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Abstract 
Human-robot collaboration will be crucial to the productivity and success of future space 

missions. A simple yet intuitive means of communication between two parties—such as 

communication through gestures—is critical to the success of such collaboration. 

Optimal margin classifiers can be used for the classification and recognition of such 

gestures. Two pattern input methods are used to test the behavior and performance of 

these classifiers. The first is a 2-dimensional computer mouse interface which allows for 

ease of control and visualization of the patterns. Patterns obtained through this input 

include circles, lines, and written numerals 2, 3, and 4. The second is a 6 degree-of-

freedom hardware tracking device comparable to systems that may be integrated into 

actual spacesuits. Patterns for this input include gestures designed to convey the 

intentions of “come here,” “lift,” and “move.” These gestures are meant to mirror the 

ones actual astronauts may make to communicate with their robotic assistants. We 

demonstrate a basic linear optimal margin classifier based on support vector methods to 

efficiently learn and recognize input patterns from multiple categories. We test the 

algorithm’s capability not only to distinguish different patterns but also to differentiate 

same pattern made by different users. We further characterize the performance of this 

algorithm and its sensitivity to training corpus size and input sampling resolution. Finally, 

we discuss directions for further development of these algorithms to support flexible, 

intuitive astronaut collaboration with automated space systems. 

2 



Table of Contents 
ABSTRACT .................................................................................................................................................. 2


TABLE OF CONTENTS ............................................................................................................................. 3


INTRODUCTION ........................................................................................................................................ 4


1. OPTIMAL MARGIN CLASSIFIER
1
..................................................................................................... 5


1.1 REPRESENTATION ................................................................................................................................. 5


1.2 DECISION FUNCTION............................................................................................................................. 5


1.3 MAXIMIZING THE MARGIN ................................................................................................................... 7


1.3.1 A Note on Dimensionality ............................................................................................................ 8


1.3.2 A Note on the Decision Function Bias ......................................................................................... 9


2. IMPLEMENTATION METHODS....................................................................................................... 11


2.1 USER INPUT MECHANISMS.................................................................................................................. 11


2.1.1 Handwriting Input...................................................................................................................... 11

2.1.2 Gesture Input ............................................................................................................................. 12


2.2 INPUT PATTERNS OF INTEREST ........................................................................................................... 14


2.2.1 Circles and lines ........................................................................................................................ 14

2.2.2 Numerals .................................................................................................................................... 15


2.2.3 Gestures ..................................................................................................................................... 16


3. RESULTS AND ANALYSIS ................................................................................................................. 17


3.1 BASIC SHAPES: A  FIRST LOOK............................................................................................................ 17


3.2 HANDWRITING RECOGNITION: PERFORMANCE DRIVERS .................................................................... 21


3.3 GESTURE RECOGNITION: PUTTING IT ALL TOGETHER ........................................................................ 30


4. POSSIBLE EXTENSIONS .................................................................................................................... 37


4.1 PATTERN RECOGNITION GIVEN CONTINUOUS INPUT .......................................................................... 37


4.2 DISTINGUISH PATTERN FROM NON-PATTERN ..................................................................................... 38


4.3 ALTERNATIVE CLASSIFICATION FOR MULTIPLE CLASSES................................................................... 39


4.3.1 Single classifier for Multiple Classes......................................................................................... 40


4.3.2 Binary Tree-Structured Classifiers ............................................................................................ 41


CONCLUSION ........................................................................................................................................... 43


ACKNOWLEDGEMENTS ....................................................................................................................... 44


REFERENCES ........................................................................................................................................... 45


3 



Introduction 
The high costs of human spaceflight operations favor large investments to optimize 

astronauts’ time usage during extravehicular activity. These have included extensive 

expenditures in training, tool development, and spacecraft design for serviceability. 

However, astronauts’ spacesuits themselves still encumber more than aid and are the 

focus of several current research programs. Potential improvements face tight integration 

between suits and astronaut activities, resulting in many mechanical and computational 

challenges. One major area of work aims to alleviate the difficulties of conducting precise 

or prolonged movements within a pressurized garment. Powered prosthetic or other 

robotic assistance may provide a solution to this problem but creates key operational 

challenges. Standard digital or verbal user command interfaces are limited by low 

bandwidth and non-intuitive control structures and may prove incompatible with such 

devices. 

Body language, on the other hand, is one of the most fundamental, natural forms of 

communication between human beings. Therefore, tactile control using, for example, 

hand or finger gestures seems far more suitable for controlling mechanical effectors, 

providing high speed and intuitive spatial relationships between command signals and 

desired actions. Flexibility and robustness in controllers like these will likely require 

personalized command recognition tailored to individual astronauts. The need for speed 

and natural facility will make this capability even more indispensable than in, say, speech 

recognition. Command recognition systems could adjust their interpretation rules as 

training data is accumulated, improving their precision and following long-term trends as 

astronauts develop their working behaviors throughout a career’s worth of extravehicular 

activity. 

In this project, we propose a relatively simple gesture-based spatial command recognition 

system as an analog to more advanced systems suitable for augmenting extravehicular 

activities with robotic assistance. The first section of this report conveys the key ideas 

behind the optimal margin classifier, the fundamental recognition method at the core our 

system. The second section then introduces two different pattern input interfaces used to 

collect both training and testing data for the algorithm. 

We first we implemented a computer mouse interface for the preliminary analysis of our 

algorithm. Although this input method should be very different from any system that may 

be used by astronauts in space, it does provide a solid foundation towards the 

understanding of algorithmic behavior. Most users are very familiar with the operation of 

a mouse and can therefore achieve a relatively high degree of precision in the inputs 

without extensive practice. The 2D nature of the inputs also allows for easy visualization. 

Next we extended our user interface to an InterSense tracking device capable of detection 

spatial motion performed by the user. Gesture patterns collected through this device 

would be much closer to those astronauts may use to command their robotic assistants. 

Finally, we conclude this report with sections on results and analysis of our data and 

possible extensions to our current system. 
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1. Optimal Margin Classifier1 

 
The enveloping problem that a classifier must solve is how to accurately and efficiently 
separate one pattern from another given a set of training data (a corpus for each pattern in 
question). By maximizing the minimal distance from the training data to the decision 
boundary, an optimal margin classifier can achieve an errorless separation of the training 
data if one exists. Its strength lies in its ability to identify and eliminate outliers that are 
ignored by other classifiers such as those that minimize the mean squared error. Optimal 
margin classifiers are also less sensitive to computational accuracy because they provide 
maximum distance (error margin) between training set and decision boundary. 

1.1 Representation 
A pattern is represented by an n-dimensional vector x. Each x vector belongs to either 
class A or B, where A corresponds to some pattern of interest and B corresponds to either 
another pattern or possibly all other patterns in the universe. The training data consists of 
a set of vectors ; we label each  +1 or –1 to associate it with a class: 
for example, +1 for class A and –1 for class B. A training set containing p training points 
of vectors and labels l

pk xxxx KK ,,, 21 kx

kx k would look like: 
 

( ) ( ) ( ) ( )ppkk llll ,,,,,,,,, 2211 xxxx KK , where  (1) 
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Figure 1 gives a visual representation of a training set with five points ( )5=p  each a two-
dimensional vector of the form [ ]kkk yx ,=x .  
 

Class B 

)1],,([ 55 +yx

Class A 

)1],,([ 22 −yx)1],,([ 11 −yx

)1],,([ 33 −yx

)1],,([ 44 +yx

 
Figure 1: Example of a simple two-dimensional training set 

 

1.2 Decision Function 
Given the training data, the algorithm must derive a decision function (i.e. classifier) 

 to divide the two classes. The decision function may or may not be linear in x ( )xD
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depending on the properties of the corpus. For a classification scheme shown in Equation 

� �  0 would be on the boundary between the classes. Any new,1, a decision value of D x 

unknown vector x can be classified by determining its decision value: a positive decision 

value places x in class A, and a negative value places x in class B. 

The decision function is a multidimensional surface that optimally divides the different 

classes. In our simple pedagogical example, D is some linear function of x and y that 

divides the two classes in a way that maximizes the minimum distance between itself and 

the nearest points in the corpus, as shown in Figure 2. 

),( yxfD 

max d 
max d 

max d 

Figure 2: Decision function for the pedagogical example 

The decision function of an unknown input vector x can be described in either direct 

space or dual space. In direct space, the representation of the decision function is: 

N 

x xD� � ¦w M � �� b , (2)i i 

i 1 

where theM are previously defined functions of x, and w and b are adjustable parameters i i 

of D. Here, b is called the bias, i.e. offset of D. In dual space, the decision function is 

given by: 

p 

D� � ¦a K �x , x�� b , (3)x k k 

i 1 

where the a are adjustable parameters, and xk are the training patterns. Equations 2 andk 

3, the direct space and dual space representations of D, are related to each other via the 

following relation: 

� � .  (4)w ¦a M xi k i k 
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K is a predefined kernel function of the form 

, i � �  �  �  . (5)xK � x x c� ¦ M M x ci 

i 

There are many different options for the K function, depending on the structure of the 

training data. Since D is linear in all other parameters, the function K determines the 

complexity of D : D is linear if K is linear and D is exponential if K is exponential. For 

our purposes, we use a linear classifier D in its dual space representation with the 

corresponding K function: 

K � x x c� x � x c . (6), 

1.3 Maximizing the Margin 

� � xGiven N -dimensional vectors w andM x , and bias b , D � � w is the distance between 

the hypersurface D and pattern vector x . We define M as the margin between data 

patterns and the decision boundary: 

D l � �xk k t M (7) 
w 

Maximizing the margin M produces the following minimax problem to derive the most 

optimal decision function: 

min max D l � � . (8)xk k 
1 kw , w 

Figure 3 shows a visual representation of obtaining the optimal decision function. 
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� �  xxM 
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� �  0�xD 

� �  0!xD 

� �  0bD xwx 

M 
* 

M 
* 

� � 

Figure 3: Finding the Decision Function. The decision function is obtained by determining the maximum 

margin M*. Encircled are the three support vectors. 

To find the optimal decision function, in the dual space, we optimize a Lagrangian which 

is a function of the parameters Į and bias b. It also encompasses the kernel function K via 

a p u p matrix H, which is defined by H l l K �x k , x �. The Lagrangian is given by:km k m m 

J �D, b� ¦D �1 � bl �� 1D �H � D (9)k k 
2 

subject to D t ,0 k ,2 ,1 �, p .k 


For some fixed bias b, we can find D  that maximizes J, and the decision function 

becomes 
* * D� � ¦ l D K �x , x�� b, D t 0 . (10)x k k k k 

k 

1.3.1 A Note on Dimensionality 

After the decision function is found, the points closest to the decision hyperplane are the 

support vectors. If the decision function has no restrictions, then there will naturally exist 

at least n �1 support vectors, where n is the dimension of each sample, unless there are 

fewer samples in the corpus than n �1, in which case all available samples are support 

vectors, and the optimization is reduced to a smaller dimension. 

In our pedagogical example of Figure 2, x has dimensionality of 2, so there are 

2 �1 3 support vectors. Had there been only two samples in the corpus, the problem 

would reduce to 1-D optimization, which dictates that the decision function D must be 

the perpendicular bisector of the two points. 
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We can similarly expand that idea to 3-D as shown in Figure 4 and to multi-dimensional 

hyperspaces. If there were only three points, then the problem would collapse to a 2-D 

optimization, even though the decision function is still a plane. Similarly, if there were 

only two points, the problem would be reduced to 1-D optimization, with the plane again 

being the perpendicular bisector of the two points. 

),,( zyxfD 

Figure 4: Example of expansion to multiple dimensions 

The dimensionality of x, or the value n, is the product of the spatial dimensions of the 

pattern and the number of representative sampling points taken from the pattern. In our 

handwriting recognition implementation, the patterns are in 2-D, and each pattern is 

represented by 6 sampling points, as shown in Figure 5. Thus, each pattern is represented 

by a 12-dimensional vector; and without any restrictions on the decision function, there 

should be 13 support vectors. 

Figure 5: Sampling 6 representative points from a pattern 

1.3.2 A Note on the Decision Function Bias 

There are two ways to determine the bias b in the decision function (See Equation 10). 

One method is to set the value of b to some constant a priori. This works best when we 

know some information about the corpus. For example, we may know that the training 

data fits nicely on both sides of the x-axis and that it is fairly symmetric. In such a case, 
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we may want to set b = 0 a priori, as shown in Figure 6. When b is fixed to some constant 

value, the number of support vectors is decreased by 1. In fact, sometimes support 

vectors for decision functions with fixed b may be from the same class. 

D x 0� �  w � x 

� �  0�xD 

� �  0!xD 

M 
* 

0 

Figure 6: Decision function with bias set to 0 

If we know that the corpus is not best described by 0 or some other fixed value, but we 

know that the corpus is nicely distributed, we may want a bias that enables the decision 

function to go through the midpoint of the centroids of the two classes. This can also be 

done by setting the origin of the hyperspace to be at that midpoint and set the bias to 0. 


Finally, the bias b can be made to vary with the parametersD  if some of the support 

 2

vectors are known. To obtain D independent of the bias, see Vapnik . Suppose we know 

the support vectors x � class A and x � class B . The decision values of the two supportA B 

� � �1 and D xvectors are known: D x � � �1. Then the optimal bias b * is given by:A B 

1 p 
* * b � ¦ l D >K �x , x �� K �x , x �@. (11) 

2 
k k A k B k 

k 1 
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2. Implementation Methods 
The overall implementation of the project consisted of several main portions: the user 

input mechanisms, the input patterns, the optimal margin classifier algorithm, and our 

analytical tools. An overview of the components in the project implementation can be 

seen in Figure 7. The program controlling the 6D user input and DOF tracking device is 

written in Python. All other software components of this project are implemented in 

Mathematica. 

Classifier 

Circles and 

Lines 

Handwritten Hand 

Gestures 

6 DOF Tracking 

DeviceTouchpad 

2-D User Input 

Analysis 

6-D User Input 

Optimal Margin 

Numerals 

Computer 

Figure 7: Project implementation overview 

2.1 User Input Mechanisms 

Two types of user inputs are used in our implementation: 2D planar inputs through a 

computer mouse and 6D spatial inputs through the InterSense tracking device. 

2.1.1 Handwriting Input 

The planar input mechanism is a two-dimensional drawing pad implemented using the 

GUIKit package provided by Mathematica 5.1. Initially, the program displays a pop-up 
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window for the user to input the desired symbol. After the user completes the input and 

closes the window, �x, y�  positions of each point in the symbol is refreshed at machine 

speed and saved chronologically into a matrix. 

In the user input window, the � 0,0 �  point is at the top left corner and the positive y-axis 

points downward, which is opposite from usual plotting convention; so when visualizing 

the data, we take the negation of the y values in order to upright the symbol. 

During the actual user input process, the length of the input data may vary depending on 

the speed at which a symbol is drawn. However, in order to calculate the decision 

function between 2 classes, all x vectors in both corpuses for the classes must have an 

equal number of points (dimensions). Also, a typical user input symbol may lead to a data 

stream of 40 or 50 points, which is much more than what is needed to distinguish the 

classes. Therefore for most of our analysis, we sample a set 6 evenly spaced points from 

each symbol and run our optimization algorithm on a collection of such 6 point symbols. 

Part of our analysis also deals with the variation of this sample size and its effects on 

algorithm performance. Figure 8 shows the progression of the data from the user input to 

the sampled data matrix. 

Figure 8 Evolution of a circle. a. The user inputs a two-dimensional figure into the drawing window using 

a mouse or keypad, b. Points are recorded at machine speed, c. Six points are sampled, and d. their (x, y) 

positions generate a 6 u 2 matrix. 

Note that in the user input window, the visual feedback of the hand-drawn figure is 

continuous and starts at the � 0,0 � point, but the � 0,0 �  point will not be part of the actual 

data record. Also note that Figure 8c appears to have 5 sample points instead of 6 only 

because the first and last points are almost coinciding. Once a sampled matrix as shown 

in Figure 8d is generated, it is transformed into a single data point in 

the 6 u 2 12 dimensional hyperspace. From there it will be fed into the optimal margin 

classification algorithm as discussed in Section 1. 

2.1.2 Gesture Input

For spatial data, we use a unique piece of hardware called the InterSense tracking 
3

device , which consists of an inertial measurement unit (IMU) containing a gyro and an 

accelerometer to monitor angular travel and velocity, which mostly provides the pitch, 

yaw, and roll information. The tracking device uses two ultrasound beacons to 
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directionally position itself in 3-D space, providing �x, y, z�  information. The aperture is 

held by the user like a wand at one end. Figure 9 shows the aperture setup. 

Handhold 

Ultrasound beacons 

IMU 

Figure 9: User interface for spatial inputs 

The ultrasonic beacons transmit signals to receivers located in fixed locations several 

meters over head. There are four ultrasonic receivers situated on a crossbar that is fixed to 

the ceiling, as shown in Figure 10. The absolute spatial origin of the tracking system is 

calibrated to be the exact point on the ground directly below the center of the crossbar. 

When gathering gesture data, the user sat on a chair positioned over the origin, so that the 

range of �x, y, z� positions would be generally centered around � 1,0 ,0 � , in meters. 

receivers 

Ultrasonic 

Figure 10: Ultrasonic receiver module crossbars on the ceiling 

The ultrasonic transponder beacons are line-of-sight devices, meaning that they cannot 

operate when the line-of-sight between the transponder and receiver is blocked or if the 

transponder is tilted at a steep angle. The ultrasonic beacons do have about 70 degrees of 

sight from vertical, as shown in Figure 11, so the line-of-sight issue is usually not a 

problem. For our implementation, we kept to gestures that did not require turning the 

aperture upside-down. 
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70°70° 

Figure 11: 140 degree conical range of ultrasonic beacons. 

The data generated by the InterSense tracking device is accurate to a few millimeters, and 

each recorded point contains 6 variables � x, y, z,T ,M ,I � . For each gesture pattern, we also 

extracted 6 representative sample points from the record of all points in the pattern, so 

each element of the gesture corpus is a 6 u 6matrix, or in other words, the hyperspace is 

36-dimensional. 

The software that the InterSense tracking device runs on is called Vizard, which runs 

code in Python language. We programmed the software to run non-stop with a continuous 

timer and keyboard control of start and stop gesture sequences. The gesture sequence data 

would be instantaneously saved to a file that can be later analyzed by our algorithm code 

in Mathematica. 

We selected the InterSense tracking device as our hardware input component because a 

similar device or device with similar principles could be integrated into a spacesuit for 

astronaut gesture recognition. For this application, the device can exploit the rigid nature 

of spacesuits. The receivers could be attached to the astronaut’s helmet and/or parts of the 

upper torso of the spacesuit. The beacons could then be attached to part of the glove or 

even on a segment of the finger portion of the glove if the devices could be made more 

compact. In this case the �x, y, z�  components would be recording the position of the 

astronaut’s hand relative to his/her body, and all of the same principles discussed in this 

section would still apply. 

2.2 Input Patterns of Interest 

2.2.1 Circles and lines

In the 2-D user interface environment, the first test of the algorithm demonstrates 

distinction of two very different figures, such as circles versus lines. The circles in the 

corpus are all drawn in the same direction, in our case, counter-clockwise, and the lines 

are all drawn from the top right corner to the bottom left corner. Figure 12 shows a 

typical representation of the user inputs for circles and lines. Note again that the visual 

feedback starts at the � 0,0 � point and connects to the first point in the figure. 
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Figure 12: Typical user input circle and line 

A corpus of 5 circles and 5 lines was used to determine the decision function. Twenty test 

inputs were implemented for evaluation. Upon deriving the decision function, we 

generated an interpolation sequence between a circle and a line to find the figure that has 

a decision value of 0, or in other words, a figure that sits on the class boundary between 

circles and lines for a certain representation of circles and lines. This pattern is shown in 

Figure 13. This figure can be a guideline for predicting which figures will be classified as 

circles and which will be classified as lines. 

Figure 13: Between circle and line. This is a pattern that has decision value of 0 for a certain 

representation of circles and lines 

2.2.2 Numerals 

It seems that distinguishing two very different sets of figures from one another is trivial. 

We demonstrated the algorithm’s ability to correctly classify different numerals, and 

following that, we decided to take on the challenge of distinguishing one person’s 

handwriting from another’s, as this distinction is sometimes difficult even for a human 

observer. This is implemented by two people generating corpuses of the numeral “2,” 

“3,” and “4,” and running test inputs over the corpuses to determine the accuracy of the 

15 



classification. An example implementation is shown in Figure 14, where the corpuses of 

“2”s are generated by two different people, and 6 points are sampled out of each “2.” 

Each person generated corpuses of around 20 elements for each numeral. Twenty test 

inputs were implemented for evaluation. 

Figure 14: 2’s vs. 2’s. The sample set of the corpus of “2”s generated by person A is on the left and person 

B’s is on the right 

2.2.3 Gestures

Three different gestures were implemented for testing purposes, including the “come 

here” gesture, lifting gesture, and pointing gesture. Two different persons generated 

separate corpuses for all three gestures of 10 elements each. Twenty test inputs were 

implemented for evaluation. 

16 



3. Results and Analysis 
In the following analysis, we verify the behavior of the optimal margin classification 

algorithm against theoretical intuition and assess the performance drivers in 

implementation relevant to our applications. We also attempt to explain any unusual 

results, particularly where they adversely affect performance. We use basic shape 

identification (circles and lines) to illustrate general features of the algorithm, then 

conduct a more thorough analysis using handwriting recognition, before moving to the 

more challenging application of recognizing human gestures. Unless stated otherwise, all 

gesture and figure recognition results reported use 6 sample points per pattern and 10 of 

each type of pattern per training corpus. 

3.1 Basic Shapes: A First Look 

As described earlier, two-dimensional figures are converted to patterns by uniform 

sampling of points from the cursor path and concatenation of these coordinates into 

higher-dimensional vectors. A linear optimal margin classifier then constructs a 

separating hyperplane in the pattern space that maximizes the distance from the 

hyperplane to the nearest pattern(s) in each distinct class (the support patterns). 

We can observe the optimization behavior of the algorithm by examining the Euclidean 

distances from corpus patterns to the resulting hyperplane boundary. Figure 15 illustrates 

a typical example of this optimization: the corpus for each shape (shown in gray) contains 

five training examples, but the supporting patterns from each class lie at equal distances 

from the hyperplane and are barely distinguishable, while the support patterns for the two 

classes also lie at equal distances. 

Figure 15: Euclidean distances from basic shapes to a separating hyperplane (solid line) in pattern space. 

The first horizontal segment illustrates the midpoint-bias classifier for circles, the second for lines; with 

only two classes, these classifiers produce mirror images. The classifier maximizes the minimum distance 

from the hyperplane to the pattern classes in the corpus (gray), which it then uses to separate independent 

test patterns (black). 
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Because our algorithm positions the hyperplane with a fixed bias (at the origin or at the 

midpoint of corpus centroids), in some cases the support patterns may lie all in the same 

class. In this case, the distance from the separating hyperplane to the nearest pattern in 

each class may no longer be equal despite the equidistance of the support patterns to the 

boundary. Figure 16 shows an example of this situation resulting from a zero-bias 

classifier applied to a corpus containing ten training samples each of circles and lines. 

Figure 16: Distances to the separating hyperplane of a zero-bias classfier for circles and lines on a 20­

sample corpus. When all support patterns lie in one class, the minimum distances to each class need not be 

equal. 

Unequal (and thereby suboptimal) separation is an inherent risk of our fixed-bias 

approach. As we shall see, it rarely prevents effective separation of the corpus in our 

applications. However, there are pathological cases in which it can render the linear 

classifier impotent: these occur when the pattern clusters corresponding to the two classes 

to be separated both lie close to a ray emanating from the origin defined by the bias in 

pattern space. 

As an example, we divide the coordinates of the circles in the corpus used above by a 

factor of five to produce a corpus of “scaled” circles lying between the origin and the 

original corpus. With zero bias, the optimizer fails to converge and the algorithm returns 

the solution shown in Figure 17, failing to separate either the corpus or the test data. In 

our examples, this weakness is rarely problematic, particularly since the likelihood of 

angular conjunction falls with increasing dimension of the pattern space for a given 

dispersion within classes. 
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Figure 17: A pathological case constructed by scaling the circle corpus relative to the origin illustrates the 

potential pitfalls of fixed bias: the classifier fails to separate either the corpus (gray) or the test patterns 

(black). However, this problem rarely creates difficulties in our applied examples. 

The related restriction to linear classifiers (that is, defined by hyperplane boundaries) 

limits the pattern space geometries that can be effectively handled by the algorithm: 

clearly, only classes that lie on either side of a hyperplane may be separated. Problems 

will arise whenever a class totally or partially “surrounds” another. This may have 

implications for separating specific patterns from generic background “noise,” which can 

easily pervade the surrounding pattern space. 

As an example, we optimize a classifier to distinguish between circles and patterns 

formed from uniformly random points within the two-dimensional canvas domain. 

Because the points sampled from circles lie at the outside edges of the domain, the class 

is not well surrounded by a small set (10) of random patterns, and can be barely separated 

from the noise (Figure 18a). If we generate alternative corpuses with smaller circles 

(constructed by shrinking the original circles toward their centers), we find that the noise 

increasingly surrounds the patterns of interest and prevents effective linear separation 

(Figure 18b,c). 

Note that we have shrunk our sample resolution to two sample points per figure in this 

example in order to obtain a pattern space dimension of four, allowing the circles to be 

easily surrounded by a small number of random points; with larger dimension, many 

more random points are required to defeat hyperplane classifiers. In our applications, we 

rely on a sufficiently low dispersion among classes avoid this issue altogether. 
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Figure 18: Distinguishing circles from random figure “noise” become increasingly difficult as the size of 

the circles relative to the canvas decreases and the circle classes become surrounded by the noise; the 

dispersion eventually overwhelms the algorithm. “Small” circles are reduced in size by a factor of 2, “tiny” 

ones by a factor of 5. 
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3.2 Handwriting Recognition: Performance Drivers 

We used the domain of handwriting recognition as a comprehensive, realistic, yet 

relatively simple testbed to examine the capabilities and performance drivers of the 

algorithm. The less challenging task consisted of distinguishing different numerals (“2,” 

“3,” or “4”) written by the same test subject. The more challenging task consisted of 

distinguishing the same numeral written by two different test subjects. 

Distinguishing between numerals in our approach required constructing three optimized 

boundary hyperplanes, one to separate each numeral class from its complement in the 

training corpus. In these cases, midpoint-bias classifiers consistently placed the boundary 

hyperplane further from the class of interest than optimal, as one might expect (Figure 

20). The midpoint bias is based on the assumption that the dispersion of the classes on 

either side of a boundary will be roughly equal, but the dispersion of a set of classes will 

be greater with respect to the distance between centroids than that of a single class, hence 

the complement of the class of interest will lie closer to the boundary than the class itself. 

Zero-bias classifiers also showed strong asymmetries, but their direction depended upon 

the gestures themselves: those further separated from the others (“point,” and “come” for 

Subject 1) enjoyed greater margins with respect to class boundaries, again as expected 

(Figure 19). However, the dispersion within classes was small enough that neither form 

of asymmetry prevented achieving perfect accuracy on both corpus and test data. 

In distinguishing the identical numerals made by different subjects, we can see the 

difficulty of the problem in the greater dispersion of classes relative to the distance 

between the classes and the separating hyperplane (Figure 21). Though the corpus is still 

well separated, the test data spills over the boundary in several cases. A midpoint bias 

gives slightly more asymmetric separation boundaries (Figure 22), most likely due to 

differences in variability between the different subjects. 
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Figure 19: Hyperplane distance distributions for distinguishing numerals with zero bias for each subject. 

Asymmetries in minimum distance are governed by the relative proximity of classes. 
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Figure 20: Hyperplane distance distributions for distinguishing numerals with midpoint bias for each 

subject. Hyperplanes tend to lie close to the complement of the distinguished class. 
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Figure 21: Hyperplane distance distributions for distinguishing subjects with zero bias for each numeral. 

The classifiers achieve near-optimal separation on the corpus, but variability is high enough to create 

overlap in the test data. 

24 



Figure 22: Hyperplane distance distributions for distinguishing subjects with midpoint bias for each 

numeral. The classifiers achieve slightly less symmetric class separation than the zero bias classifiers; again 

variability is high enough to create overlap in the test data. 
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We now analyze the accuracy of the two approaches on handwriting recognition tasks, 

and its variability with corpus size and pattern sampling resolution. The corpus size 

governs the dimensionality of the optimization problem to be solved in determining the 

optimal margin classifier: the number of optimization parameters is equal to the number 

of training patterns in the corpus. In the examples following, we test corpus sizes of 1, 2, 

3, 5, 7, and 10, with a sample resolution of 6 points per figure. The number of support 

patterns determining the final classifier can be as large as one greater than the 

dimensionality of the pattern space, but can also be limited by the number of training 

patterns available (in which case the problem is reduced by projection to one of lower 

dimension). 

The dimensionality of the pattern space is directly proportional to the sampling 

resolution: in this case, dealing with two-dimensional points, the representation of each 

pattern has dimension equal to twice the number of sample points. For instance, our 

results above using 6 sample points lead to a 12-dimensional pattern space. In the 

examples following, we test sampling resolutions of 2, 3, 5, 10, 20, 40, and 80 points per 

figure, with a corpus size of 5 patterns. All evaluations are done using 10 test patterns 

independent of the corpus. 

The algorithm performs perfectly in distinguishing numerals from one another for all 

cases tested, so we will not consider these results further. Instead, we look at results for 

distinguishing between subjects writing identical numerals. Here the results for zero bias 

and midpoint bias are identical, reflecting that calculated midpoints lie near zero. Figure 

23 shows the sensitivity of test pattern classification accuracy to corpus sample size; 

though the corpus is perfectly separated in all cases, increasing corpus size generally 

improves accuracy, with fluctuations attributable to the strong influence of individual 

patterns in a small corpus. With corpus sizes of 10, accuracies consistently reach the 

range of 80-90%. Figure 24 shows the sensitivity of accuracy to figure sample resolution, 

which generally levels off at fairly low sampling rates. This is not surprising given the 

limited amount of additional information provided beyond a fairly coarse sampling of a 

handwritten figure. 

The desired approach for training will depend upon the relationship of computational 

effort required to each of these variables. These relations are shown in Figure 25. 

Computational effort appears to correlate with the ~4.5 power of corpus size; while still 

polynomial, this strong influence is prohibitive, and may motivate possible 

decompositional techniques discussed later on. Surprisingly, run time initially drops with 

increasing sample resolution, reflecting a quicker optimization process. This may be 

attributable to smoother local maxima resulting from the increased dimensionality and 

separation of classes in the pattern space, which make it faster to find the global 

maximum. These results suggest using as much sample resolution as available in the 

input data for recognition, but limiting the corpus size to that necessary to achieve the 

desired accuracy. We should note that the results presented here depend strongly upon the 

optimization algorithm employed (here a version of Nelder-Mead), and may change with 

the use of more specialized quadratic optimization techniques. 
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Figure 23: Accuracy versus corpus size for subject classification (zero and midpoint offset results 

identical). Results on test patterns (black) generally improve with increasing corpus size, though the corpus 

is perfectly separated in all cases (gray). Fluctuations may be attributed to the strong influence of individual 

patterns in small corpuses. 
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Figure 24: Accuracy versus sample resolution for subject classification (zero and midpoint bias results 

identical). Results on test patterns (black) seem to reach limiting accuracy at fairly low resolutions, though 

the corpus is perfectly separated in all cases (gray). Fluctuations may be attributed to the strong influence 

of individual patterns in small corpuses. 
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Figure 25: The computational effort required to compute the optimal margin classifiers for varying corpus 

size and sample resolution. Using our optimizer, run time appears to increase as the ~4.5 power of corpus 

size, while it drops to a limiting value with increasing sample resolution. 
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3.3 Gesture Recognition: Putting it All Together 

Most of the patterns observable in our results for gesture recognition are familiar from 

handwriting recognition, so we will summarize them and focus on the noticeable 

differences in this more advanced application. 

First, note that variability in patterns (with respect to the hyperplane margin provided by 

the classifier) and asymmetry in class separation are large enough that distinct gestures 

are no longer recognized with perfect accuracy (Figure 26). In this case, the results for 

zero and midpoint bias are identical, reflecting a midpoint very close to zero in each case. 

These results suggest finding a mechanism to move the bias closer to the class of interest 

in multi-class separation. 

Figure 26: Hyperplane distance distributions for distinct gesture classes (zero and midpoint bias results 

identical). Note that variability is high enough with respect to the margins that some test patterns spill over 

the separation boundary provided by the classifier. 
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Zero and midpoint offset results are also identical for distinguishing subjects making the 

same gesture. The margins are wide enough for the point gesture to achieve perfect 

accuracy on test patterns as well as the corpus, and nearly so for the other gestures (all 

have perfect, relatively even corpi separation). 

Figure 27: Hyperplane distance distributions for distinguishing subjects making identical gestures. 
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Unlike in the case of handwriting recognition, classification of distinct gestures made by 

the same subject is no longer perfect, but shows strong improvement with corpus size, 

particularly above a threshold of ~3 training patterns each. Only the “Come” gesture for 

Subject 1 seems unusually problematic. (Figure 28) 

Figure 28: Accuracy variation with corpus size for distinct gestures shows strong improvement to near 

perfection above a critical threshold of ~3 training patterns each. 

The variation of accuracy with sample points per gesture again shows a strong threshold 

effect, reaching perfection at only 5 points per motion with the exception of Subject 1’s 

problematic “Come” gesture. 
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Figure 29: Accuracy variation with sample resolution for distinct gestures shows strong improvement to 

near perfection above a critical threshold of ~5 sample points per gesture. 

Looking at accuracy for distinguishing subjects making identical gestures, we again see 

promising results with increasing corpus size, though it is possible one or two gestures 

may level off slightly below perfect recognition. (Figure 30) 

The threshold of limiting accuracy for sample resolution appears slightly higher for 

gesture recognition (~10 points per gesture), which makes sense given that the pattern 

space dimensionality is three times higher, so that the threshold of full determination of 

hypersurfaces by support patterns is likewise tripled. (Figure 31) 
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Figure 30: Accuracy variation with corpus size to distinguish different subjects shows strong improvement 

to the 80-100% range above a critical threshold of ~5 training patterns each. 
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Figure 31: Accuracy variation with sample resolution to distinguish different subjects shows strong 

improvement to the 80-100% range above a critical threshold of ~10 sample points per gesture. 
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The trends for computational effort with respect to corpus size and sample resolution are 

virtually identical to those for handwriting recognition. This is not surprising given that 

the primary distinction between the problems is an increase in dimensionality of the 

pattern space, which as we have seen has minimal effect on run time. The higher 

variation seen in the gesture recognition domain does not appear to significantly affect 

the performance relationships of the algorithm (Figure 32). The resulting 

recommendations for best performance are thus unchanged. 

Figure 32: The computational effort required to compute the optimal margin classifiers for varying corpus 

size and sample resolution closely parallels results observed in handwriting recognition. 
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4. Possible Extensions 
This section covers some extensions to our project that we thought about or partly 

implemented but seemed out of the scope of our project to complete. 

4.1 Pattern Recognition Given Continuous Input 

At the moment, all our classifiers are tested using only discrete test inputs. This means 

that the program must know exactly when an input will arrive in order to perform the 

required pattern recognition. In the astronaut gesture recognition scenario, this could 

correspond to a switch or button of some sort that the astronaut must turn on before 

making a meaningful gesture. While this switch and discrete gesture method could 

certainly be used in real world applications, it may prove unnatural and unnecessarily 

increase the user’s workload. A desirable alternative would be a program capable of 

recognizing a meaningful gesture among a continuous stream of data containing all user 

actions, meaningful or otherwise. 

In our system, we were able to adjust our hardware interface program to export two 

simultaneous outputs. One continuously records user motions as a list of six dimensional 

vectors while the other selectively records part of the user motion. For the latter output, 

recording can be turned on or off by way of a single keyboard stroke, and discrete 

segments are separated by a divider symbol. This interface system allows us to use the 

same gesture sequence for both discrete and continuous gesture recognition; it not only 

cuts down the testing data generation time, but also provides the means for direct 

comparison between discrete and continuous recognition using the exact same gesture. 

Unfortunately, we were unable to complete the code required to analyze continuous data; 

however, we were able to identify some important features needed in order to extend our 

program to handle such cases. 

Since we do not know when a meaningful gesture will appear among motions made by 

the user, we must continuously run the 6 dimensional vector sequences through the 

classifiers. To accomplish this, we would like to implement a buffer that moves along the 

data stream at some predetermined step size. A buffer in this case is an imaginary slide of 

a fixed length. There should be a different buffer for every classifier. At each step, the 

data contained within a buffer will be tested against the associated classifier to look for a 

match, as visually depicted in Figure 33. 

Classifier 

Buffer at t1 

Classifier 

Continuous data streamBuffer at t2 

Figure 33: Buffer along continuous data stream. To perform dynamic classification over a continuous 

data stream, we step through the data stream with a classifier as comparison at each time step 
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One problem with using a fix buffer is that the length of a gesture is not fixed. As an 

approximation, we can use the average corpus gesture length as the buffer length; 

however, we risk missing gestures due to length variations. Therefore it may be necessary 

to add to the training data set meaningful gestures with the ends chopped off or extended. 

The choice of step size for the buffer can also affect the performance of the program. We 

could shift the buffer by one data point per step, which gives us the best chance of finding 

a meaningful gesture if one exists. However, this may be too computationally demanding. 

Increasing the step size would improve the computational performance, but could also 

decrease the accuracy of the algorithm. The optimal step size can only be determined by 

amble testing and may vary from gesture to gesture. 

4.2 Distinguish Pattern from Non-pattern 

All of the testing presented in this report consists of classifiers separating different 

classes of gestures from one another or separating the same gesture made by different test 

subjects. We have not constructed or tested a classifier dividing a class from all data 

patterns not contained in that class. The key reason for not performing this test is that for 

discrete data recognition, we know that each input should match one of the predetermined 

patterns: if an astronaut turns on the recognition switch and then makes a gesture then the 

gesture should not be random. However, this is not true for continuous data recognition. 

In this case, meaningless gestures are made between meaningful gestures, and the 

classifiers must be able to distinguish one from the other in order to successfully filter out 

and recognize the astronaut’s intentions. This type of data classification presents some 

issues. 

First of all, generating the complete set of meaningless data is not easy because it consists 

of all possible patterns aside from the one meaningful pattern that we aim to recognize 

(see Figure 34). But as an approximation, we could record a set of typical motions made 

by a test subject within a certain work environment and use that as the opposing class. 

However, the effectiveness of this data generation method cannot be determined without 

thorough testing. 
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Figure 34: Pattern against non-pattern. The blue points represent a cluster of four data points for a class 

of patterns, the red points represent other pattern that does not belong to that class, and the solid curve 

around the blue points represents the classifier between pattern and non-pattern points. 

Also, data corresponding to a specific pattern follows a certain trend: for example, they 

could form a cluster within the space of all possible patterns. And all of our test cases 

involve distinguishing a specific pattern from other distinct patterns. Since the classifier 

only needs to provide a barrier between distinct groups of patterns, one can see how a 

linear decision function would work well in this case (refer to Figure 2). However if we 

extend our program to handle the case of recognizing pattern from non-pattern then a 

linear classifier may or may not be acceptable. In Figure 34 we see that if the blue points 

represent a pattern cluster then the red point must cover all space around the blue points. 

In this case, a linear classifier cannot possibly distinguish one class from the other. 

Therefore, a program that processes continuous data may also require the ability to 

determine the optimal or at least an acceptable classifier, linear or otherwise. 

4.3 Alternative Classification for Multiple Classes 

All classifiers discussed so far only deals with binary classification between two classes. 

Therefore, when testing with n classes (n > 2), we calculated n classifiers, each 

distinguishing a specific class from the rest (see Figure 35). The subsections below 

discuss some possible alternatives to this approach for handling classification of multiple 

classes. However, these are only ideas, and we do not have sufficient data to show 

whether they work in practice. 
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Figure 35: One classifier per class for multiple class classification. The red, green, and blue points 

represent different classes. The 3 lines represent the 3 classifiers used to separate these classes. The red 

classifier separates the red pattern from the blue and green, the blue classifier separates the blue pattern 

from the red and green, and the green classifier separates the green class from the red and blue. 

4.3.1 Single classifier for Multiple Classes 

The idea here is to use one classifier to distinguish more than two classes of patterns. 

Here we once again visit the notion that data for a single pattern lies in a cluster, away 

from other patterns. In fact, during testing, we noticed that data for a specific pattern tend 

to lie a similar distance away from the decision boundary. This opens the possibility of 

using one classifier to distinguish multiple classes by assigning a range of decision values 

for each class. Instead of having D ! 0 correspond to class A and D � 0 correspond to 

class B, we could have classes A, B, C, etc., where �a � D � b�o A class , 

�b � D � c�o B class , �c � D � d �o C class , etc. 

Figure 36 shows a single classifier used to distinguish 4 classes. Assume the red and 

green classes rests on the positive side of the classifier and the black and blue on the 

negative, then the distances a, b, c, and d should have the property b � � � a . If a, b,d c 

c, and d are average distances from a class to the classifier, then we could use the 

b � d 
following rule or a similar one to distinguish the classes: for pattern x, if D� � � ,x 

2 

b � d � � � 0 , then x belongs to the blue class, etc. then x belongs to the black class, if � D x 
2 

Intuitively, this approach should work best when dealing with patterns that are dissimilar 

from one another. 
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Figure 36: One classifier for multiple classes. The red, green, black, and blue points represent 4 distinct 

classes. The black line is the single classifier used to distinguish these classes. The red, green, black, and 

blue arrows labeled a, b, c, and d are representative distances from their respective classes to the classifier. 

4.3.2 Binary Tree-Structured Classifiers 

Also, instead of calculating a classifier for each class we could separate all classes into 

two groups with a classifier dividing the groups, and then further separate and divide 

each group. For example, in Figure 37, assume the red and green classes rest on the 

positive side of the black classifier, and the green class rests on the negative side of the 

red classifier. In this case if D x � � � 0 for the red� � ! 0  for the black classifier and D x 

classifier, then pattern x belongs to the green class. However, with this method also 

comes the question of how best to divide the classes into groups in order to obtain 

maximum separation between groups. 
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Figure 37: Binary, tree-structured classifiers. The red, green, black, and blue points represent 4 distinct 

classes. The black, blue, and red lines represent classifiers. The black classifier separates the red and green 

class from the black and blue class. The blue classifier further separates the black class from the blue class, 

and the red classifier separates the red class from the green class. 
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Conclusion 

In this paper, we have described the optimal margin classifier algorithm in detail. We also 

described the implementation of this algorithm with respect to our test environment, and 

conducted an analysis of the algorithm using our test results. Our implementation may be 

useful for future space flight activity because we can conceivably integrate the small 

hardware components into an astronaut’s spacesuit so that a robot in collaboration with 

the astronaut would be able to detect the astronaut’s arm and hand gestures. Further work 

is required to fully develop this capability. 
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