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2.) Overall Description 

2.a) Brief Group Project Description 

For the Final Group Project in 16.412J, myself, Dan Leaute, Seung Chung, and 
Dan Lovell developed an autonomous cooperative UAV demonstration using the Cloud-
Cap Autopilot Airplane Simulator.  Our group devised a scenario and map in-which a 
team of UAVs can cooperatively plan to extinguish forest fires.  The goal of this project 
is to create a cooperative multi-UAV activity planner that only needs as input high-level 
mission goals and specifications(such as put-out-fire or image-fire-damage).  The planner 
should then be able to decompose the high-level mission goals into lower-level goals, and 
motion commands, and then execute them autonomously.  Allowing the operator to 
specify high-level mission goals instead of sending detailed sequential commands to the 
UAVs reduces planning time and operator error, and increases plan flexibility. 
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Figure 1: Autonomous Firefighting Cooperative UAV Scenario 

To accomplish the goals set out above, the group has devised an integrated 
planner architecture that leverages the strengths of four separate planners.  The four 
planners are Kirk, a strategic high-level mission planner, PDDL, a generative activity 
planner, dStarLite, a roadmap path-planner, and a MILP-based kinodynamic receding 
horizon path-planner.  Kirk allows the operator to specify goals at an abstract level, in 
RMPL, The Reactive Model-Based Programming Language.  The generative planner can 
then expand the high-level goals into lower-level activities.  Then, the MILP-based 
receding horizon kinodynamic path planner generates an optimal motion plan, including 
obstacle avoidance.  The dStarLite road-map path planner is called by all three afore­
mentioned planners to get shortest-path distance to goal measurements and estimates. 
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2.b) Individual Accomplishments 

My individual contributions are three-fold: 

1.) Created a framework within Kirk to solve a TPN as a conditional CSP. 

2.) Implemented Dynamic Backtracking within Kirk (to make the search more efficient) 

3.) Interface with the Generative and Roadmap Path Planners 
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3.) Create Framework for TPN to be solved as a Conditional CSP 

The definition of a classic CSP (not a conditional CSP) is as follows: 

Constraint Satisfaction Problem (I,V,C) 
-- II ,, aa sseett ooff vvaarriiaabbllees
s

-- VVii,, aa sseett ooff ppoossssiibbllee vvaalluueess ffoorr eeaacchh vvaarriiaabbllee iinn II.
.

-- CC,, aa sseett ooff CCiijj ccoonnssttrraaiinnttss,, eeaacchh aa bbiinnaarryy rreellaattiioon
n

C = {C1,1 … C1,n C2,1 … C2,n … Cn,n} 

Figure 2: Definition of a classic CSP 

The solution to a classic CSP is found when each variable I is assigned a value from its 
domain Vi and the set of all Constraints {C} is satisfied. 

In a conditional CSP, however, the set of variables {I} that need to be assigned values 
may grow or shrink in size depending on the values already assigned to variables in the 
partial solution, {P}. In the context of a TPN, this occurs when there are nested decision 
nodes. A decision node is considered to be nested if it’s inarc belongs to a path that 
emanates from the outarc of another decision node. A nested decision node only needs to 
be assigned a value when the “parent” decision node, or “enabling” decision node has a 
particular outarc selected as it’s choice. For all other choices of outarcs that the “parent” 
decision node can take, the “nested” decision node does not need to be considered as a 
part of the problem. 

To frame the TPN search process as a conditional CSP, two functions were added to the 
TPN data structure, and a LIFO queue was added to keep track of which decision nodes 
need to be assigned values before the search is complete. The two functions are: 

1.) getNextDecisionStartNodes() 

2.) deactivateNestedDecisionStartNodes() 

1.) getNextDecisionStartNodes() 

The function getNextDecisionStartNodes() recursively “walks” the TPN and returns the 
first set (actually returns a map, not a set) of decision start node(s) that it encounters. 
(The function can return more than one decision start node if there are parallel branches 
in the TPN) 
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The search is initiated by calling getNextDecisionStartNodes(startNode) on the startNode 
of the TPN.  Any decision start nodes that are found are pushed onto the LIFO queue.   
 The search process begins by trying to assign a consistent choice for the top 
decision start node on the LIFO queue.  If a consistent value for the first decision start 
node is found, it is popped from the queue, and getNextDecisionStartNodes() is called 
with the first decision start node as the argument.  Any decision node(s) that are returned 
from the function are pushed onto the LIFO queue, and the process is repeated until the 
LIFO queue is emptied.  An empty LIFO queue means that the search is complete and a 
full and consistent assignment is made to the TPN.  This process is illustrated in Figure 3, 
Part A.  Also in Part A, it is shown that the first assignment to decision start node 2 is 
inconsistent.  This brings us to the function #2, deactivateNestedDecisionStartNodes(). 
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Figure 3:  Searching a TPN as a Conditional CSP 
 
2.) deactivateNestedDecisionStartNodes() 
 
Suppose, for example, in Figure 4, Part A, that there were nested decision nodes within 
the “Drop water on Fire A then B” command.  Also suppose that some of those decision 
nodes have already been assigned choices, and are a part of the partial solution {P} of the 
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conditional CSP. If the assignment to decision start node #2 is changed, these nested 
decision nodes (represented by the shaded oval in Figure 4, Part B) need to be removed 
from the partial solution {P}. 

This is accomplished by calling deactivateNestedDecisionStartNodes() whenever 
the assignment to a decision node is changed.  Once the inconsistent choice for decision # 
2 has been retracted (and all nested decision nodes removed from {P}) the next outarc for 
decision node #2 can be selected, as shown in Figure 4, Part C.  The function 
getNextDecisionStartNodes() is called on Decision Node #2, and returns an empty set. 
(since there are no more decision nodes in the graph)  Therefore, the LIFO queue 
becomes empty, and the TPN has a full and consistent assignment.  

3.c) Pseudo-code and function explanations: 

getNextDecisionStartNodes( currentNode ) 
{ 
    if ( currentNode = decisionStartNode) 
 return currentNode 

else 
for all outarcs[i] of currentNode, 

 map_o_startNodes.insert( getNextDecisionStartNodes(endnode->outarcs[i]))
        return map_o_startNodes 
} 

Figure 4: getNextDecisionStartNodes() Pseudo-code 

The getNextDecisionStartNodes( currentNode) function in Figure 3 works recursively by 
immediately returning when a decisionStartNode is encountered, and recursively calling 
itself on all outarcs of any other type of node.  All decision start nodes that are returned 
from the recursive calls to getNextDecisionStartNodes() are inserted into a map.  Using a 
map ensures that even if a decision start node is encountered by the recursive function 
more than once while walking the TPN, only one instance of the decision start node is 
returned by the function. 

deactivateNestedDecisionStartNodes( currentNode ) 
{ 
    for all decisionStartNodes[i] between currentNode->start  and currentNode->end 

if ( decisionStartNode[i] ∈  {P} ) // where {P} is the partial solution  
    remove decisionStartNode[i] from partial solution {P} 

} 

Figure5: deactivateNestedDecisionStartNodes() Pseudo-code 

The deactivateNestedDecisionStartNodes() function works by considering all 
decisionStartNodes inbetween the current decisions start and end nodes, and if necessary 
removes them from the partial solution {P}.  The actual implementation of this function 
is a-bit more detailed, but the overall idea is captured above.  
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4.) Dynamic Backtracking Implementation within Kirk 

a.) Overall Description of Dynamic Backtracking  

Dynamic Backtracking is an efficient search algorithm that allows dynamic 
variable ordering, and also retains partial solutions to a CSP whenever they are not part of 
an identified conflict.  To work effectively, the dynamic backtracking algorithm needs a 
conflict detection sub-routine (i.e. the incremental temporal consistency checker in Kirk). 
The dynamic backtracking algorithm is proven to terminate, and is also complete, and 
requires O(i2v) memory to remember conflict information, where (i) is the number of 
variables, and (v) is the largest domain size of the variables (i). 

b.) Pseudo-code 

The pseudo-code below is a description of the dynamic backtracking algorithm that was 
implemented within the Kirk architecture, and was obtained from: 

Verfaillie, Gerard and Schiex, Thomas “Dynamic Backtracking for Dynamic Constraint 
Satisfaction Problems”  ONERA-CERT, Toulouse Cedex, France. 

A short description of each function is given, and the modification necessary to consider 

dbt( csp ) 
{ 

let V be the set of the variables 
return dbt-variables( ∅ , V ) 

} 

searching a conditional CSP using dynamic backtracking is described at the end.   

dbt( csp) 

    The overarching function call for dynamic backtracking, returns solution or failure 


dbt-variables( V1 , V2 ) 
{ 

; V1 is a set of assigned variables 
; V2 is a set of unassigned variables 

if V2 = ∅

 then return success


         else let v be a variable chosen in V2


                let d be its current domain 
if dbt-variable(V1,v,d) = failure

 then return dbt-bt-variable(V1,V2,v) 
else return dbt-variables(V1 ∪ {v}, V2 – {v}) 

} 
dbt-variables( V1 , V2) 
   The main recursive function that assigns a new variable if assignment is consistent, and 
calls the backtrack function if a new variable assignment is not consistent. 
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dbt-variable( V1 , v , d ) 
{ 

if d = ∅
    then return failure 

else let val be a value chosen in d 
if dbt-value(V1,v,val) = success

 then return success
 else return dbt-variables(V1,v,d – {val}) 

dbt-variable(V1,v,d) 
    tries to assign a variable one of the value v in it’s domain, either returns success, or 
recursively tries again with the discounted domain, and returns failure if no domain left 

dbt-value( V1 , v , val) 
{ 

assign-variable(v,val) 
let be c = backward-checking(V1,v) 
if c = success

 then return success
 else let V3 be the set of the variables of c 

unassign-variable(v) 
          create-eliminating-explanation(v,val,V3-{v}) 

return failure 
} 

dbt-value(V1, v , val) 

   called by dbt-variable() to test if the assignment of value (v) to variable (i) is a success 


dbt-bt-variable( V1 , V2 , v) 
{ 
    let V3 be the conflict set of v i.e., the union of the 
    eliminating explanations of all its eleiminated values 

if V3 = ∅
 then return failure
 else let v’ be the last variable of V3 in V1

           let val’ be its current value 

let V4 be the set of variables following v’ in V1


 unassign-variable(v’) 

create-eliminating-explanations(v’,val’,V3-{v’}) 

remove-eliminating-explanations(v’,V4 ∪ V2) 

dbt-variables(V1-{v’},V2 ∪ {v’}) 


} 
dbt-bt-variable(V1 , V2 , v ) 
     Does the necessary clean-up in the elimination explanation database, and also the 
partial solution {P} when a variable’s domain is wiped-out and the algorithm must 
backtrack. 

9 



Modification to search a conditional CSP using Dynamic Backtracking: 

In the paper cited above, there is also an algorithm ddbt() (stands for dynamic dynamic 
backtracking) describing how to search a dynamic CSP using dynamic backtracking 
(conditional and dynamic CSPs are equivalent in this sense)  The only difference between 
conditional CSPs and dynamic CSPs is that in a dynamic CSP, variables are added to the 
problem randomly(i.e. queueing network), and in a conditional CSP, one knows before 
hand which assignments to variables cause other variables to enter and leave the 
problem(i.e. a TPN).   

ddbt( V1 , V2 , AC , RC) 
{ 

; V1 is the ordered set of assigned variables, 
; result of the previous search 
; V2 is the set of unassigned variables, 

   ; result of the same search 
; AC is the set of added constraints 

   ; RC the set of removed constraints 
let be V = V1 ∪ V2

 let be V3 = remove-assignments(V1, AC) 
remove-variable-eliminating-explanations(RC,V) 
return dbt-variables(V1-V3,V2 ∪ V3) 

} 
ddbt( V1, V2 , AC , RC ) 

The basic idea of this function is simple:  if a variable is removed from the 
problem, remove any of the constraints that depend on that variable from the problem as 
well. (which just means erasing any elimination explanations depending on the variable, 
since the timing constraint arcs in Kirk (which represent constraints to be removed) are 
“disabled” automatically in Kirk and effectively disappear when the variable is not 
supposed to be in the problem) And if a variable is added to the problem, make sure any 
constraints involving that variable are re-added to the problem.  This is also simple in the 
context of Kirk, because when a variable is added into the problem it’s constraints (the 
timing constraint arcs) are inherently added in as well. 
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3c.) Insights from Testing Dynamic Backtracking on Representative TPNs 

I debugged my dynamic backtracking implementation in Kirk, by testing the 
algorithm against three fairly interesting and representative TPN structures.  There are 
two main insights to be gained from these tests. (other than the fact that my 
implementation works ☺ ) 

1.) 	Dynamic Backtracking could be very useful in terms of re-planning, because    
       dynamic backtracking essentially holds onto consistent partial plans as long as   
       possible. (i.e. less destructive to original plan) 

2.) 	The nature of conflict extraction in a TPN relies on negative cycles in the graph.  In 
      many cases, these negative cycles traverse a large portion of the TPN, and the conflict   
      returned is far from minimal. (i.e. many decisionNodes are returned in the conflict-set     
      that aren’t actually the source of the conflict)  In these cases, Dynamic Backtracking  
      can’t perform much better than conventional backtracking. 

The three test TPNs are described below: 

(In each of the follwing testTPN’s the .rmpl file was written such that the TPNs search 
from top to bottom according to the figures drawn.) 

Start 

2 

End 
1 

simpleDBtest1.rmpl 

Figure 6: simpleDBtest1.rmpl 

In this TPN,  the top parallel branch was assigned conflicting parallel activities, 
and the middle branch (belonging to choice node #2) contains an inconsistent primitive.  
This TPN was used to test the getNextDecisionStartNode() and 
deactivateNestedDecisionNodes() functions since choice node #2 must be removed from 
the problem when choice node #1 switches its assignment to the lower path. 
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Start End 

simpleDBtest2.rmpl 

Figure 7: simpleDBtest2.rmpl 

This TPN is not much different from the first, but requires the TPN to back up to a 
decision node that was found during the same call to getNextDecisionStartNodes( ) (and 
neither of them were nested decision nodes) which brought out a subtle bug in the 
algorithm that had to be fixed.  Namely, if a decision start node is not a nested decision 
node, even when backtracking from it, it cannot be deleted from the LIFO queue.  This is 
because any variable that is not nested is required to have an assignment before the TPN 
is assigned a complete solution. 

Remembering that Kirk has to search from the top down, Kirk had to come across several 
inconsistencies in Figure 7 before finding the consistent solution. 

(third TPN is on the next page) 
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Figure 8: simpleDBtest3.rmpl 

This TPN brings out an interesting issue with conflict-extraction in Kirk.  I’m not 
certain if minimal conflict extraction can be done in Kirk, and if not, this could 
potentially degrade the performance of dynamic backtracking.  Since in Kirk, the conflict 
is extracted as a negative cycle in the graph, in this example the conflicts involving the 
primitives “shortX” and “too short for short”  can only currently extract the conflicts 
{1,2,3} , {1,2,4} , {1,2,5} where none of these are minimal conflicts, since the 
assignment to {2} is obviously consistent. 

In this example, the decision nodes are instantiated in the order of their indices.  
This means that if Kirk were able to give the dynamic backtracking algorithm one of the 
minimal conflicts {1,3} , {1,4} , {1,5} then it would know to skip over reassigning node 
#2 since it is a partial assignment that was not a part of the conflict.  However, at present, 
the non-minimal conflict causes dynamic backtracking to fare equally as poorly as 
chronological backtracking in this case. 

I believe, that in general, the conflict-detection capability provided by dynamic 
backtracking will cause Kirk to perform better on large TPNs (even if the conflicts 
extracted are non-minimal).  However, if there are methods to extract minimal conflicts 
in this context, it appears that they may be very useful. 
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5.) Interfaces with the Generative and Roadmap Path Planners 

The interfaces with the generative and roadmap Path Planners are fairly straightforward. 


5a.) Generative Path Planner 


There are two options for the interface of Kirk with the Generative Path Planner.   


1. 	 The first is to directly pass the pointer to the TPN object after Kirk finds a  
      consistent and full assignment. 

2. 	Create a simple XML parser that can output from Kirk and be read in by the  
generative path planner. 

5b.) Roadmap Path Planner 

Kirk, the high-level planner, interfaces with the Roadmap Path Planner in order to get a 
lower bound on the time it might take to perform an activity.  This allows the planner to 
preemptively prune out inconsistent portions of the search space.   
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;; Macro to ask path-planner to update lower bound 
;;  (water-uav().dStarLite 10 15 20 30 40 50) [0,inf

(overall fire-fighting strategy () 
(sequence 

(choose 
(sequence 

(seeker-uav0.take-image fire1 0,10]) 
(seeker-uav0.take-image fire2 0,10])) 

(sequence 
(seeker-uav0.take-image fire2 0,10
(seeker-uav0.take-image fire1 0,10

choose 
(sequence 

(water-uav .drop-water fire1)[ 0 , inf 
(water-uav .drop-water fire2)[ 0 , inf 

(sequence 
(water-uav .drop-water fire2)[ 0 , inf 
(water-uav .drop-water fire1)[ 0 , inf 

(parallel 
(seeker-uav().return-to-base(base0)[ 0 , inf 
(water-uav().return-to-base(base0)[ 0 , inf ]))) 

Choose which order to 
image Fire 1 and Fire2 

Choose wh ch order to 
drop water on Fire 1 
and F

Operator inputs detai ed 
miss on scenario: 

UAVs Return to Base 
together 
Update lower timebound 
using path-planner 

[0,6

[0,45

[0,20

Figure 9: Calling the Roadmap Path Planner to Update Activitiy Lower Bounds 

For example, in the RMPL file shown above, the red numbers represent updated lower 
bounds obtained for each activity from the roadmap path planner.  In the first task, 
“choose which order to image Fire1 and Fire2”, the roadmap path planner tells Kirk that 
the quickest possible time to image Fire1 and then Fire2 is 5 + 4 = 9.  As shown in 
orange, however, the maximum amount of time allotted for this activity is 6.  Therefore, 
this sequence of actions is inconsistent and can be pruned from the search space.   
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6.) 	Branch and Bound with Dynamic Backtracking for Anytime and Optimal     
Search 

Adding the ability to estimate the “cost” of a partial solution within Dynamic 
Backtracking and the Kirk architecture appears to be very straightforward, and could 
provide an anytime search algorithm that outputs an optimal planning solution. 

Once a consistent assignment is found to the TPN, this solution (and it’s estimated cost) 
is kept as the incumbent solution.  The algorithm continues to search partial solutions to 
the problem, backtracking whenever the cost estimate of the partial solution exceeds that 
of the incumbent solution.  This provides an anytime algorithm that can update the 
quality of it’s solution, and output the optimal solution once the entire TPN has been 
searched in this “branch and bound” fashion. 
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7.) Summary and Conclusions 

• Search as a Conditional CSP is implemented in Kirk using 2 functions and a Q: 

-	 getNextDecisionStartNodes( ) 

- deactivateNestedDecisionNodes( ) 

- LIFO Queue (a stack) 

•	 Dynamic Backtracking is implemented in Kirk 

-	 implementation works (solves the three example TPNs in < 0.01 seconds ) 

-	 completeness and termination guaranteed, O(i2v) memory 

- dynamic backtracking useful in terms of re-planning, because partial and 
consistent plans are kept around (i.e. less destructive to original plan) 

- The nature of conflict extraction in a TPN relies on negative cycles in the 
graph. Tese negative cycles are often from minimal.  In these cases, 
Dynamic Backtracking can’t perform much better than conventional 
backtracking. 

-	 Dynamic Backtracking probably performs better on very large problems, 
even if the conflict extraction mechanism is non-minimal, since on large 
problems any conflict-detection is better than none (because of the ugly 
nature of the exponential) 

•	 Interface with Roadmap Path Planner and Generative Planner 


- Roadmap Path Planner interface is in place and working 


- Generative Planner interface is agreed upon, but not completed 


•	 Implementing a Branch-and-Bound incumbent solution approach would allow an 
anytime algorithm that could systematically search for an optimal solution to the 
TPN. 
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