
Massachusetts Institute of Technology
16.412J/6.834J Cognitive Robotics

Project Proposal

Continuously Planning for Autonomous Navigation

Using

Conflict-Directed A*

to Generate

Temporal Flexible State Plans

Lawrence Bush, Brian Bairstow and Tony Jimenez

April 11, 2005

Massachusetts Institute of Technology
16.412J/6.834J Cognitive Robotics

Project Proposal

Lawrence Bush, Brian Bairstow and Tony Jimenez

April 11, 2005

Introduction:

Autonomous control of systems is an important
topic, as autonomous systems can perform tasks
that are dangerous, monotonous, or even
impossible for humans. For example, Unmanned
Aerial Vehicles (UAVs) can perform tasks such as
reconnaissance, fire-fighting, and Mars
exploration. Issues include the planning problem
of where to go, and the control problem of how to
actuate that movement. Bradley Hasegawa [1]
posed the planning problem as a Selective
Traveling Salesman Problem (STSP). Each point
of interest (for example, a science site) is assigned
a value, and each edge connecting points is
assigned a cost. Then the most valuable and
feasible ordered set of waypoints is chosen.
Thomas Leaute [2] worked on the other end of the
problem; starting from a plan and running the
control system in a simulator. We hope to
integrate the two techniques to get an autonomous
planner and controller that can take a list of sites,
decide on a plan, and then control the system to
meet that plan. This will be a complete system
that handles high and low level planning to achieve
a goal.

Problem Statement:

Our project addresses the design of an
autonomous exploratory planner for a UAV. This
problem involves extending a continuous
observation planning system [1] with an improved
algorithm and merging this system with a kino-
dynamic path planner [2].

Previous Work:

Our project is premised upon 3 main bodies of
work, namely [1], [2] and [3]. The first step of our
project involves integrating [1] and [3].

Continuous Observation Planning for
Autonomous Exploration [1]

The thesis [1] presents a new approach for solving
a robotic navigation path-planning problem. The
approach first formulates the problem as a
selective traveling salesman problem (S-TSP), then
converts it to an optimal constraint satisfaction
problem and solves it using the Constraint Based
A* algorithm. The Solver, shown in the system
architecture diagram in Figure 1, performs this key
ability.

Figure 1: The above diagram is the system architecture for [1]. The navigation architecture starts with a
partially complete map. Candidates and obstacles are extracted from the map, which are used to construct a
visibility graph. The D* search is used to update the candidates. The candidates are passed to the solver,
which creates a plan (ordered candidate subset).

The solver is a continuous observation planner,
which updates the plan when new observations
affect the candidate set (possible places to visit).
The objective of the robot is to map its
environment. The robot chooses to navigate to
observation locations, which will maximize
information gain. Each observation may affect the
utility and cost of unvisited observation locations
(candidates), which necessitates re-planning.
There is an implicit trade-off between the planning
horizon and how often the candidates are updated.
The planning horizon should mirror the expected
time period between re-planning. In other words,
if we look ahead 5 tasks, we want to be able to
execute those 5 tasks before we have to re-plan. If
this does not occur, then our plan is optimized for
a different planning period than it is executed for.
This results in sub-optimal planning.

Ultimately, the system is making an exploration-
exploitation trade-off, which can be generalized to
other tasks. The tasks must involve observation
and candidate list utility/cost updates. This
method is likely to be effective when we have (at a
minimum) a large-scale prior map of the
exploration region.

The thesis [1] addressed a mapping application
where the candidates frequently changed due to
new observations. The finite horizon technique is
more effective when the candidates do not change
frequently. Yet the mapping application actually

favors observation candidates that increase its
situational knowledge the most. For these reasons,
the finite horizon method is more effective when a
high-level map is known. The attributes of
continuous finite horizon planning lend
themselves to exploratory missions with a specific
objective (i.e. a science exploration application)
where a prior map is known. Refining the map
will affect the cost estimate for the science tasks
and the utilities of the science tasks may change as
prior successes affect the probability of future
successes. This necessitates continuous planning.
However, the changes should be sufficiently
infrequent, so that a finite horizon is more
effective that a purely greedy candidate selection
strategy.

Key elements of the framework presented in [1]
are shown in Table 1.

Exploration Problem:

)
Path Planner:
Map Type:
Pose:

Explore and construct a map of an environment
Exploration Method: Feature based (Newman, Boss, and Leonard)
Assumption: The robot knows the large-scale environment structure
Path Cost: Path length (physical distance

Visibility Path Planner : F(map, candidates, pose)
Feature based SLAM map

 Robot position and heading
Candidate: An observation point bordering an unexplored area
Candidate Utility: An estimate of the observable unexplored area
Candidate Dynamics: How do candidates change as a robot explores

This is an open area of statistical learning research

Table 1: Key attributes of the continuous observation-planning framework.

Coordinating Agile Systems Through the
Model-based Execution of Temporal Plans [2]

This work provides a novel model-based execution
of a temporally flexible state plan for the purpose
of UAV navigation. Its kino-dynamic controller is
a continuous planning framework. However, the
high level planner is not.

Our integration would enable this work to perform
continuous high-level planning. The scope of our
project includes enabling the simulation
framework to accept TFSP updates. In particular,
the observations would be considered when
creating the temporally flexible state plan.
Continuous high-level planning would allow the
UAV to adapt its high-level goals to the observed
environment. Specifically, it adapts the additional
information that it learns about its environment
(i.e. a more accurate map or the ramifications that
one task has on the utility of future tasks).
Therefore, this integration would provide a system,
which observes, learns and updates its higher level
planning goals.

Conflict-directed A* and Its Role in Model-
based Embedded Systems [3]

This paper [3] introduces a method for
solving optimal constraint satisfaction
problems. An Optimal Constraint Satisfaction
Problem (OCSP) is the problem of finding a
consistent assignment of variables to values that is
both consistent and has optimal value. More

rigorously, such a problem is a 5-tuple
D y x ,C , y g) where, , (x x

• 	 x is a set of variables each with domain
Dx,

• 	 C is a set of constraints on the variables x
that define what is a consistent
assignment,

• 	 y F) is a function y ⊂ x ℜ → that
defines the cost of an assignment.

(

Many problems can be formulated as OCSPs.
Specifically, an S-TSP problem can be represented
as an OCSP. CDA* has been shown to be an
efficient implementation for solving OCSPs. For
this reason, we proposed to replace the Constraint
Based A* solver in [1] with a CDA*
implementation.

Technical Approach:

Our first step will be to adapt Bradley Hasegawa’s
work (Continuous Observation Planning for
Autonomous Exploration) [1] which involves a
Selective Traveling Salesman Problem (STSP) with
value updates. We have Conflict Directed A*
(CDA*) code (in C++) from Tony Jimenez’s work
on the second assignment. We hope to gain access
to the code for [1], and change it so that when it
frames the STSP as an Optimal Constraint
Satisfaction Problem (OCSP), it will use our CDA*
algorithm to solve the OCSP. This may involve a

lot of work in merging two separately developed
algorithms.

Our next step will be to change the STSP solution
to a Temporally Flexible State Plan (TFSP). This
will involve adding time constraints to the ordered
list of points to visit. This can be done trivially by
generating the constraints at random or in a more
logical manner by estimating times using a
probabilistic motion model. We will probably use
a simple C++ program to input the STSP solution
and output a TFSP.

Our final goal is to link the work for [1] with the
work by Thomas Leaute [2] on Coordinating Agile
Systems Through The Model-based Execution of
Temporal Plans. The work for [2] takes a TFSP
and tests the controller using simulation.
Conceivably we could start with an STSP, use the
work for [1] with CDA* to solve it, turn the
solution into a TFSP, and run the TFSP using
Thomas Leaute’s code in a simulator. However,
[1] uses a STSP with changing values from
observations, so it will keep producing different
solutions over time. In discussion with Thomas
Leaute, we learned that he thought it would be
feasible to change the code for [2] to handle
updates in the TFSP. Our fallback position would
be to restart the simulation whenever the TFSP is
updated.

As a final implementation though, we note that
our motivating application is the Mars Airplane,
where the expected value of future scientific tasks
is affected by ongoing observations. The above
integration of the continuous observation planner
intends to allow plan updates due to new
observations. These observations may affect the
value of the future tasks. A science exploration
mission lends itself to continuous (finite horizon)
observation planning because it embodies an
implicit exploration-exploitation trade-off. Our
integration will, therefore, allow the simulator to
extend the feedback-control loop to high level
planning. This feedback-control loop integration,
however, is left as future work.

Plan:

Our minimal plan will be an extension to [1]. To
accomplish our learning goals, our objective will
be to master the concepts presented in Bradley
Hasegawa’s thesis and develop an extension to his
work by replacing constraint-based A* with
conflict-directed A*.

Our baseline plan would be a further extension to
the above-mentioned algorithm. We will then take
the algorithm developed by Mr. Hasegawa and
convert the solution to the Selective Traveling
Salesman Problem (STSP) into a Temporally
Flexible State Plan (TFSP).

Our enhanced plan is a novel cognitive robot
application. This plan would be to take the
extension to the previous work from [1] and merge
it with [2] by modifying it to accept a continuously
updated TFSP. The resulting application would be
able to take as inputs a set of waypoints and
continuously plan a kino-dynamic path that will be
optimized according to the utility of the waypoints.
This cognitive robot application can then be
executed on a hardware-in-the-loop simulation as
cited in [2] if that equipment is available from the
MERS lab.

Schedule:

4/11 Turn in proposal
4/17 Integrate [1] with CDA*
4/19 Create translation from STSP

solution to TFSP.
Reassess situation and schedule

4/24 Integrate [1] with [2], modify [2]
to handle updates to TFSP.
Coding complete

4/27 Simulations complete
5/4 Paper complete
5/7 Presentation complete

Division of Labor:

• 	 Adapt Bradley Hasegawa’s work
� Solve OCSP using CDA*
� Convert OCSP [1]

representation to CDA* [2]
representation

• Change the STSP solution to a TFSP
� add time constraints

• 	 Link Bradley Hasegawa’s work with the
work by Thomas Leaute

� 	Adapt his code so that the
TFSP can be continuously
replaced with a new one.

• 	 Overarching Activities:

� Debugging

� Interfacing

o 	 Interfacing can often result
in unforeseen
implementation delays.
Therefore, we intend to
address most interfacing
issues upfront, which will
allow us to properly adapt
the scope of our project.

o 	 We intend to do this by
first implementing the
interface between the two
algorithms ([1] and [2])
without observations. Our
second step will involve
properly formatting the
TFSP for the simulation
interface [2]. The
simulation framework [2]
will initially require no
fundamental changes since
the TFSP will be static.
The second spiral of our
project will then include
observations and TFSP
updates. This will require a
fundamental change to the
simulation framework and
interface [2].

� 	Write-up

References:

[1] B. Hasegawa, “M.Eng. Thesis: Continuous
Observation Planning for Autonomous
Exploration,” Massachusetts Institute of
Technology,(2004).
http://mers.csail.mit.edu/theses/BradHasegawaT
hesis.pdf

[2] T. Leaute and B. Williams, “Coordinating Agile
Systems Through the Model-based Execution of
Temporal Plans,” accepted to the International
Workshop on Planning under Uncertainty for Autonomous
Systems (2005).

[3] B. Williams and R. Ragno, “Conflict-directed
A* and Its Role in Model-based Embedded
Systems,” to appear in the Special Issue on Theory and
Applications of Satisfiability Testing, accepted in Journal
of Discrete Applied Math (January 2003).
http://mers.csail.mit.edu/papers/jdam.pdf

