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1 Introduction

In the context of anaturd disaster, or when a military pilot hasto gect in enemy

territory, Search and Rescue teams often have to find people in unknown or hazardous
aress. For safety reasons, Search and Rescue teams of the future will probably make use
of unmanned aerid vehicles. For such arescue vehicle, the ability to locdize itsdlf, both

to avoid dangers (mountaing'enemy bases) and to scan the entire area until survivors are
found, isessentid. However, this area may be unknown (enemy territory), or not mapped
precisdy (mountain summits). Moreover, globa positioning systems (GPS) may not be
usablein the area, or they may be not accurate enough, asis often the case in areas with
densefoliage.

In such astuation, a helicopter capable of mapping its surroundings while
locdizing itsdf on this map would be of specia interest. In this project, we have
investigated such aplatform. We have implemented a SLAM agorithm for a helicopter
moving in an areawith uneven terrain and using 3-D rangefinder sensors. Our goal was
for this helicopter to be able to create a 2-D map of the ground surrounding it, while
locdizing itsdf on that map.

2 Godls of the Project

Figure 2.1: Problematic Terrain

Thefirg god of this project isto be ableto do 2-D SLAM in asmulated, forested
outdoor environment where the ground is not flat. Our platform of choiceisasmall,
radio-controlled helicopter. In such agtuation, traditiond 2-D SLAM is problematic
because the horizonta plane of the laser rangefinder can hit contoured ground, causing
spurious landmarks to be placed on the map. The laser rangefinder can also miss low-
lying landmarks if the helicopter is hovering too high. For instance, in the contoured
scene in Figure 2.1, no horizonta plane of laser rangefinder casts can hit al the
landmarks (rocks and tree trunks) at once, and the raised ground could be seen asa
spurious landmark. Thus, we will usefull 3-D laser rangefinder scans so that we can see
dl thelandmarksin the scene. We will then processthe 3-D scansto yield 2-D, leveled



range scans. Once we have 2-D, leveled range scans, we can use traditiond 2-D SLAM
agorithmsto generate a 2-D map.

The second godl of this project isto compare two common SLAM agorithms and
ther abilitiesto perform 2-D SLAM in our environment. The two agorithms are
FastSLAM, which uses landmarks as its map representation, and DP-SLAM, which uses
occupancy maps. Both algorithms use particle filters to perform Bayesan updates. Each
has advantages and disadvantages in terms of processing time, memory storage, and pre-
processing requirements, and so our god isto find out what the benefits and pitfals of
each method are, and to evauate their performance and requirements.

Thethird god of the project isto evauate the ability of each 2-D SLAM
agorithm to be extended to 3-D, by which we mean tracking the helicopter's pose as
(x,y,z,9) rather than smply (X,y,q). In generd, we assume the hdlicopter is controlled to
avoid sgnificant pitch and roll, and so only yaw is considered. If we could track the
helicopter's elevation using either the relaive devation of the landmarks or the evation
of the points on the occupancy map, we would have the full 3-D pose of the helicopter.
With thefull 3-D pose, we could create either 2-D terrain maps (by appending just the
ground points to the determined path of the helicopter), or even full 3-D maps (by
gppending the full 3-D scans to the determined path of the helicopter).

Thus, the objectives of this project are:

1) Tosmulate an gppropriate forested outdoor environment and the
motion/perception of asmall, radio-controlled helicopter

2) To segment and process the 3-D rangefinder datato create leveled range scans,
rejecting spurious landmarks

3) To perform 2-D SLAM using the leveled range scan data with both landmarks
and occupancy maps, and to compare these two agorithms

4) To evauate the ability of 2-D landmark and occupancy map SLAM dgorithmsto
be extended to 3-D

3 Previous Work

In terms of mapping of non-flat terrain from a helicopter, (Thrun, 2003) createsa
3-D magp usng 2-D rangefinder data. A small helicopter is equipped with rangefinders
whose measurements lie in a plane perpendicular to the direction of motion. Using scan+
aignment techniques, the noisy data is combined into a smooth 3-D picture of the world.
However, they are not using SLAM, and the helicopter cannot image the same location
twice with their agorithm.

(Montemerlo, 2003) creates a 3-D map of a non-flat underground mine from a
cart platform. The robot uses a forward- pointing vertica rangefinder (whose planeis
pardld to the direction of motion and the up-direction) to rgject spurious ‘wall’
detections made by a horizonta rangefinder pointed at non+level ground. The resulting
datais used to create a 2-D magp with anormd 2-D SLAM dgorithm. The 3-D map is
then created using a plane of rangefinder measurements perpendicular to the direction of
motion, combined using the helicopter’ s estimate of its location on the 2-D map
generated using SLAM and smoothed using scantdignment. Thiswork is Smilar to what
we are attempting to do, in that it performs 2-D SLAM with disambiguation of spurious



measurements due to contoured terrain. However, the leveled 2-D map they create uses
only asingle plane of verticd measurements. Thisis sufficient under the assumption that
the world is reasonably rectilinear, conssting only of walls and ground. However, thisis
insufficient for outdoor environments.

Our project is essentidly a combination of three papers. Thefirst is (Brenneke,
2003), which uses a motorized cart equipped with arotating 2-D laser rangefinder, just as
described in our proposed project, to map a contoured outdoor environment. The paper
describes how to use the 3-D cloud of points to disambiguate ground from landmarksin
order to create aleveled 2-D range scan. The techniques we will be using to create our
leveled range scans are largely Smilar to those used in this paper.

The second paper is (Montemerlo, 2002), on the FastSLAM dgorithm that we
will use as our landmark-based SLAM dgorithm, and the third is (Eliazar, 2004), on the
DP-SLAM 2.0 dgorithm we will use as our occupancy map-based SLAM agorithm.

4 FastSLAM

Thefirg SLAM dgorithm we have implemented and andyzed is FastSLAM.
FastSLAM uses the principle of particle filtering to explore severd different hypotheses
about the location of the robot and the map at the sametime. It requires some pre-
processing of the data, Snce the obstacles are all assumed to be point landmarks.

In FastSLAM, aset of particlesis used to keep track of the position of the
helicopter and the positions and uncertainties of the landmarks. Each particle containsa
guess on the position of the helicopter, and the position and uncertainty for each
landmark it has observed so far.

The dgorithm is divided into four steps.

Motion Step: as the helicopter moves, the particles update its position based on the

moation inputs.

Data Association: in most red-life gpplications, the computer ignores the number

of the landmark it is observing (Isit ore it has seen before? Which one? Isita

new one?). The data association agorithm determines, for each particle, which
landmark it has observed.

Kalman Update for each set of observations and for each particle, the algorithm

updates the position and uncertainties of the landmarks.

Resampling: each particle is weighted based on its capability to predict the

observation that was made. A particle that predicts the observation that was made

with high probability gets ahigh weight. Then, the particles are resampled based
on those weights: the best particles are copied, whereas the bad ones are deleted.

The following sections present these steps in detal.
4.1 Motion
Each time step, the hdlicopter movesin reaction to theinputsit isgiven. Those

inputs are available to the FastSLAM dgorithm. However, some uncertainty is added to
the inputs reported to the algorithm, so that the helicopter motion does not fit perfectly



with the inputs. The different particles of FastSLAM sample the possible locations where
the hdlicopter might have moved, given theinputs. Thisis done by gpplying the dynamic
modd to the position of the helicopter, and having each particle sample from the
probability distribution function of the resulting helicopter pogtion after motion. Figure
4.1 shows the particles sampling the possible locations of the helicopter after it has
moved.
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Figure 4.1: Propagation Step

In our program, the input conssts of arotation angle defined in the horizonta
plane (again, the helicopter is assumed to be controlled in a manner that avoids pitch and
roll, and thus we consider only yaw), and the 3D vector of itstrandation in its own frame
of reference. To thisided modd is added Gaussian noise, both in rotation and in
trandation. The motion modd is given by the following equations

q(t+1=q(t)+ Dq(t+ D +e(t+1)

x(t+2 = x(t)+cos(q(t+1))*Dx(t+1)- sn(q(t+D)*Dy(t+D+e, (t+1)
y(t+1) = y(t) + sn(q(t + 1)) * Dx(t + 1) + cos(q(t + 1)) * Dy(t + 1) + e, (t + 1)
2(t+1) =2z(t)+Dz(t+)+e,(t+1)

Essentidly, the motion consigts of arotation in the horizontd plane and atrandetion in
the helicopter's frame of reference.

4.2 Data Association

In our implementation, the helicopter carries a 3-D laser rangefinder. The only
information available to the helicopter is the disance a which the laser hit something in
any given direction. However, since FastSLAM is based on keeping track of landmark
locations, an agorithm must decide which landmark the laser has hit a each time step.
This problem is called the data association problem: is each observation associated with a



landmark we have seen before or anew one, and if it is one we have seen before, which
one?

For each particle and for each landmark this particle has dready seen, the
agorithm computes the probability that the current observetion is of thislandmark. This
is done by computing the distance from the landmark to the observed obstacle, and using
the uncertainty on the landmark position to caculate how likdly it istheat this distance
could have been obtained by observing the landmark. The dgorithm aso computes the
probability that the observed obgtacle is a new landmark, which is essentidly the
probability that the observation did not belong to the most likely landmark.

Figure 4.2 shows a sample data association problem. The observed obstacleis
vay far from L2, 0 it is unlikely to be that obstacle. On the other hand, the observed
obstacleisdoseto L1, which has a pretty high uncertainty. Thus, it islikely thet the
observed obstacleisL1.

The observed obstacle is
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The observed obstacle 45X )
is not likely tobe L2 — 2
Figure 4.2: Data Association

For each particle, the weight for alandmark (which is proportiona to the
probability that this landmark is the one we are observing) is given by:

W= e'(%z

whered isthe distance between the landmark and the observed obstacle and 1 isthe
uncertainty (standard deviation of the Gaussian) associated with that landmark.
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where P isthe covariance of the landmark, . isthe uncertainty of the laser rangefinder

observation, N is number of laser casts that were averaged to obtain the observed location
of thelandmark, s isthe standard deviation of the laser caststhat hit the landmark, and
. isthe uncertainty on the robot position.




The probability that the observed obgtacle is a new landmark is then given by:

®&d. 0
P=ef¢—="—, whereeaf istheintegrd of the Gaussan,d
e

min 1Stheminimum
in

distance to the landmarks, and I, . isthe uncertainty of the corresponding landmark.

4.3 Kadman Update

The observations performed by the helicopter are used to update the positions and
uncertainties of the landmarks. To accomplish this update, a Kalman Filter is applied to
the landmark chosen by the data association algorithm.  Since the landmarks are
supposed to be motionless, the Kalman Filter is reduced to one single step: the Update
Step.

Figure 4.3 shows a Stuation where the Kalman Filter is applied. From the
observation and its uncertainty, the position and uncertainty of the landmark are

modified.
© ®

Update

Figure 4.3: Kaman Update

The equations for the Kalman Update, since the landmarks are assumed to be
motionless, are:

StateUpdate: X(t+1) = R(t) + K(t + 1) * (y(t + 1) - h(&(t))
K(t+2)= POHE+D)T(Ht+DPOHE+ )T + Rt +1) "

Covariance Update: P(t +1) = (I - K(t+ DH(t+ D)T)P(t)

In these equations, X(t) isthe state (pogtion of the landmark considered). K(t + 1) isthe

Kaman gain, defining the confidence the agorithm has in the estimate and in the
measurement. y(t + 1) isthe measurement a time (t+1). H is the measurement function,

and H(t) isits Jacobian at timet. P(t) isthe covariance (uncertainty) a timet.



4.4 Resampling

After each time step, the agorithm replicates the ‘good’ particles, and getsrid of
the ‘bad’ particles. For each particle, the probability of making the observation that was
made is computed. This probakility is the product of the probabilities of observing each
obstacle that was actualy observed. To compute the probability of observing agiven
obgtacle, the agorithm finds the closest landmark, and computes the probability of
making the observation that was made given that it is the observed landmark.

With this scheme, however, the particles can produce a new landmark each time
an obsarvation is made, and will thus have avery high probability of making the
observation. To avoid the creation of excess landmarks, we add a pendty: the more
landmarks a particle has, the lower its weight.

Figure 4.4 represents the resampling dgorithm. Before resampling, the particles
are spread out, because of the motion step.  After, only the good particles are kept by the
dgorithm.

Figure 4.4: Resampling the particles

The weight for each particle isbasicdly the probability of making the observation
that was made. Thus, it isthe product over the observations of the probability of making
each of the observations. This probability is, as before:

W= e_(%z

where: d isthe distance between the landmark and the observed obstacle and 1 isthe
uncertainty.

Then, to avoid alowing a particle to create excess landmarksto fit the
obsarvations, we include a pendty for having too many landmarks: the weight of each
particleisdivided by the number of extralandmarksit hasin itsline of Sght, above the
number of observed obstacles. For ingtance, if a particle has 5 landmarksinitsline of
sght, and the hdlicopter has observed 3 landmarks at this time step, the weight of this
particleisdivided by (5-3) = 2.



5DP-SLAM
5.1 Introduction

Many SLAM dgorithms (including FestSLAM) use landmarks to represent the
world that the robot istrying to map. This can be very efficient Snce the state of the
world is condensed down to areatively smal number of key points. However, in red
environments, it can be very difficult to successfully identify and disambiguate
landmarks from sensor data. Furthermore, the idedlized representation of landmarks as
single points in space does not always correspond well to the redity of three-dimensond
space where objects have a non-zero size and may gppear different from different angles.

To avoid these problems, some SLAM dgorithms (including DP-SLAM) use an
occupancy map to represent the environment rather than landmarks. An occupancy map
issmply adiscretization of spaceinto aregular array. Each point in the array can then
be marked as either “empty” or “occupied.” Figure 5.1 shows an example 2-D world and
an occupancy map representation of it. By using an occupancy map, it is no longer
necessary to find specific landmarks. When an observation (such as alaser range-finder
measurement) of the world is made, the map can be consulted to determine whether an
object was expected in the observed location. In essence, an occupancy map creates a
regular structure of smple landmarks that are very easy to observe.

g a
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Figure 5.1: Overhead view of world with objects and its corresponding
occupancy map representation.

However, usng occupancy maps with particle-filter based SLAM provides its
own set of new problems. One gpproach is to make each particle represent only the Sate
of the robot (e.g., podtion and angle) and have dl particles share a Single occupancy
map. The difficulty with thisisthat different particles may need to make conflicting or
incons stent updates to the map. A more robust approach is to have each particle Sore its
own map in addition to the robot sate. Then, each particle will remain internaly
congstent and particles whase maps do not accurately match the red world will Ssmply



be culled during resampling. This alows the dgorithm to maintain multiple different
conflicting hypotheses about the world until it is able to resolve the ambiguity by
additional observations. However, from apracticad standpoint, storing and manipulating
a complete map for each particle can be extremely expendve, both in terms of Storage
and computation.

An additiond problem with using occupancy maps isthe fact that the
discretization of the world creates an imperfect representation of it. In the example
above, we have discretized both the shape and transparency of each object. Each grid
square is considered to be either completely full (opague to whatever sensor we are
using) or completely empty. In redlity, the area represented by each square will most
likely be only partidly filled or filled with something that is not consstently observed by
the sensors. Figure 5.2 shows examples of how these two Situations can cause problems
in a gtuation where alaser range-finder is used for observations. If the laser entersthe
sguare from as show in (8) and hits the rock, this square appears opague. However, if the
laser were to pass through the same square from the angle shown in (b) it would appear
trangparent. Findly, if the rock were replaced with something like atree (c) which has
many small leaves that can move in the wind, the laser may penetrate to different depths
on different observations, even if the observation angleis the same.

& @ &
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Figure 5.2: Differing observations due to inaccuracy of discretization

The DP-SLAM dgorithm is an attempt to diminate these problems and make
occupancy map SLAM practica and robust in chalenging environments. The first
published verson of DP-SLAM [2] (referred to by the authors as DP-SLAM 1.0)
addresses the problem of map storage and manipulation. DP-SLAM 2.0[3] buildson
DP-SLAM 1.0 by adding a probabilistic occupancy modd. Both of these innovations
will be described in more detail below.

5.2 Algorithm

The basic gructure of the DP-SLAM dgorithm is the same as a standard particle
filter SLAM dgorithm. Firdt, particles are propagated according to the motion modd.
Then, observations are made and used to update each particle’ s map and calculateits
weight. Findly, particles are resampled probabiligticaly according to their weights. The
process is then repegted for the next time step. The differenceslie in the way that DP-
SLAM represents the state of the world. Rather than using a Kaman Filter on landmark
positions, DP-SLAM uses probabilistic occupancy maps. Since the core agorithm is



farly sandard, and was described in detall in the FastSLAM section, only the unique
portions of the algorithm will be described in detall here.

Although it is desirable for each particle to have its own occupancy map, the
burden of storing and copying these maps can be enormous. In particular, during the
resampling phase of the particle filter agorithm, particles are selected based on ther
weights and then copied to form the next generation of particles. Since each particle
contains its own map, it too must be copied to the new particle. Because severd new
particles can be created from asingle old particle, the data must actudly be copied rather
than just reassgned to the new particle. Thisis particularly wasteful considering that
many particles are storing the same data about parts of the map that have not been
observed recently or never observed at all.

To address this, DP-SLAM uses only asingle map where each square in the map
is actualy atree containing observations for different particles. When observations are
made, each particle insertsits updated data into the appropriate trees, tagged with the
particle sunique ID number. Thus, no work is wasted copying or modifying squares that
are outside the current range of observation. Aslong as a baanced tree structure (such as
aRed-Black Tree) is used to store the observations, the time required to insert anew
observation will be O(log P), where P is the number of particles being maintained.

However, the price for this efficiency in memory utilization is thet retrieving data
from the grid is significantly more complicated than asmple aray access. When a
particle needs to retrieve the data for a pecific square, it first searches the appropriate
observation tree for data tagged with its own ID number. If noneisfound, it doesn’t
necessarily mean that this particle doesn’'t know what’sin that square. 1t may just mean
that this particle has not changed that square and therefore inherited the value from the
particleit was resampled from. Thisearlier particleis caled an ancestor of the current
particle. Therefore, the particle must next search the tree for data tagged with its
ancestor’sID. If none, isfound, it must search using its ancestor’ s ancestor’s ID and s0
on until it findsavaue or runs out of ancestors (indicating that it knows nothing about
that square). Thus a particle must keep track of its lineage to enableit to retrieve the
most recently updated vaue for a given map square.

There are two problemswith this. First, the lists of ancestor particles will
continue to grow with each time step, thereby imposing alimit (due to memory
exhaustion) on the number of time steps that can be executed. Second, storing these
ancedry ligsisinefficient because they must be copied during resampling and again,
different particles resampled from the same ancestor will have largdly the same list.

Since each particle may be resampled by multiple “child” particles, it makes senseto
maintain the ancestry in atree aswell. Each nodeinthistreeisa particle, with the

current batch of particles being the leaves. If each particle maintains just a pointer to its
parent, we have no duplication of data when multiple particles are sampled from the same
parent. Since each particle’ smap is actualy stored in the observation trees, very little
extramemory is required to keep older particles (which normaly would have been
deleted) in the tree. To ensure that the ancedtries form asingle tree, dl the particlesin the
firg generation are treated as through they were sampled from asingle root particle.
However, the size of thistree can till grow unbounded as we add new generations of

particles.



To keep the ancestry tree managesble, two mai ntenance operations are required.
Fird, particlesthat are not selected for copying during the resampling phase (and
therefore have no children) may smply be deeted. If this causes the particle' s parent to
become childless, it may aso be deleted, and so on, up thetree. When apaticleis
deleted, its observations are also deleted from the observation trees. To accomplish this
efficiently, each particle must sore aligt of al the map squaresthat it has updated.
Second, if aparticlein the tree has only one child, the parent and child may be merged
into asingle node that takes ownership of the observations from both particles. Thisis
accomplished by removing dl of the observations from one of the nodes and reinserting
them using the ID number of the other node. The lists of updated cells are then merged
and the node can be deleted. Running these two maintenance steps after each resampling
ensures that the ancestry tree has exactly P leaves and a minimum branching factor of
two. This meansthat the depth of the treeis O(log P) and the total number of nodesin
thetreeislessthan 2*P. Thusthe Size and depth of the tree are dependent only on the
number of particles, not the amount of time the a gorithm has been running.

It is not immediate obvious from the above description of this adgorithm that it is
more efficient than smply copying complete maps. Although it is too lengthy to present
here, the two DP-SLAM papers present a thorough anaysis of the dgorithmic
complexity. They are able to show that DP-SLAM is asymptoticaly far superior to
smple copying in the common case where the portion of the map observed a each time
gep isasmdl fraction of the tota map.

Using the above tree-based algorithms, it is possble to efficiently maintain
separate occupancy maps for each particle. The rest of this section will explain what data
is stored in the maps and how it is used to cdculate particle weights. Because laser
range-finders are the typica choice for making observationsfor SLAM, the remaining
discusson will focus on them.

To address the problems mentioned earlier related to partidly filled or semi-
transparent map squares, DP-SLAM 2.0 introduces a probabilistic occupancy modd!.
Rather than marking each square as e@ther “full” or “empty,” DP-SLAM attemptsto
estimate the probability that a laser passing through the square will be stopped and the
distance to the square will be returned by the range-finder. Thisis accomplished usng a
parameter r for each square. The papersrefer to r asthe “opacity” of a square but,
based on theway it is used, it might be more gppropriate to cal it the “transparency.” In
other words, the higher thevalue of r asguare has, the lesslikely it isthat alaser
passing through that square will be stopped. The probability of stopping should aso be
related to the distance the laser travelsthrough a square. If the laser barely nicks the
corner of asquare, it islesslikely to be stopped than if it traveled dl the way acrossthe
square. Therefore, the probability that alaser will be stopped while traveling a distance x
through a square with opacity r isdefined as,

P(x,r)=1-¢e¥"

Using this vaue, the probability of any path that a laser takes through a series of
squares can be caculated. Since the laser dways travelsin agraight line, the paths will,



in redlity, dways be rays originating at the hdlicopter position and with alength given by
the range-finder.

Figure 5.3: Example laser cast. Light gray squares are merely passed
through. The dark gray square is where the laser stopped.

Intuitively, we caculate the probability that the laser will not be stopped in each square
that the laser merdly passes through, and the probability that it will be stopped in the
sguare that terminates the path. The product of these probabilities is then the probability
of the complete laser path. If the squares dong the path are numbered in the order that
the laser encounters them from 1 to i, then the probability that the laser will have traveled
that path and stopped at squarei is,

P(stop =i)= Pc(x,ri)() (1' Pc(xj,r 1))

it
j:

[uN

The last factor to account for isthe laser error modd. Firg, the distance d, from
each square dong the laser path to the end of the path is calculated. Using the laser error
modl, the probability that the range returned was off by d. , P, (d |stop =i ) canbe
caculated. Asinthe papers, laser error was assumed to be Gaussian with a mean of zero

and stlandard deviation equd to the range-finder “accuracy.” Then we cdculate the
probability that the laser actudly stopped in each square dong the path and multiply it by

P, (d|stop=i). Thesum of all these probahilitiesisthe total probability of agiven
measuremeant,

3 R.(d,[stop = j)(stop= j)

=

To cdculate the complete weight for a particle, we take the product of the probabilities of
al its measurements.



Toedimater for each square, two parameters are maintained: d, , the cumulative

distance that lasers have traveled through the square and h, the number of timesthet the
laser was observed to stop in the square. Thusfor each laser measurement, the path of
the laser through the grid istraced. At each square, the distance the laser travels through
the square is cal culated and added the value of d, aready stored there. For thefina

square in the path, the vaue of hisincremented. The estimated vaueof r isthen
r =d,/h.

5.3 Implementation

Aswith FatSLAM, we implemented DP-SLAM in Matlab. Although Matlab
excds at deding with vectors and matrices, it does not include native support for the tree
data structures we required. Fortunately, we were able to find a free Matlab toolbox
(Keren) that implements Red- Black trees. This toolbox makes use of a Matlab class
cdled apointer (Zolotykh). The pointer classiswhat alows nodes to refer to each other
as parents or children. We were able to use the Red-Black tree structures directly for the
observation treesin the occupancy map. However, since the ancestry treeisless
structured, we used the pointer class directly to alow each particle to refer to its parent in
the tree.

According to the DP-SLAM papers, each node in the ancestry tree (i.e., the
particles) needs to contain a unique ID number, a pointer to its parent node, alist of the
map squares it has updated and, at least for the current particles, the robot pose. We
found that this was insufficient information to perform the pruning and merging
operations required to maintain the tree. In particular, pruning and merging both require
some knowledge about the number of children anode has. We considered adding
pointers to each node for its children but realized that this was excessve since thetree is
only ever accessed from the leaves to the root and dl that was required was asimple
count of the children. Therefore, afield was added to each particle indicating how many
children it hasin the ancestry tree. This count isincremented as children are added
during resampling and decremented as nodes are removed during pruning.

We dso found that the dgorithm given for merging nodes with their single
children was not practica given the data stored in each node. It isonly aminor point but
the paper suggests moving observations from the child node to the parent and then
deleting the child. Thiswould require dl the children of the child to have their * parent”
pointers updated to point to the parent. Since nodes do not store pointers to their
children, it isimpractica to find and update them. We found that it was much smpler
(and gave the same result) if the observations were transferred from the parent to the
child and then the parent was ddleted. In this case, only the “parent” pointer for the child
needed to be modified to point to its parent’s parent. Since parent pointers are stored, it
istrivid to find anode s grandparent.

Although using the Data Structures and Pointer libraries saved us considerable
time and effort, we were somewhat frustrated by the poor performance of the pointer
class. Congderable energy was expended determining why tree accesses were SO Sow
and attempting to work around the problem. Eventudly, we determined that ng a
vaue using a pointer was two orders of magnitude dower than anative access. By



carefully reorganizing data and caching vaues to minimize pointer access, we were able
to cut the run time for DP-SLAM in hdf. However, we were ungble to diminate dl
accesses and profiling suggests that amore efficient pointer implementation could cut the
run timein haf again. Thered lesson learned isthat Matlab is not a good choice for
implementing tree-based algorithms. Both in terms of speed and memory usage, it isfar
inferior to C/C++ when dedling with tree data structures.

One important agpect of this agorithm that is not covered in detail by the papers
is determining which grid squares alaser cast passes through and what distance it travels
through each. Fortunatdly, thisis a standard problem in computer graphics and can be
efficiently solved using the Digitd Differentid Andyzer (DDA) dgorithm. Our
implementation of this dgorithm is generd enough to work with rays and grids of any
dimensiondity gresater than or equd to two. (Of course the dimengondity of therays
and grids must agree.)

6 3-D Helicopter Smulation

The smulated world used to collect 3-D rangefinder data was created in Open Dynamics
Engine, an opensource physics engine. However, no physics smulation components
were actualy used; only the collison detection system was needed for our gpplication.
The movement of the helicopter is caculated for each step based on its current location
and the inputs from a human driving the hdlicopter on-screen, and the helicopter is
teleported to the next location for the next laser rangefinder sweep. Asyou can seein the
picture of the smulated world in Figure 6.1, the world conssts of abumpy terrain, rocks,
trees, and the helicopter. The white spheresin the picture are the locations on terrain,
rocks, and trees hit by the helicopter's laser rangefinder, which sweeps out a 3-D
pincushion of laser casts a intervas of 5 degrees horizontally and 5 degrees vertically.
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Figure 6.1: The Smulated World




The types of data recorded from the smulation are as follows: movement inputs
to the helicopter, distances reported for each laser rangefinder cast, and for asmplification
of the task of segmenting landmarks from ground, the type of object hit by each laser
rangefinder cast. In (Brenneke, 2003), the task of segmenting ground from objects of
interest above ground is done in rea-world Stuations. In that case, landmark points are
defined as laser cast points that have & least one other point directly below them within
the same vertical scan (and thus are vertica surfaces). This technique is good for picking
out tree trunks, pillars, and fences, but it is not as good for picking out objects such as
rounded rocks. In our smulation, we use both tree trunks and rocks for landmarks, and
S0 aproper segmentation technique for our system would require dightly different
heurigtics. Also, our smulated rangefinder's resolution is not as good as the one used in
(Brenneke, 2003), which has aresolution of 1 degree, due to the large computationa
requirements needed to maintain such high resolution in the smulation. Thus, to ensure
that even landmarks with only one point per vertica scan may be used, we use additiond
information provided by the smulation (the type of object hit) to Implify segmentation
of the laser data.

7 Leveled Range Scans

In order to perform 2-D SLAM on contoured ground, we needed to use 3-D laser
rangefinder scans to avoid spurious landmarks from hilly ground and to see landmarks
that would not appear in a2-D scan. However, in order to use the 2-D SLAM dgorithms,
we need 2-D sensor inputs. Thisis where leveled range scanscomein. A leveled range
scan isa3-D scan that has been squashed to a 2-D scan, with dl the rdlevant landmarks
and obstaclesincluded.

In order to create aleveled range scan, we must segment the 3-D point cloud, as
described @bove. Landmark points, which in our case include those hitting tree trunks
and rocks, are separated from ground points and unwanted overhang points such as tree
tops. Thelandmark points are then squashed to the level of the nearest ground pointsin
their vertical scans, so that the z position of the resulting landmarks is the height of the
ground around the landmark. While the zpositions are not used for 2-D SLAM, they are
used for 3-D SLAM, in which the elevation of the helicopter is tracked; we will discuss
extensonsto 3-D later on. Asyou can seein Figure 7.1, the scene on the left is turned
into the segmented point cloud on theright. Cyan points represent ground, red points are
landmark points, blue points are ignored treetop points, and black asterisks are squashed
landmark points.
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Scene From Helicopter Smulatior Segmented Point Cloud
Figure 7.1: Segmented Point Cloud

To obtain the leveled range scan from the segmented point cloud, we smply
ignore dl the zvaues. The 2-D leveled range scan and the corresponding overhead view
from the Smulation are shown in Figure 7.2. The 2-D leveled range scan must then be
processed into the relevant inputs for the particular 2-D SLAM agorithm. For occupancy
map SLAM, the relevant inputs are the distances obtained by a 2-D laser rangefinder.
Thus, we find the first landmark point hit by each horizontd set of laser scans, and return
those values asif the world had been flat and a 2-D rangefinder were used. Theresulting
SLAM input is graphed in the lower |eft corner of Figure 7.2. For landmark SLAM, the
relevant inputs are the locations of landmarks within range of the hdlicopter's rangefinder.
However, landmarks can be large objects such as rocks. In order to obtain point locations
for each landmark, we average the locations of the points hitting asingle landmark. We
then input to the SLAM dgorithm the average location of each landmark, aswell asthe
number of points that went into the average and their standard deviation (for uncertainty
cdculations). The resulting inputsto the 2-D landmark SLAM agorithm are shown in
the bottom right corner of Figure 7.2, with circles denoting three andard deviations
around the average landmark location.
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Figure 7.2: Leveled Range Scan and Corresponding 2-D SLAM Inputs



8 FastSLAM Results

8.1 Leveled 2-D Find Maps
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Figure 8.1: Final map for FatSLAM with 50 particles

Figure 8.1 displays the find map obtained by leveled 2-D FastSLAM with 50
particles, after 20 time steps. The red shapes represent the actua locations of the rocks
and trees. The green circleisthe actua position of the helicopter, and the line extending
from the circle denotes the helicopter's orientation. The blue circle on top of the green
crdeisthe estimated postion of the helicopter. The black crosses are the estimated
positions of the landmarks (trees and rocks).

Asyou can see, we have created afairly large world for the helicopter to explore.
However, because DP-SLAM takes an excessvely long time to run in Matlab, we could
only run for alimited number of time steps. Thus, the helicopter sees only the center of
the map during the brief run. Figure 8.2 is the same map, but zoomed in. Aswe can see
on this map, the result is reasonably accurate—the black crosses are on the rocks and
trees they correspond to. Since the sensor is alaser rangefinder, the agorithm only has
access to the front edge of each obstacle. Thus, the cross is seldom the center of an
obstacle, since the hdlicopter never goes dl the way around any of the rocks.

The large size of some of the obstacles (the rocks) was alarge source of
inaccuracy for FastSLAM. Thisis because as the helicopter flies, it sees each rock from
adifferent perspective, and the laser cagts that hit the rock average to anew location.



Thus, as the helicopter moves, the nearby rocks appear to move with it. This sometimes
causes agreat ded of confuson while locdizing the helicopter. It dsoisasysematic
source of error that is not accounted for by our mode, which assumes that the landmarks
are point locations that do not move. Furthermore, while we somewhat take into account
the 9ze of arock by giving the dgorithm an indication of the spread of laser cast points
hitting the rock, there is no way to entirely account for the size and shape of alarge rock.
The rocks in our world are capped cylinders of varying lengths and at varying anglesin
the ground, and thus seeing along rock end-on gives no indication of itslength. This
leads to inaccurate estimates of uncertainty in the pogition of the landmark, sometimes
leading to spurious new landmarks.
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Figure 8.2: Fina map for FastSLAM with 50 particles, zoomed in.
8.2 Paths

Figure 8.3 digplays the actud and estimated helicopter paths. As one can see,
they arefairly close to each other, showing that the algorithm is reasonably accurate.
Figure 8.4 shows the same thing, but with the two sources of noise reduced: the motion
and sensor noiseisten timesless. As one can see, the error in pogition is greatly reduced.



True (green) and estimated (magenta) Helicopter Paths
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Figure 8.3: Actua and estimated helicopter paths.
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Figure 8.4: Actud and estimated helicopter paths (motion and laser noises divided by
10).



8.3 Speed

The amount of caculation time per time step required to run FastSLAM for
varying numbers of particlesis shown below in Figure 85. Thetime estimatesinclude
time for preprocessing the 3-D rangefinder data to yield landmark locations, which takes
about 0.1 sec. Asyou can see, the time per time step increases linearly with the number
of paticlesused. Thisis as one might expect. The accuracy of the results did not rise
ggnificantly with more than 50 particles, which takes only about 3 seconds per time step
to run. Thisisaready acceptable for most robotic SLAM dgorithms. If the
implementation had been done in C rather than in Matlab, the time would be greetly
reduced.
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Figure 8.5: Time needed to run FastSLAM
8.4 Memory Usage

Figure 8.6 shows the total memory used while doing FastSLAM for varying
numbers of particles. This amount includes an estimate of the amount of memory needed
to do preprocessing of one time step's worth of data to find landmark locations. Asyou
can see, the amount of memory needed dso varies linearly with the number of particles
used. For 50 particles, only 2 MB was required; again, if the implementation were done
in C rather than Matlab, this number would probably be significantly less.



Memory Usage for FastSLAM
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Figure 8.6: Memory Usage for FastSLAM

8.5 3-D FastSLAM

So far, the dgorithms we have compared use a*“leveled 2-D" gpproach: the
observations zvaues are ignored, and a2-D SLAM dgorithm is used to generate a2-D
map. Now we will talk about doing FastSLAM in 3-D. In environments where the
robot's elevation does not change significantly, one can create a 3-D map of the
environment by gppending 3-D scans to the path determined by a2-D SLAM dgorithm,
asin (Montemerlo, 2003). The test run we did had the helicopter hovering at the same
levd throughout, so this would even have been possible with our data. However, if the
robot's elevation can change sgnificantly, which it often does with a helicopter platform,
one must track the robot's elevation in order to create a 3-D map of the environmert.

As mentioned in the section on creating leveled range scans, the landmark points
are uashed to the level of the nearby ground, so that the position of atree landmark is
viewed as apoint at the base of thetrunk. This processng was done for usein 3-D
FastSLAM. The 2-D FastSLAM dgorithm extends easily to 3-D. In 3-D FastSLAM, the
helicopter's pose is tracked as (x,y,z,q) rather than smply (x,y,q), and the landmark
positions are (X,y,2) ingtead of (x,y). The Kaman Filter updates are changed to add the
new dimension gppropriatdy, and the rest of the agorithm isthe same. The
computationd difficulty of doing 3-D with FasSLAM isonly incrementaly more than
that of doing 2-D. Thisis one advantage of using FastSLAM over DP-SLAM, since, as
we will discuss shortly, doing DP-SLAM in 3-D requires a prohibitive amount of
additiond computation.

Figure 8.7 represents a 3-D map obtained after 20 time steps. Again, the red
circles are the actual postions of the obstacles. The green and blue circles are the actua
and estimated positions of the helicopter, respectively. The black crosses represent the



estimated positions of the observed landmarks. The size of the crosses represents the
uncertainty on their postions.
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Figure 8.7: 3D map of the world obtained by 3DFastSLAM after 20 time steps.

To make the find map clearer, Figure 8.8 represents the find map obtained by 3-
D FastSLAM, to be compared with the map in Figure 8.2. Aswe can see, the accuracy is
very comparable. The time per time step is aso very smilar to that obtained for 2-D
SLAM (3.5 sec for 50 particles).
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Figure 8.8: Find map for 3D FastSLAM (the map is seen from top)



Figure 8.9 represents the actual and estimated squashed paths from 3DFastSLAM,
with the same noise parameters as the 2-D equivdent in Figure 3. Asyou can see, the
accuracy is comparable.
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Figure 8.9: Squashed actud and estimated paths from 3DFastSLAM.
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Figure 8.10: Actud and estimated dtitude aong the hdlicopter path

Figure 8.10 shows the actual and estimated helicopter atitude aong its path (note
the scale). Asyou can see, 3-D FastSLAM s capable of tracking the helicopter dtitude
fairly accuratdly.

8.6 Strengths and Weaknesses of FastSLAM
a) Strengths

Soeed: FastSLAM isfairly fadt, particularly as compared with DP-SLAM.
Memory requirements FastSLAM remembers only the helicopter’s and
landmarks' positions. Thus, if the number of landmarks is not excessive,
the memory requirement islow. Also, no additiond memory is required

to increase the resol ution (as compared with grid-based methods like DP-
SLAM).

Extension to 3-D: FastSLAM extends easly to 3-D, with only incrementd
changes in computationd requirements and time.

b) Weaknesses

Accuracy: The accuracy obtained was dightly disappointing. Partly thisis
due to the large size of the landmarks and the tendency of large landmarks
to appear to move aong with the helicopter.

Robustness: Two points make FastSLAM non-robust: 1) The data
association problem is not accurate. Moreover, afalure in the data
association has dragtic effect on the Kalman Filter. 2) The shape of the
obstaclesis not taken into account, sSince the Kalman Filter only uses
points. Thus, when arock is seen from one viewpoint or another, the
‘landmark’s position is moving as well, whereas alandmark should not
move.

Incomplete map: Unlikein DP-SLAM, the algorithm does not produce an
actual map of the landscape, only a map of the landmarks. Some post-
processing (such as gppending scansto the fina calculated poses) hasto
be performed before getting amap of the actua landscape.



9 DP-SLAM Results

9.1 Find Map

We were generaly pleased with the results produced by DP-SLAM athough we were
somewhat hampered by the processing and memory condtraints (see discussion below).
Figure 9.1 shows the find map produced by DP-SLAM with the actud landmark
positions and estimated and actual helicopter paths. DP-SLAM did not suffer from the
difficulties that FastSLAM encountered related to landmark size. With DP-SLAM, large
landmarks smply fill more squares and therefore do not gppear to move as the helicopter
moves around them.
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Figure 9.1: Final occupancy map produced by DP-SLAM overlaid with outlines
(blue) of the actud obgtacles in the environment. The shade of gray represents
P.(x,r ) for each square using the width of asquarefor x. Darker shades
represent a higher probability of stopping the laser. The actud path of the
helicopter is shown in green and the estimated path of the helicopter isshownin
magenta. This smulation used 10 particles and was executed for 40 time steps.



9.2 Helicopter path

The estimated path of the helicopter tracked the actua path fairly wel, even with avery
smal number of particles. From Figure 9.2, you can see that the dgorithm does drift
from the actud path when exploring new territory but does a good job of returning to the
actual path when it is able to observe areas which it has seen previoudy.
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Figure 9.2: Actua and estimated helicopter path detall from the same
smulation asabove. The actud path is shown in greed while the estimated
path is shown in magenta. The path begins at (0.5,0.5) and starts out going
clockwise the path ends near (0.5,0.53).

9.3 Performance

The one area where we were disappointed with DP-SLAM was the performance.
Although thiswas partly due to the inefficiency of implementing tree deta sructuresin
Matlab, it isdill clear that DP-SLAM isfar more computationaly intensve and uses
much more memory than FasSLAM. Thisislargdy due to the need to access and



update al the grid squares encountered by the laser casts rather than just operating on a
few landmark pogtions.
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Figure 9.3: Average wall clock time required for each time step with
varying numbers of particles. A more efficient implementation should be
able to cut these numbersin half.

Because of the enormous memory demands of our implementation, the length of
smulations was severely limited. With 100 particles, we were only able to execute 2
time steps before amachine with 1 GB of RAM exhaugted its memory.  Back of the
envelope cdculaions indicate that the memory utilization is a least one order of
magnitude higher than would be expected from the amount of data that needsto be
gored. Presumably a C/C++ implementation of this agorithm would not suffer from the
same problems. Since dl smulations terminated by exhausting memory, we have not
shown tota memory usage. Instead, we give the amount of additional memory dlocated
per time sep. Thismemory isamog dl dlocated during the map update phase
indicating that the data being stored in the map is not stored efficiently.
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as a function of the Number of Particles
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Figure 9.4: New memory alocated for each time step versus number of
particles smulated.

9.4 3-D DP-SLAM

An extensgon of DP-SLAM to 3-D, which we did not implement, isafar amount
more difficult than extending FaSLAM to 3-D. The most straightforward extenson to
3-D would involve using a 3-D occupancy grid instead of the standard 2-D occupancy
grid, and using al of the 3-D rangefinder casts rather than processing it to aleveled 2-D
scan. Creating a 3-D occupancy grid would, as with the 2-D case, result in automatic
generation of maps rather than having to create a map during post- processing via
appending scansto paths. Inthe 3-D case, that would mean being able to automaticaly
map things like overpasses and tunnels, which could be very useful to aremote-
controlled helicopter trying to fly autonomoudy.

However, instead of memory and time requirements being proportiond to the area
swept out by a2-D laser rangefinder, they would be proportiona to the volume swept out
by the 3-D laser rangefinder. Given the prohibitive amount of time required to do DP-
SLAM in 2-D within Matlab, we decided that trying to do 3-D DP-SLAM would be
hopeless. We did find one paper describing using a 3-D occupancy grid (Kou, 2004),
using stereo vison rather than laser rangefinders. While no mention of time or memory
requirements was made, the results were nonetheless rather disappointing. We surmise
that 3-D DP-SLAM may beimpractica in terms of computational and storage needs.



10 Conclusions

From this project, we have learned about the main challenges of SLAM, aswell asthe
strengths and weaknesses of FatSLAM and DP-SLAM. DP-SLAM was shown to
provide avery accurate map of the world, even with alow number of particles. Itisvery
robust, particularly when dedling with big objects, which are seen differently from

different viewpoints. On the other hand, FastSLAM was less accurate but very fast,
needed much less memory, and was easily extended to 3D. However, it requiresa
problematic pre-processing of the sensor information, since it treats the world as a set of
point landmarks. Also, the shape of the landmarks cannot be taken into account, making
the result even less accurate in chaotic worlds. In avery complicated world, when
memory and speed are not main concerns, one should use DP-SLAM. On the other hand,
FastSLAM provides a chegp dgorithm in terms of memory and speed, but can have less
accurate results. Finally, on the software sde, we learned that one should never try to use
pointers and trees in Matlab.
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