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Abstract 

This paper seeks to explore the potential of evolutionary algo­
rithms for determining hard error bounds required for the use of GPS 
in safety-of-life circumstances. 

1 Introduction 

The Global Positioning System (GPS) has proved to be very useful in 
a number of applications. Aircraft navigation is among the most im­
portant. But in the safety-of-life circumstance of precision approach 
and landing, we do not have sufficient guarantees of accuracy. While 
differential GPS (DGPS) is precise enough much of the time, a con­
troller needs to be able to put strict error bounds on the position 
estimate in order to be able to use DGPS for precision approach or 
landing. This paper explores the use of an evolutionary algorithm to 
determine these error bars. 

2 Problem Specification 

Rather than solve the “Is it safe to land, or not?” question, I will at­
tempt to answer a slightly more general problem, “What is the worst 
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Figure 1: The 2-dimensional projection of the distribution of positions calculated 
from subsets of the pseudo-ranges. The green triangle is the estimate using all of 
the pseudo-ranges and the red x is the true position. The axis are in meters. 

that the error could be?” Given a set of satellite ranges, we would like 
to estimate an upper bound on position error. We are allowed to un­
derestimate the bound no more than once in 10 million trials. Simul­
taneously, one would want the service to be available as much of the 
time as possible. In other words, we would like to keep overestimation 
to a minimum while maintaining the strict rule on underestimation. 

As the number of satellite ranges available increases, the set of equa­
tions that the receiver must solve become increasingly over-specified. 
The goal is to use this over-specification to generate a number of par­
tially independent estimates of position. The distribution of these 
estimates can be used to estimate the distribution from which the po­
sition measurement (using all satellites) was selected. 

Figure 1 shows the two-dimensional projection of the distribution 
of twenty subset positions. As one might expect, the true position lies 
within this distribution. Given such a distribution, the goal is to draw 
the smallest circle that surely contains the true position. 
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3 Previous Work 

I am primarily building on work by Misra and Bednarz[3]. They pro­
posed an algorithm, called LGG1, which consists of three elements. 

•	 A method of selecting subsets of satellites with good geometries 

•	 A characterization of the distribution of subset positions 

•	 And a “rule” function that turns this distribution into an error-
bound. 

They demonstrated that such an algorithm, if sufficiently conser­
vative, could give an error bound that was sufficiently stringent. If the 
rule function was a linear function, the error bound was sufficiently 
stringent regardless of the underlying range error distribution. The 
recent subject of my research has been testing and improving the al­
gorithm. 

I retain all three elements of LGG1 algorithm but will change each 
of them. For this work I will be focusing on determining the rule 
function. I will explore using an evolutionary algorithm to determine 
a rule function that exploits more expressive characterizations of the 
subset position distributions. 

The original algorithm used a single metric to quantify the distri­
bution of subset positions. The number that it used was the distance 
between the furthest two positions and they called it “scatter.” The 
rule was a constant times this scatter. Such a rule could be found 
quickly given a dataset with millions of error–scatter pairs. 

4 Current Extention 

The current work seeks to explore using a more expressive descrip­
tion of the subset position distribution. We would like to utilize the 
fact that there is much more information in the distribution than the 
scatter metric. So rather than characterize the distribution with one 
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summary number, I use a set of what I am going to call “p-scatters” 
computed as follows. 

p �1/p ��
|x − ˆ|x

Sp = 
n 

You will note that S2 is the standard deviation and S∞ is similar to 
the metric proposed by Misra. A value p need not be an integer nor 
be positive. In this paper, the values of p that are used are chosen 
by hand. Choosing the “best” values of p is a problem with which I 
am still grappling. Future work will tell whether a learning algorithm 
can be applied to determining which values are the most telling of the 
distribution. 

One property desirable in a rule function is that it be scale indepen­
dent. If all the errors double, the scatter should double and the error 
bound should also double. A quick check reveals that the p-scatters 
have this property. So will the rule function as long as it is a linear 
combination of the p-scatters. This means our rule function can be 
represented as a vector of weights. We have reduced the problem to a 
parameter estimation problem. 

4.1 Parameter Estimation 

The main idea is that the subset position distribution is somehow sim­
ilar to the distribution from which the estimate is sampled. If we can 
determine how the distributions are related, we can use the position 
distribution to estimate the error distribution and determine an error 
bound. If the errors were truly Gaussian, we could simply estimate 
the standard deviation, S2, and simply multiply it by six and call it a 
day. Alas, they are not and it will not be so easy. 

In general, parameter estimation problems consist of finding “opti­
mal” values for the parameters. “Optimal” values can be defined as 
those that maximize or minimize some function, for instance, mini­
mize the squared error, or maximize the margin of classification. The 
sense of optimal in this case is more tricky. Our value function on 
(error estimate) error is very non-linear. To the negative side of zero 
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Figure 2: The cost associated with making errors in our error-boundestimate. 

it has a value that is 10 million times the value on the positive side 
(see Figure 2). 

Given a set of p-scatters, consider the space of p-scatters with one 
additional dimension, namely error length, as the “vertical” axis. Now 
imagine that we plot 10 million data points in this space. The current 
problem is the same as finding the best hyperplane such that all the 
points fall bellow this plane. If we demand that this hyperplane, with 
normal n̂ pass through the origin (as we must if our rule is going to 
be linear) then we could define “best” to mean the one for which 

� 
−n̂ · d 

d∈scatter data 

is minimized. In high dimensional scatter-spaces and with millions of 
data points, there is no tractable way to find such a plane analytically. 

This was the problem that I was pondering when Justin presented 
learning the parameters of the chess evaluation function by means of 
an evolutionary algorithm[1]. The parameters in chess are not eas­
ily defined by a optimization problem. You want parameters that 
maximize the probability of winning the chess game! Just like in my 
problem, the algorithm wants to minimize a function that it cannot 
simply compute. If an evolutionary algorithm could find the chess 
values, I decided it would be worth a try on my scatter weights. 
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5 Evolutionary Algorithm 

5.1 Simulation Framework 

For other facets of my research, I had already developed a simulation 
framework that models a GPS constellation and receiver. The simula­
tion can provide pseudo-range snapshots for given times and locations 
on the earth. These pseudo-ranges are selected from a pre-determined 
error distribution. The position error is the distance between the true 
position and the one computed by the modeled receiver. The sub­
set distribution is generated by giving the receiver 20 subsets of the 
pseudo-ranges. The run-time of the simulation is linear in the num­
ber of subsets. For the current work, 20 seemed sufficient to estimate 
scatter while not being taking overly long. The quality of a subset is 
determined by its Dilution of Precision (DOP) which is a function of 
its geometry. I defined a cutoff DOP of 3 above which subsets are not 
considered. 1 

5.2 Population Details 

I used a population of 100 individuals although the computational ex­
pense of increasing this number is relatively minor. An individual in 
the population consists of a vector of weights, θ. A trial consists of sim­
ulating a pseudo-range snapshot and computing the scatter metrics, 
φ. Then for each member of the population we compute φT θ = ε�

max
, 

the estimated maximum error. If ε� is less than the true error, the 
max 

individual is killed. If ε� is less than the threshold for a safe landing 
max 

(10 meters in this case), the individual is given a point. On an intu­
itive note, these cases can be considered to be crashes and successful 
landing attempts, respectively. 2 All of the remaining cases (i.e. when 

max 
is greater than both the true error and the safety threshold) are ε�

1The constellation consists of 48 satellites in 6 orbital planes which, to a receiver, 
is similar to the one we can expect to see when GPS and Galileo are simultaneously 
operational. The receivers are always between the Arctic and Antarctic circles. The 
pseudo-range error distribution is a mixture of Gaussian .9N (0, 1m) + .1N (0, 3m) which 
is roughly ten times the range error typically exhibited by DGPS. 

2Technically, crashes are only cases when the estimate is bellow the safety threshold 
while the error is not. However with different thresholds or error scaling, any under­
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those cases when a landing was not attempted. Hence, the number 
of points that an individual has is equal to the number of successful 
landings they have had. 

A generation consists of 100 such trials. At the end of a generation, 
the individuals who are still living create progeny in proportion to the 
number of points that they have accrued. The children are created by 
mating or by mutation. Mating consists of a random blending of the 
weights of the parents while mutation consists of adding random varia­
tion to the parent. The decision of whether to mate or mutate is made 
randomly for each child. As pointed out by Jeremy and Justin[2], the 
proportions (1:1 in this case) were selected arbitrarily. This is a point 
where “meta-evolution” could potentially reap dividends. 

5.3 Convergence 

There was a serious problem with this setup. There is not enough 
experience in 100 trials to weed out the overly aggressive individuals. 
This means that the population would be dominated by the most ag­
gressive pilots and then be wiped out when a difficult case came along. 
We would need on the order of 10 million trials to be confident that 
we had exposed them to sufficient variation. But generating 10 mil­
lion new trials for each generation would take far too long. To fix this 
problem, before seeing the 100 new cases on which virility would be 
based, first an individual would have to survive a set of torture tests 
drawn from the most difficult trials seen previously. Initially, this set 
was filled with 100,000 ordinary trials but then they were gradually 
replaced by the most difficult ones encountered during evolution. In 
addition to solving the stated problem, it also ensured that future 
generations would be able to survive all of the hard trials that earlier 
generations had seen. In other words, without this addition, gener­
ations might forget how to deal with cases that their ancestors had 
survived. 

In the lecture given by Jeremy, Justin and Jennifer, they described 

estimate could result in a crash. Therefore all such instances are considered to be crashes. 
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reducing the variation inherent in mutation over the course of evolu­
tion to ensure convergence[1]. While this ensured convergence, it did 
not ensure a satisfactory convergence. If the population converged too 
far, it tended to be wiped out by rare (once every 1,000 generations) 
but very difficult new cases. 

The first fix for this was to keep an evolution history that allowed 
de-evolution. A difficult case might require that the entire population 
de-evolve a long way before there were members who could survive. 
This typically would only be a very small number of individuals. With 
so few members, there was very little variation as well as no way of 
comparing fitness. In other words the sole survivor might be the sort 
who never attempts a landing. 

In the end, I decided to avoid convergence. Instead, I tried to maintain 
the variance of the population at a constant level. This is accomplished 
by having the frequency and magnitude of mutations stay constant. 
The problem with that is that there is no time when the evolution ap­
pears done. Another problem is that the evolution might be unable to 
settle down into a narrow minima. The benefit is that there is always 
substantial variation in the population. It is very seldom that it is 
forced to de-evolve. Similarly, if the population is very badly thinned, 
the variation will quickly return. 

6 Experimental Results 

Since a simulation to adequately demonstrate the required reliability 
of 1 error per 107 trials takes about a week, I did not have time to run 
at that level of accuracy. Instead I used a reliability on the order or 1 
per 105 . The number of trials per generation was set at 100 with the 
lower reliability in mind and will likely be increased for longer simula­
tions. Each evolution consisted of 1500 generations. Then they were 
tested against a test suite consisting of 105 trials. As of yet, there is 
no rigor in determining these numbers. Rather, they were chosen to 
be large enough to be meaningful while small enough to allow me to 
run a reasonable number of cases. 
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Rule functions (so long as they provide satisfactory safety) are evalu­
ated in terms of the fraction of the time that they attempt landings, 
Availability of Service (AS). A landing is attempted if the rule func­
tion, φT θ is less than the safety threshold of 10m. 

For each evolution, the 5 most healthy individuals at the end of the 
evolution are reported. In Table 1, I have shown results for evolu­
tion using p = [1, 2,∞]. The first two are constrained so that all the 
weights in θ must be non-negative. The third example is not con­
strained. Table 2 shows the results from running the evolution with 
other sets of p-scatters. 

For comparison, I am also presenting the AS for the LGG1 algorithm as 
well as the tightest single-scatter rules possible. Note that the tight 
rules are generated on the test data rather than the training data, 
therefore they are tighter than could have been learned. Also in­
cluded are the results from minimizing the Perceptron Criterion func­
tion. The details of that methodology are beyond the scope of this 
paper. Suffice it to say that those results are generated by very patient 
gradient descent in [error rate, θ] space. 

7 Conclusions and Future work 

While I would say that the evolution seemed successful, the results 
were generally disappointing. Table 1 shows that in the three-dimensional 
case, the evolutionary algorithm can generate a rule function of qual­
ity very near that of the other methods available. That also means 
that evolution failed to distinguish itself as a particularly good way 
to determine these parameters. This could be due to the fact that 
the variance is kept relatively high during the entire evolution. That 
could mean that the population could “vibrate out” of narrow minima. 

The results for higher dimensional parameter spaces were unexpect­
edly bad. Since these spaces have the earlier case as a subspace, one 
would expect the results to be at least as good. The difficulty was 
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Test Weight AS 

p=1 p=2 p=∞ 

0 0 

0 0 

0 0 

0 0 

Evolution 1 1.1832 2.5478 1.4925 0.3070 

1.2236 2.5292 1.4912 0.3045 

1.1606 2.5472 1.5200 0.3016 

1.1991 2.5537 1.5005 0.3015 

1.2563 2.5321 1.4899 0.3000 

Evolution 2 1.1897 2.4237 1.5522 0.3068 

1.0256 2.5540 1.5642 0.3056 

1.8587 2.5982 1.1938 0.2977 

1.0494 2.6369 1.5486 0.2945 

1.0274 2.5322 1.6210 0.2919 

Evolution 3 9.7900 -0.8000 -0.6800 0.3330 

7.8352 0.7793 -0.5926 0.3245 

6.2668 -0.7404 0.9330 0.2908 

6.0099 0.6367 0.4130 0.2753 

6.1092 -0.7742 1.1085 0.2633 

Tightest fit 7.2766 0.3325 

6.3824 0.3398 

3.7250 0.2164 

LGG1 4.5 0.1004 

Perceptron 1.8256 1.7893 1.5838 0.3081 

2.5281 2.1994 1.0281 0.3188 

2.5166 2.1739 1.0463 0.3187 

Table 1: Learned weights and Availability of Service (AS) 
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Trial 1 Trial 2 Trial 3 Trial 4 

p weight weight weight weight 

.001 x x x .8462 

.01 x x 2.7628 .5965 

.1 x 17.0594 -1.9202 2.6827 

.5 x 11.3105 4.9851 3.5754 

1 2.7564 -2.8706 -4.9647 .2209 

1.5	 x -7.6041 5.6760 -2.2266 

2 .6937 -9.3782 5.6863 .2611 

3 6.6544 x x 2.7220 

4 3.7766 x x x 

∞ -3.9807 1.8966 -2.1745 .7474 

AS .2673 .2358 .2707 .4196 

Table 2: Weights and Availability of Service using other p-scatters 

probably due to the higher prevalence of local minima in the higher 
dimensional spaces. But then the fourth trial, with 9-dimensional 
scatter, had very good results. I will explore whether that was due 
to over-fitting or not. If they are valid, then the evolutionary algo­
rithm might be the only way to estimate the parameters in such a high 
dimensional space. Another disappointment is that when the set of 
p-scatters is changed, the weights can change sign, and important val­
ues can suddenly become unimportant. This means choosing a good 
set of p values isn’t simply a matter of finding the most informative 
individual values and collecting them. 

The main difficulty then seems to be choosing a good set of p val­
ues with which to compute scatters. Picking too many parameters 
adds more local minima to our parameter space and creates a risk 
of over-fitting. Too few under-utilizes the information in the position 
distribution. I will try to extend the learning algorithm to also include 
picking which p-scatters to consider. 

And of finally, before I approach the FAA with any of this, I need 
to collect more data. . . more data in terms of more validation cases, 
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larger simulations, larger subsets and various satellite geometries. I 
need to test the algorithm against more pathological error models. 
And, needless to say, I must be more rigorous. 
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