me to
run a reasonable number of cases.

8

Rule functions (so long as they provide satisfactory safety) are evalu­
ated in terms of the fraction of the time that they attempt landings,
Availability of Service (AS). A landing is attempted if the rule func­
tion, φT θ is less than the safety threshold of 10m.

For each evolution, the 5 most healthy individuals at the end of the
evolution are reported. In Table 1, I have shown results for evolu­
tion using p = [1, 2,∞]. The first two are constrained so that all the
weights in θ must be non-negative. The third example is not con­
strained. Table 2 shows the results from running the evolution with
other sets of p-scatters.

For comparison, I am also presenting the AS for the LGG1 algorithm as
well as the tightest single-scatter rules possible. Note that the tight
rules are generated on the test data rather than the training data,
therefore they are tighter than could have been learned. Also in­
cluded are the results from minimizing the Perceptron Criterion func­
tion. The details of that methodology are beyond the scope of this
paper. Suffice it to say that those results are generated by very patient
gradient descent in [error rate, θ] space.

7 Conclusions and Future work

While I would say that the evolution seemed successful, the results
were generally disappointing. Table 1 shows that in the three-dimensional
case, the evolutionary algorithm can generate a rule function of qual­
ity very near that of the other methods available. That also means
that evolution failed to distinguish itself as a particularly good way
to determine these parameters. This could be due to the fact that
the variance is kept relatively high during the entire evolution. That
could mean that the population could “vibrate out” of narrow minima.

The results for higher dimensional parameter spaces were unexpect­
edly bad. Since these spaces have the earlier case as a subspace, one
would expect the results to be at least as good. The difficulty was

9

Test Weight AS

p=1 p=2 p=∞

0 0

0 0

0 0

0 0

Evolution 1 1.1832 2.5478 1.4925 0.3070

1.2236 2.5292 1.4912 0.3045

1.1606 2.5472 1.5200 0.3016

1.1991 2.5537 1.5005 0.3015

1.2563 2.5321 1.4899 0.3000

Evolution 2 1.1897 2.4237 1.5522 0.3068

1.0256 2.5540 1.5642 0.3056

1.8587 2.5982 1.1938 0.2977

1.0494 2.6369 1.5486 0.2945

1.0274 2.5322 1.6210 0.2919

Evolution 3 9.7900 -0.8000 -0.6800 0.3330

7.8352 0.7793 -0.5926 0.3245

6.2668 -0.7404 0.9330 0.2908

6.0099 0.6367 0.4130 0.2753

6.1092 -0.7742 1.1085 0.2633

Tightest fit 7.2766 0.3325

6.3824 0.3398

3.7250 0.2164

LGG1 4.5 0.1004

Perceptron 1.8256 1.7893 1.5838 0.3081

2.5281 2.1994 1.0281 0.3188

2.5166 2.1739 1.0463 0.3187

Table 1: Learned weights and Availability of Service (AS)

10

Trial 1 Trial 2 Trial 3 Trial 4

p weight weight weight weight

.001 x x x .8462

.01 x x 2.7628 .5965

.1 x 17.0594 -1.9202 2.6827

.5 x 11.3105 4.9851 3.5754

1 2.7564 -2.8706 -4.9647 .2209

1.5	 x -7.6041 5.6760 -2.2266

2 .6937 -9.3782 5.6863 .2611

3 6.6544 x x 2.7220

4 3.7766 x x x

∞ -3.9807 1.8966 -2.1745 .7474

AS .2673 .2358 .2707 .4196

Table 2: Weights and Availability of Service using other p-scatters

probably due to the higher prevalence of local minima in the higher
dimensional spaces. But then the fourth trial, with 9-dimensional
scatter, had very good results. I will explore whether that was due
to over-fitting or not. If they are valid, then the evolutionary algo­
rithm might be the only way to estimate the parameters in such a high
dimensional space. Another disappointment is that when the set of
p-scatters is changed, the weights can change sign, and important val­
ues can suddenly become unimportant. This means choosing a good
set of p values isn’t simply a matter of finding the most informative
individual values and collecting them.

The main difficulty then seems to be choosing a good set of p val­
ues with which to compute scatters. Picking too many parameters
adds more local minima to our parameter space and creates a risk
of over-fitting. Too few under-utilizes the information in the position
distribution. I will try to extend the learning algorithm to also include
picking which p-scatters to consider.

And of finally, before I approach the FAA with any of this, I need
to collect more data. . . more data in terms of more validation cases,

11

larger simulations, larger subsets and various satellite geometries. I
need to test the algorithm against more pathological error models.
And, needless to say, I must be more rigorous.

References

[1] Fox, Novosad, and Pouly. Cognitive game theory. Lecture,
April 4, 2005. MIT, Cambridge, MA.

[2] Fox, and Pouly. An empirical investigation of mutation pa­
rameters and their effects on evolutionary convergence of a chess
evaluation function. Lecture, May 9, 2005. MIT, Cambridge, MA.

[3] Misra, and Bednarz. Robust integrity monitoring. GPS World

(April, 2004).

12

