
Decomposition

Larry Bush
Tony Jimenez
Brian Bairstow

Solving POMDPs through Macro

POMDPs are a planning technique that accounts for uncertainty in the world. While
they have potential, they are very computationally complex. Macro operators can
reduce this complexity.

1

Outline

•

•

•

Introduction to POMDPs
– Brian Bairstow

Demonstration of POMDPs
– Larry Bush

Approximating POMDPs with Macro Actions
– Tony Jimenez

We will begin with an overview of MDP and POMDPs, and then a visual
demonstration of simple MDPs and POMDPs. Finally we will discuss our
advanced topic in POMDPS: the approximation of POMDPs using macro
actions.

2

•

•
•

Introduction to POMDPs

Introduction to POMDPs
– Markov Decision Processes (MDPs)
– Value Iteration
– Partially Observable Markov Decision Processes

(POMDPs)
– Overview of Techniques

Demonstration of POMDPs
Approximating POMDPs with Macro Actions

Begin with completely observable Markov Decision Processes, or MDPs.
Then discuss value iteration as a method of solving MDPs. This will lay the
groundwork for Partially Observable Markov Decision Processes, or
POMDPs. Finally there will be an overview of methods for solving POMDPs.

3

Navigation of a Building

• Robot

get there?

– Knows building map
– Wants to reach goal
– Uncertainty in actions
– What is the best way to

Imagine a robot (in the lower right of the graphic) trying to navigate a
building. It wants to reach a goal (the star in the graphic). It has difficulties in
that there are uncertainties in its actions, for example its wheels could slip or
catch. This might cause it to run into a wall, which is undesirable. The
problem then is to find the best way to reach the goal while dealing with the
problem of uncertainty in actions. How can we solve this problem?

4

Markov Decision Processes

• Model
– States, S
– Actions, A
– Transition

Probabilities, p(s,a)
– Rewards, r(s,a)

• Process
– t in S
– Choose action at in A
– t t ,at)
– State becomes st+1 according to

probabilities p(s,a)

• Goal
p for choosing actions that

maximizes the lifetime reward
• Discount Factor g

Value = r0 + gr1 + g2r2 + …

Observe state s

Receive reward r = r(s

– Create a policy

We can use a MDP to solve the previous problem. An MDP consists of a model with states,
actions, transitions, and expected rewards. The states in the previous problem could be
positions on the map. States are discrete, so the map would have to be divided into a grid or
something similar. The actions then could be to move north, east, south, or west on the map.
The transition probabilities tell you the chances that a certain action from a certain state takes
you to different other states. For instance, if the robot was commanded to move north, there
might be a large probability that it transitions to the next state north, and small probabilities it
ends up east, west, or not move at all. The reward function tells you the expected reward
received by taking an action from a state. In the previous problem this could be a large reward
for reaching the goal, and a large negative reward for hitting a wall.

The process in carrying out an MDP solution is to observe the state in time step t, to choose an
appropriate action, to receive the reward corresponding to that state and action, and to change
the state according to the transition probabilities. Note that the robot is in exactly one state at a
time, that time is discrete, and all actions take one time step.

The goal in solving an MDP is to create a policy (a method for c hoosing actions) that
maximizes the expected lifetime reward. The lifetime reward is the sum of all rewards
received. Thus a policy should not always maximize immediate reward, but also plan ahead.
Future rewards are discounted by a factor for each time step they are in the future. This
follows an economic principle of the effect of time on values. Also, this makes the math work
in calculating lifetime reward. Without discounting, it could be possible to receive a small
reward over and over to get an infinite reward, and this is not useful in choosing a policy. A
typical discount factor might be 0.9.

5

MDP Model Example

• States A, B, C
• Actions 1, 2
• Transition probabilities p and rewards r in diagram
• C is terminal state

A B C

2
1

1

2

p = 0.3

p = 0.7

p = 0.4

p = 0.6

p = 0.5

p = 0.5

p = 0.7p = 0.3

r = 1

r = 1

r = 1
r = 1

r = 0.2

r = 0.2

r = 0

r = 0

This is a simple example of an MDP model (unrelated to the previous robot
example). There are 3 states and two actions. The probabilities and rewards
are written in the diagram. For example, from state A, if action 1 is chosen
then there is a 70% chance of staying in state A with 0 reward, and a 30%
chance of moving to state C with 1 reward. State C is the termi nal state, since
there are no actions that move out of state C.

6

Decision Tree Representation of MDP

A

1

2

A

C

0.7

0.3

C

B0.6

0.4
1

1

0.2

0

0.3

0.52

0.52

RewardExpected
Reward

Max Q Value

A Decision tree is another form of visualization, and allows you to evaluate the values
of states.

Here is a 1 step horizon decision tree for the simple model show n. From the starting
point A there are two actions, 1 and 2. The action chosen gives probabilities of
moving to different states.

Notice that the rewards for moving to the states are listed in right at the leaf nodes.
Expected rewards can then be calculated for taking actions. For instance, for action 1
the expected reward is .7(0) + .3(1) = 0.3. When the expected rewards for the actions
are known, then the highest reward path should be followed. This means that in a 1
step problem at state A, action 2 should be taken, and state A has a value of 0.52,
equal to the expected reward of taking action 2.

However this is only a one step problem. We have not considered that it is important
what state you end up in because of future rewards. For instance, we have just
discovered that state A has a value of .52, but in the tree in the upper right we have
evaluated it as having 0 value. Thus we need to look at a larger horizon problem.

7

Decision Tree Representation of MDP

A

1

2

A

C

0.7

0.3

C

B0.6

0.4
1

1

0.9

0.52

0.664

0.94

0.94

Max Q ValueTotal Future
Reward

Max Q Value 1

2

A

C

0.7

0.3
1

0

B

C

0.6

0.4

1

0.20.52

0.3

1

2

A

C

0.3

0.7
1

0

B

C

0.5

0.5

1

0.20.6

0.7

Expected
Reward

Reward

Now we have a decision tree for a 2 step horizon starting at sta te A. For simplicity a

discount value of 1 has been used.

Again we start at the right and calculate the expected rewards, and then the values for

the states. Thus after 1 step A has a value of 0.52. Note that B has a value of 0.7 (

future reward) + 0.2 (immediate reward) = 0.9. When the values of the states for the

one step horizon are known, they can be used to calculate the 2 step horizon values.

The expected values for the actions are calculated again, and then the max value

(0.94) is assigned to state A for the 2 step problem. In general this process can be
iterated out.

8

Value Iteration

• Finite Horizon, 1 step
Q1(s,a) = r(s,a)

• Finite Horizon, n steps
Qn(s,a) = r(s,a) + gS[p(s’|s,a) maxa’Q (s’,a’)]

• Infinite Horizon
Q(s,a) = r(s,a) + gS a’

• Policy
p a

n-1

[p(s’|s,a) max Q(s’,a’)]

(s) = argmax Q(s,a)

This brings us to the concept of value iteration. Value iteration is the process
of assigning values to all states, which then solves the MDP. As shown, in a 1
step horizon the value is merely the expected reward. In a larger horizon, the
value is the expected reward plus the expected future reward discounted by the
discount factor. After iterating to larger and larger horizons, the values change
less and less. Eventually convergence criteria is met, and the problem is
considered solved for an infinite horizon. At this point the policy is simply to
take the action from each state that gives the largest reward.

9

Q Reinforcement Learning

• Q can be calculated only if p(s,a) and r(s,a)
are known

• Otherwise Q can be trained:
Qt+1 b)Qt(s,a) + b[R+gmaxa’Qt(s’,a’)]

• Perform trial runs; get data from
observations

• Keep running combinations of s and a until
convergence

(s,a) = (1-

Note that value iteration can only be performed if the p and r functions are known.

An alternate technique becomes very useful if you don’t have a model. Instead of

calculating p and r, they can be observed. The actions are carried out many times

from each state, and the resultant state and reward are observed. The Q values are

calculated from the observations according to the equation above, and eventually the

data converges (Qt+1 ~= Qt).

Q learning is used in our topic paper.

Beta is a weighting factor, R is the observed reward

10

• Can no longer directly observe the state of the system
• Instead at each step make an observation O, and know the

probability of each observation for each state p(O|S)
• Also have initial state distribution p(s0)

S S S

O O O

A A

p(O|S)

p(s,a) Hidden

Observable

t1 t2 t3

Partially Observable MDP’s

Now we move to POMDPs. Before actions were uncertain, but we always
knew what state we were in. However, the real world has uncertainty, and
POMDPs model that. For example, sensors can give false or imprecise data.
Thus instead of knowing the state, at each time step we receive an observation
that gives us some data about the state. In this graphic we see that the states
influence the observations, which influence the actions, which in turn
influence the state.

11

State Estimation

• States and Observations not independent of
past observations

• Maintain a distribution of state probabilities
called a belief b
bt = p(st|ot,at,o ,a ,…,o0,a0,s0)

State
Estimator Policy

b a
o

t-1 t-1

Since we don’t know exactly what state we are in, we instead have a belief
state. A belief state is a mass distribution of the probabilities of being in each
state. For instance, a belief could be b = < .5 .2 .3> which would be 50%
chance of state 1, 20% chance of state 2, and 30% chance of state 3 (the
probabilities sum to 100%). Thus instead of being in a state at a time step, we
are in a belief state. These belief states a continuous distribution of discrete
states. Instead of being in a finite number of states, we are in a infinite number
of belief states over those finite states.

There is an additional step in the process of POMDPs compared to MDPs.
Instead of observing a state and performing an action, we must make an
observation, calculate the belief state, and then choose an action.

12

b(s2)0 1

Q(b,a)
Q(a1) = Q(s1,a1 2)) + Q(s2,a1)b(s2)

Q(a2)

• Finite horizon value function is piecewise linear and convex
– Depending on the value of b(s2), a different action is optimal

•
– Need to consider effect on future belief states

Value Iteration with POMDPs

)(1-b(s

Here is a one-step finite horizon problem

Value iteration is more complicated with POMDPs because we have an infinite
number of belief states. Above is a representation of a 2 state problem with
probability of being at state 2 in the x axis. Plotted are the values of taking the two
actions. Thus on the left there is certainty of being at state 1, and at the right there is
certainty of being at state 2, which a linear change between the m. Thus the values of
actions are also linear as described in the equation on the slide. At any point in the
belief space we choose the highest valued action to carry out. Thus in the left side we
choose action 1, and on the right we choose action 2. In this manner our value
function ends up piecewise linear and convex. In general there are more than two
states, so we have hyperplanes instead of lines, but the principle of partitioning the
belief space remains the same.

This is merely a one step problem, and it gets much more complicated over more time
steps.

13

Decision Tree Representation of POMDP

b1

a1

a2

b2
11

b2
12o2

o1

b2
21

b2
22o2

o1

a1

a2

a1

a2

a1

a2

a1

a2

To tackle the problem of additional time steps, we will return to decision trees.
This decision tree is similar to the one for MDPs, with a couple differences.
The states have become belief states. The actions used to have uncertainty
shown in the tree, but now that is encapsulated in the probabilities of the belief
states. The observations have been added here as an additional step, because
getting different observations brings the problem to different belief states.

Thus the process for value iteration is to first calculate the probabilities of
observations given actions, and thus the distributions of the resultant belief
states. Then the values of the belief states on the right in can be calculated
based on expected rewards as one-step problems. Then since we know the
probabilities of observations given actions, we can assign expected rewards to
the actions a1 and a2. Then the value of belief b1 will be know n. In general
this can be extended to larger problems of n steps. However, since the number
of belief states visited becomes larger exponentially by the number of actions,
observations, and steps, this quickly becomes complex. In order to get good
results, advanced techniques need to be used.

14

• Concentrate on specific points in continuous belief space

• How should beliefs be chosen?
• Problems with high dimensionality

b2

b1

b3

b8
b5

b6
b7

b4

Approximation: Point-Based

Approximation techniques allow simplification of POMDPs to make them tractable.

The point-based approximation technique follows the idea of optimizing the value

function only for certain points in the belief space; not all points. This changes the

problem from calculating a policy for a belief space to calculating a policy for a finite

number of points.

This raises a question of how to choose belief points. One possibility is to do so

dynamically. Also, when there is high dimensionality many points must be chosen in

order to cover the space in a meaningful way.

15

Approximation: Monte Carlo

• Estimate values of actions for samples of belief space
• Interpolate for arbitrary values

• Computationally difficult to learn policy

a1

bi
b1

bk
bj

The Monte Carlo approach runs repeatedly on samples of belief space to learn their

values. It is similar to reinforcement learning.

Arbitrary values are interpolated from nearby points.

This has the advantage of being a non-parametric representation, however it is still

computationally difficult to learn a policy.

This technique is used in our advanced topic.

16

•
• Can use variable resolution

• Size increases with dimensionality and resolution

b2b1 b3

b8

b5 b6

b7

b4

b9

b10

b12

b14

b13b11

Approximation: Grid-Based

Like point-based approximation, but with regular spacing

Grid-based approximations are point-based approximations with a regular grid
spacing. This solves the problem of choosing points, however number of points still
increases with dimensionality and with grid resolution.

One solution is to use variable resolution. This is the process of starting with a coarse
grid resolution, and increasing the resolution only for interesting areas, essentially
allowing zooming in on certain parts of the belief space.

Our advanced topic uses grid based approximations.

17

• Assume that the state is the most likely state, and
perform corresponding MDP.

• Only works if this is a good assumption!

b = <0.08, 0.02, 0.1, 0.8> POMDP

b = < 0 , 0 , 0 , 1 > MDP

Heuristic: Maximum-Likelihood

Now we move into different policy heuristics.

The Maximum likelihood heuristic is simply assuming that the sta te is the most likely
state. This reduces the POMDP into an MDP, which can then be easily solved.

Of course, this only works if this is a good assumption. It works well when the
uncertainty is due to bounded noise rather than uncertain state features.

18

Heuristic: Information Gathering

• MDP is easy to solve
• Valuable to learn about the state

b = < 1 , 0 , 0 , 0 > b = < 0.1, 0.2, 0.4, 0.3 >

b1

The Information Gathering heuristic works on the idea that it is valuable to learn

about the state, because then it is easy to maximize the reward.

Thus if two candidate actions have similar rewards, but one reduces the uncertainty in

the system, then that one should be favored.

19

Heuristic: Hierarchical Method

•
• Smaller state space reduces amount of computation

Belief Space
POMDP

of
POMDPs

Split into top level POMDP and low level POMDPs

Hierarchical Methods involve splitting a POMDP into a top level POMDP and low
level POMDPs. Each smaller POMDP has a smaller belief space, and thus the
complexity is exponentially smaller. This is offset by the fact that there are more
POMDPs to solve, but the number of POMDPs is polynomial, while the savings are
exponential.

An example would be macro actions, which are described and used in our advanced
topic.

20

Heuristic: Policy Search

• Reinforcement learning on policy instead of
value

• Value and Policy Search

learning into a single update rule
– Combine value and policy reinforcement

The Policy Search heuristic is the idea of learning about the policy, not the value. It is
very similar to Q reinforcement learning but is on the policy. Essentially the policy is
optimized directly by training it to produce best value.

21

Outline

•
•

•

Introduction to POMDPs
Demonstration of POMDPs
– Problem : UAV Navigation
– MDP Visualizations
– POMDP Visualizations

Approximating POMDPs with Macro Actions

This is the demonstration portion of our talk. The objective is : understanding

POMDPs through visualization.

I will explain to you a UAV Navigation problem that I modeled as an MDP

and a POMDP.

The visualizations will show the solution process and the policy execution

process for an MDP, as a primer, and then a POMDP.

2 key points that I want you to take away from this demonstration are the

essence of how POMDPs work, and the complexity of solving them.

For example:

The POMDP has a Continuous Belief State Space.

The POMDP’s Policy Tree is polynomial in the number of actions and

observations and exponential in the length of the planning horizon.

22

Demonstrations*
• MATLAB
• MDP

– Map to Problem Domain
– Value Iteration
– Policy Execution
– Visualization**

• POMDP
– Map to Problem Domain
– Belief Space Search
– Policy Execution
– Visualization**

* All coding is mine except for some basic
MDP value iteration functionality.

** Visualizations run in line with code.

I implemented and solved the UAV Navigation problem, using MDPs and a

POMDPs, in MATLAB.

This includes the policy execution and visualization code.

The visualizations that I created run inline with the code.

They were not generated after the fact.

They were generated in Matlab, as the code was running.

So, they allow you to peer inside and see what is happening.

I implemented everything that you will see with the exception of some basic

MDP value iteration functionality.

Note:

I ran the code in various conditions and situations, some of which I will show

you here.

23

INFO

i

UAV Land at Airport

Problem : Introduction

Landing
Runway

Runway+

UAV: +

Take-off

The point of this slide is to motivate the MDP and POMDP models /

algorithms.

I mapped a small UAV navigation problem to the MDP and POMDP models.

In this navigation problem, we have a UAV (represented by the red +) who’s

objective is to land on the landing runway at an airport.

The map above shows an airport on an island. The airport has a landing

runway and a take-off runway.

24

Outline
•
•

– Problem : UAV Navigation
– MDP Visualizations

• Value Iteration
• Policy Execution

– POMDP Visualizations

•

Introduction to POMDPs
Demonstration of POMDPs

Approximating POMDPs with Macro Actions

This is the MDP portion of the demonstration.

You will see how the UAV navigation problem is mapped to the MDP model.

You will then see a visualization of MDP value iteration.

MDP value iteration is the process that MDPs use to find an optimal policy.

You will then see a visualization of the policy being executed.

In our UAV navigation problem, this represents the UAV navigating to the

landing runway.

25

INFO

i

MDP Utility Overlay

UAV: +

Reward (#)

State Utility
Exclusion

Zone

.04

Transition
Model

Cost Probability

.8
.1 .1

Problem : Utility Overlay

This slide shows the utility overlay for an MDP problem. It shows how to map the UAV problem to an
MDP.

As Brian explained, the MDP model assumes that you know what state you are in. For our UAV
navigation problem, the state simply represents the UAV’s location.

So, each of the red and yellow blocks represent the state that the UAV could be in. There are 11 states
that the UAV could be in, each representing a particular locatio n. The color of each state indicates the
utility of that state. Yellow indicates high utility and red indicates low utility.

Legend and Chart:

The red + represents the UAV. This will be used in the policy execution phase. The numbers represent
the reward. In our model, you receive a reward of +1 for navigating to the landing runway. You receive
a reward of -1 (or cost) for ending up on the take-off runway. There is also a transition cost of .04 which
is incurred for each action that is taken. This transition cost can also be represented as a negative reward.
All of these rewards, collectively, make up the reward matrix.

These rewards, are reflected in the state utility. The chart shows the initial state utilities. The utility of
the landing runway, is high (yellow) because you get a reward of 1 if you navigate to it. The take-off
runway has a low utility (dark red) because you incur a penalty of 1 if you end up there. The other 9
states have a relatively low utility which reflects the .04 action cost.

Another part of our model is the transition model. Our transition model is probabilistic. In other words,
if you take a particular action, you will end up in another state (location, for our problem)
probabilistically. For example, if you try to go up, there is a .8 probability that you will end up in the
state or block just above you. There is also a small probability (.1) that you will end up in an adjacent
state.

One last point is that the “center” block represents an exclusio n zone. This simply means that it is not
possible to go there. 26

INFO

i

MDP Value Iteration : Until Convergence

UAV: +

Reward (#)

State Utility

Policy

.04

Transition
Model

Cost Probability

.8
.1 .1

MDP Value Iteration

This chart shows the value iteration process in action.

Value iteration is the process that an MDP goes through to generate a policy.

It involves looking ahead one step to see which move would generate the highest utility.

For example, let’s say that you (the UAV) are in the location just to the left of the landing runway. The
MDP model of the world is able to look ahead one step, and see what reward we get for each of the 4
possible actions. Once it knows what the rewards are, it knows what action is the best. This information
is used to set the policy for that state. The policy is set to be that (best) action. In addition to setting the
policy, the state also resets the value of its state to reflect the future value of that action.

This process is then repeated. It does this iteratively until the process converges (the utilities stop
changing by more than a very small value). An MDP is able to use this iterative process because it
assumes that it knows what state it is in. Consequently, an action will generate a probabilistically
predicable outcome based on the transition model.

The point is the visualization that you will see is to show you the process in action. When you see it you
can try to imagine each state simultaneously looking ahead one step. The visualization should also give
you a feel for how the effect of a high utility location (the la nding runway) is spread (or conveyed) about
the entire state utility model.

You will see the yellow (high utility) state utility in the upper right hand corner be spread toward the
lower left-hand corner. As this happens, the policy of each state will be set appropriately. Essentially,
the arrows (which indicate the policy) will all point in the general direction of the landing runway.

After the yellow reaches the lower left-hand corner, the MDP has not yet converged. You will also see
some of the states at the bottom of the model change their polic y.

27

INFO

i

MDP Value Iteration : Until Convergence

UAV: +

Reward (#)

State Utility

Policy

.

.04

Transition
Model

Cost Probability

.8
.1 .1

MDP Value Iteration

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

28

UAV: +

Reward (#)

State Utility

Policy

INFO

i

MDP Policy Execution

.04

Transition
Model

Cost Probability

.8
.1 .1

MDP Policy Execution

This chart shows the execution of the policy that was discovered using MDP
value iteration.

The point of this slide is to show the policy in action and make it clear what is
going on / what we have accomplished.

You will see the UAV, represented by the red +, navigate from an initial
starting position to the landing runway.

29

UAV: +

Reward (#)

State Utility

Policy

INFO

.

.04

Transition
Model

Cost Probability

.8
.1 .1

i

MDP Policy Execution

MDP Policy Execution

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

30

UAV: +

Reward (#)

State Utility

Policy

INFO

i

MDP Policy Execution

.04

Transition
Model

Cost Probability

.8
.1 .1

MDP Policy Execution

This chart shows another policy execution. This time, the UAV is starting in a
different position.

You will see the UAV, navigate from a different initial starting position to the
landing runway. This chart shows the execution of the same policy as before.
In this example, the UAV will take a long route to the landing runway, as
dictated by the policy.

This brings up an interesting point. You may recall from the value iteration
that the last state to change its policy was the state on the bottom, 2nd from the
right. It initially was pointing up. That was a shorter route. Eventually it
pointed left. This is a longer route. However, it results in a higher expected
reward. This is due to the probabilistic transition model. If the UAV went up /
then up again, there is a probability that it would end up at the take-off
runway, which is bad. Consequently, the UAV takes an alternate circuitous
route.

31

UAV: +

Reward (#)

State Utility

Policy

INFO

.

i

MDP Policy Execution

.04

Transition
Model

Cost Probability

.8
.1 .1

MDP Policy Execution

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

32

Outline
•
•

– Problem : UAV Navigation
– MDP Visualizations
– POMDP Visualizations

• Belief State Space Search
• Policy Comparison

– 3 Step Horizon
– 10 Step Horizon
–
– Fuel Observation

•

Introduction to POMDPs
Demonstration of POMDPs

AIMA (Russell & Norvig)

Approximating POMDPs with Macro Actions

This is the POMDP portion of the demonstration.

You will see how the UAV navigation problem is mapped to the POMDP

model.

You will then see a visualization of the POMDP solution process.

You will then see a visualization of the policy being executed.

The solution process that you will see is a belief state space search.

This is one way to find a policy for the POMDP model.

This method is particularly interesting because it demonstrates directly the

complexity of the policy tree, given a finite horizon.

There are also other ways to solve POMDPs, which Brian mentioned.

In addition, this demonstration will provide motivation for Tony’s part, which

explains more efficient methods.

In addition to the solution process, you will also see visualizations of the

policy execution process.

This visualization is more complex and interesting than the MDP policy

execution, due to the fact that POMDPs do not assume that they know where

they are in their state space (unlike MDPs).

33

UAV: +

Reward (#)

State
Probability

INFO

Total
Belief
State
Reward

Policy

3 Step Horizon

i

POMDP Belief State Space Search : No Observations

POMDP Belief State Space Search

POMDP, are different than MDPs, in that they do not assume absolute positional (or state) knowledge. MDPs simply

assume positional certainty even though it is an incorrect assumption. MDPs may use, for example, our expected

location (MLE). This is an acceptable strategy under low uncertainty, however, it results in bad policies when there is

high uncertainty.

For a POMDP, the policy creation is different (than an MDP) because we do not assume absolute positional

knowledge. Our position is represented in our belief space. Therefore, in order to asses the value of a given action, we

have to asses the value of all of the best possible subsequent actions. When we execute an action, we generate a new

belief space given our current belief space and the particular action. Which each action, (for example ‘up’) we have a

probability of ending up in the next block up. There is also a probability of ending up in other blocks. (This was also

the case with the MDP.)

However, with the POMDP, we do not assume absolute positional (state) knowledge. Therefore, we must propagate

forward the chosen action for each possible belief. If we look ahead 1 time -step, we then get a matrix of values for

each possible action. We then multiply our current belief distribution by this matrix to find out which action has the

best outcome. When we find out which action has the best outcome, we set our policy to the respective reward.

In a 3-step look-ahead / Belief State Space Search, which we will see here, we have to search ahead every combination

of action sequences. For the 3 step look-ahead shown here (4 actions), there are 64 combinations which result in 85

possible futures (or beliefs) each with ~11 states. For a 10 step look-ahead, there are 1.4 million possible futures

which have to be assessed.

Chart and Legend:

The main difference between the MDP and POMDP representation is that the POMDP does not assume that you know

exactly where you are. Therefore, the POMDP represents your location (more generally, your state) probabilistically.

For example, there is a .6 probability that I am in state A, and a .4 probability that I am in state B. In the MDP model,

we would make a decision based on our expected state. In this case, state A. However, in a POMDP, we represent this

as a belief state which assigns a probability to each possible state.

In this chart, the colors of the squares represent something different than they did for the MDP. Here, each square is an

individual state. All of them together represent the belief state. The color of the individual states indicates the

probability that we are in that individual state. For example, there is an equal probability (of .11) that we are in each of

the 9 orange states. Likewise, there is a zero probability, initially, that we are at the landing or take-off runway.

Collectively, these represent our belief state.

34

State
Probability

Policy

3 Step Horizon

.

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

i

POMDP Belief State Space Search : No Observations

State
Probability

3 Step Horizon

Policy

POMDP Belief State Space Search

(Continued)

Note that our belief space is continuous, which is a prime reason why POMDPs are difficult to solve. In
the MDP model, we created a policy for the 11 possible states. Here we have innumerable belief states.
Generating a universal plan (or policy) requires partitioning the belief state into a state-action mapping.
In our visualization, you will see a belief state search starting at one particular point in the belief space.
That is just one point our of a continuous belief state space (with an infinate number of points). The
belief state space search essential explores the policy tree that Brian explained in the previous part of this
talk. The size of the policy is exponential in the number of actions taken (depth) and polynomial in the
number of possible actions and observations.

The numbers represent the reward matrix.

The color of the rectangle just to the right of the belief state indicates the total current reward for that
belief state, which depends on the reward matrix and the current belief state. *The value of a given action
depends on that reward and the subsequent actions. However, since we don’t know where we are, the
value of a given action depends on the combined value of that action for each individual state in our
belief state. If we propagate forward a chosen action we get a matrix of values for that action-belief
combination. That is calculated using the new belief state and the reward matrix. *Doing this for each
possible action, will tell us which action is best, given our be lief state – it is the action that generates the
highest future value, summed over the whole belief state. Recursive Process - Propagated forward 3 steps
-- at each step, you would generate 4 new belief states, 1 for each action. Each belief state has 11
individual states, with an associated probability. At the 3rd step you would have 64 different belief states,
1 for each 3-step action sequence. For a 10 step look-ahead, there are 1.4 million different action
sequences. This visualization shows this process for 3 steps.

Animation Slide: This slide is used to activate the movie. It looks the same as the previous slide, but it
has an embedded movie that runs when the slide is shown.

35

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Right,
Right,
Right >

State
Probability

i

POMDP Policy Execution : No Observations

POMDP Policy (3 Iterations)

This chart shows the execution of the policy that was discovered using the 3 step POMDP belief state space search.

Specifically, this slide demonstrates the 3 step policy: <Right, Right, Right>. The point of this slide is to show this

policy in action.

Since the POMDP represents the UAV location as a belief state, the location of the UAV is captured by the color of the

individual states shown in the movie.

Again, for the POMDP visualizations, the colors of the squares represent the probability that we are in that individual

state. Initially, there is an equal probability (of .11) that we are in each of the 9 orange states.

Collectively, these represent our belief state.

In the movie, we will execute an action, and generate a new belief state. With each action, (‘right’) we have a .8

probability of moving to that block as well as a small probability of ending up in another block. (This was also the

case with the MDP.) However, with the POMDP, we do not assume absolute positional knowledge, thus, our action

generates a new probabilistic belief state.

So, what you will see in this movie, is the higher probabilities move toward the right. The higher probabilities are

indicated by yellow, and the lower probabilities are indicated by the red. We initially don’t know very accurately

where we are. As we execute this policy, we will have a better idea of where we are.

There is one more detail about this representation. The reward incurred by landing on the landing runway should only

happen once. The same holds for the take-off runway.

For example, we wouldn’t want to reward a plane for sitting on the landing runway for multiple steps. Therefore, the

POMDP is modeled such that after the plane lands on either runway, it goes to a sink on the next time-step. A sink is a

state that has no reward or penalty. It’s transition model dictates that there is a zero probability that you can leave the

state.

You may notice the above detail in the visualization. The landing runway will become yellow, indicating a high

probability that the UAV just landed there.

This may be followed by the block becoming more red, indicating a low probability of the UAV being there. This is

due to the sink model.

36

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Right,
Right,
Right >

.

State
Probability

i

POMDP Policy Execution : No Observations

POMDP Policy (3 Iterations)

Please watch the video.

The policy shown here isn’t very good, because it is very likely that we end up in the bottom right corner,

or on the take-off runway. You may also notice that a good portion of our belief state got “stuck” behind

the exclusion zone. This is because our look-ahead was too short.

In the next slide, we will see the policy that is generated from a 10-step look-ahead.

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs when the slide is shown.

37

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Left, Up, Up,
Right, Up, Up,
Right, Right,
Right, Right >

State
Probability

i

POMDP Policy Execution : No Observations

POMDP Policy (10 Iterations)

This slide shows the execution of a policy generated from a 10-step look-
ahead. Remember that we haven’t discussed observations yet. Therefore, this
policy assumes an initial position distribution. Our belief space currently only
represents our position distribution.

Our action cost is relatively low here. Therefore, the policy is to move left
first. This gets us out of the lower right hand corner (if we were there, we
don’t know exactly).

The we go up… < Left, Up, Up, Right, Up, Up, Right, Right, Right, Right >

With each action, we gain positional accuracy. You can see this from the
color scheme. The color scheme indicates the probability that we are in a
given location. It is initially uniform for the 9 possible starting positions. It
then gets more yellow to the left. The Yellow high probability trail then
makes it’s way up and over to the runway. The policy exploits the bounded-
ness of the grid (we can’t go too far to the left) to gain positional accuracy, and
generate a better policy. This policy causes us to end up at the desired
destination with high probability. Note that the representation has a sink.
Once we hit the runway, we go to the sink in the next iteration. That is why
the yellow disappears from the runway after it arrives. Note that the yellow
high probability disappears from the grid. This problem is the exact same
problem represented in the Russel and Norvig (AIMA) book. The book gives
a different policy for this POMDP with no observations. The policy we
generated is better, as I will show you. 38

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Left, Up, Up,
Right, Up, Up,
Right, Right,
Right, Right >

.

State
Probability

i

POMDP Policy Execution : No Observations

POMDP Policy (10 Iterations)

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

39

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Left, Up, Up,
Right, Up, Up,
Right, Up, Up,
Right >

State
Probability

i

POMDP Policy Execution : No Observations

POMDP Policy (AIMA)

This visualization shows another interesting policy.

You may recognize this problem for the AIMA / Russell and Norvig book.

In that book, they give an optimal policy that is different (tho ugh similar) from

the policy that I just demonstrated.

This movie shows that policy being executed for 10 steps.

The policy is as follows:

AIMA < Left, Up, Up, Right, Up, Up, Right, Up, Up, Right >

After running this policy for 10 steps, you may notice that it leaves some

yellow on the field at the end. This means that there is a high probability that

the UAV did not make it to the landing strip, in 10 steps, under this policy.

In other words, this policy is not as effective as the previous policy for 10

steps.

This is because the AIMA policy is oriented toward a longer planning horizon.

40

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Left, Up, Up,
Right, Up, Up,
Right, Up, Up,
Right >

.

State
Probability

i

POMDP Policy Execution : No Observations

POMDP Policy (AIMA)

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

41

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Up, Up, Right,
Right, Right, Up,
Right, Right,
Right, Right >

State
Probability

i

POMDP Policy Execution : Fuel Observation

POMDP Policy (Fuel Observation)

Next we introduce how observations play into POMDPs.

Let’s say you have a fuel gauge and it is telling us that we are low on fuel. This will cause us to take a
shorter route home, even if it has additional risk.

This causes the policy to be more risky, we may land on the take-off runway. However, our overall risk
is minimized.

The policy generated here assumes we are low on fuel, which makes each action (relatively) more costly.
This requires a more complex belief state space which captures our belief about how much fuel we have.
This also requires (for this problem) an augmented reward matrix which covers all of these individual
belief states.

This slide shows that policy in action: < Up, Up, Right, Right, Right, Up, Right, Right, Right, Right >

You can see that under this policy, it is more likely that the UAV lands on the take-off runway.
However, this risky policy optimizes the risk-reward trade-off.

Summary of the complexity of POMDPs in the context of this example:

POMDPs are difficult to solve due to the combination of the belief state space size, and the number of
possible action-observation sequences.

Imagine if our fuel gauge blinks on and off (sound familiar?). Then combine this observation with
several other possible types of observations, for example, using landmarks to reduce your position
uncertainty. This increases the complexity of the policy tree, and thus the solution process.

This is why POMDPs are so difficult to solve. Consequently, efficient methods for solving POMDPs is
an area of active research.

42

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Up, Up, Right,
Right, Right, Up,
Right, Right,
Right, Right >

.

State
Probability

i

POMDP Policy Execution : Fuel Observation

POMDP Policy (Fuel Observation)

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

43

Demonstration Conclusion

• Difficult to Solve

• Efficient Methods

2 key points that I want you to take away from this demonstration is the essence of how POMDPs work,
and the complexity of solving them.

The visualizations that you have seen demonstrate the nature of the policy creation process. In particular,
they show what it is that you want to explore, and how complex this space is.

In particular, due to the continuous belief state space, POMDPs are difficult to solve. Furthermore, the
complexity of the policy tree, explored in the belief state space search adds to the problem.

Specifically:

•The POMDP has a Continuous Belief State Space.
•The POMDP’s Policy Tree is polynomial in the number of actions and observations and exponential in
the length of the planning horizon.

•For every level of the policy tree, there are m^j*n^j possible
action/observation sequences.

It is important to realize that just exploring the policy tree, given a particular belief, on a small problem,
is somewhat complex. Creating a universal plan for a large problem is incredibly complex. These issues
lead to the need for efficient methods for computing policies, which is the topic of Tony’s section of our
talk.

44

Outline

•
•
•

Actions

Introduction to POMDPs
Demonstration of POMDPs
Approximating POMDPs with Macro

– Belief Compression using Grid Approximation
– Macro-Actions in the Semi-MDP’s framework
– Reinforcement Learning with a model

The previous demo simplified the problem into 12 states.
However, this was a gross simplification of the problem, but trying to solve
POMDPs exactly limits us computationally to the number of states on this
order. To solve a more realistic navigational problem with over 1000 states
will require different methods.

The algorithm from “Approximating POMDPs with Macro
Actions” by Georgios Theocharous and Leslie Kaelbling will be presented
next. To introduce this, some foundational methods are first presented. What
will be covered first is “Belief Compression using Grid Approximation” then
“Macro-Actions in the Semi-MDP framework” before finally going into the
actual algorithm in “Reinforcement Learning with a model”.

45

Approximation Methods

•
• Monte Carlo Method
•

–

Point-Based Approximations

Grid-Based Approximations
Dynamic Grid -Resolution

This is a review of the previous approximation methods that were presented in the
first part of the lecture. Of these, the algorithm will use a Monte Carlo method and a
Grid-based approximation. More specifically, it will use “Dynamic Grid-Resolution”.
This will be covered in more detail in a few slides.

46

Policy Heuristics

•
• Information Gathering
• Hierarchical Methods

–

• Policy Search

Maximum-Likelihood

Macro-Actions

Of the policy heuristics mentioned, Macro-Actions will be used in addition to the
methods from the previous slide.

47

Grid Approximation

S2
(0,1,0)

S3
(0,0,1)

S1
(1,0,0)

Resolution 1

S2
(0,1,0)

S3
(0,0,1)

S1
(1,0,0)

Resolution 2

S2
(0,1,0)

S3
(0,0,1)

S1
(1,0,0)

Resolution 4

This slide demonstrates the discretization of a 3-dimensional
belief simplex. Each point on the graph represents a belief state, which is a
probability distribution across the states. In this example, we have 3 states, S1,
S2, and S3. So a 100% certain belief that we are in S1 would be represented in
this example as (1,0,0), whereas a certain belief that we are in S2 would be
(0,1,0). Certain belief for S3 would be (0,0,1). You can see these points on
the left-most graph. If we had an equal belief that we are in either S1 or S2,
that would be represented as (0.5,0.5,0). This point on the graph would be on
the line halfway between S1 and S2. As you can see, a probability distribution
across the states will sum to 1. Because of this, every point in the belief space
will on the plane formed by the lines between each of the states. This plane is
trimmed to a triangle.

This surface of the triangle is referred to as a simplex. This is
the belief space of the original POMDP.

If we increase the resolution to 2, we divide the lines into 2
parts, and connect the new grid points to create smaller triangles. These
smaller triangles are called sub-simplexes. The algorithm was tested up to a
resolution of 4.

For a given belief state in a POMDP, you can discretize it to its
nearest grid point. The new grid points become states in an MDP problem.
The key idea here is that it is possible to approximate solutions to a POMDP
by solving an MDP that takes the grid points as states.

48

Dynamic Grid Allocation

• Allocate grid points from a uniformly spaced grid
dynamically
– Simulate trajectories of the agent through the belief

space

• When experiencing belief state:
– Find grid point closest to belief state
– Add it to set of grid points explicitly considered

• Derived set of grid points is small and adapted to
parts of belief space typically inhabited by agent

The more states the problem has, the more dimensions there are
in the belief simplexes. The number of grid points quickly becomes large in a
uniformly spaced grid. Instead of using a variable resolution method, the
algorithm will use dynamic allocation. It does this by simulating the
trajectories of the agent through the belief space. So when a belief state is
experienced, the closest grid point to the belief state is used and added to the
set of grid points that are explicitly considered. In other words, instead of
allocating the memory for all the grid points initially, it is only allocated when
the belief state is experienced. Memory is needed to store the state action
value and the state value of the grid-point.

Using this method, the derived set of grid points is small and
will cover the belief space that is typically inhabited by the agent.

49

• Temporally Extended Actions

•
•

• Turn
•

•

Macro-Actions

– For example:
Move-Down-Corridor
Go-to-Chicago

– Versus primitive actions, such as:
-Right

One-Step-Forward

POMDP’s breakdown into a hierarchical
structure of smaller POMDP’s

Or “time-extended” actions.

Some examples of macro-actions are given here. These are
actions that will take an extended amount of time, versus primitive actions
such turn-right or one-step-forward. Macro-actions can take the form of a
POMDP policy to move down a corridor. The top-level POMDP can issue the
macro-action to move down the corridor and not have to explicitly deal with
the smaller POMDP of navigating the corridor and not hitting any walls.

Good macro-actions are ones that will allow us to localize and
reduce the uncertainty of our belief state.

To recap, the hierarchical structure grows polynomially, so we
get a polynomially-growing structure of smaller problems that will grow
exponentially. This is an improvement over the otherwise expone ntial growth
of the total problem.

50

MDP

SMDP

Macro-Actions

This is a graphical representation of how primitive actions
compare to macro-actions in an MDP. While primitive actions cause the MDP
to step through each state, using macro-actions across longer lengths of time,
we are able to reduce the complexity of the problem.

To model Macro-actions in a POMDP framework, we use
SMDPs, which are covered next.

51

•
– S : finite set of states
– A : set of actions
– P : state and action transition probability functions
– R : reward function
– F : probability of transition time function for each

• F(s’, t|s,a) : specifies the joint probability that a transition
from state s to state s’ occurs after t steps with action a

•
Qt+1 b)Qt(s,a) + b[R+gt maxa’Qt(s’,a’)]

Semi-Markov Decision Process

Defined as a five-tuple (S,A,P,R,F)

state-action pair

Q-learning rule for SMDP’s
(s,a) = (1-

SMDPs are defined with 5 components. S,A,P, and R are the
same type of components found in a regular MDP, but what is new here is F.
This is the function that gives the probability of the transition time for each
state-action pair. For a discrete time SMDP, this is represented as F(s’,
tau|s,a).

The Q-learning rule for SMDPs is very similar to the Q-
learning rule for regular MDPs that was presented earlier in the lecture. The
only difference here is that the discount factor is raised to the tau. As a
reminder, this discount factor reduces the rewards of future sta te-action values.
It also causes infinite horizon values to converge.

52

Problem Reformulation

•
the SMDP are used to learn the policy

POMDP Grid
Approx.

MDP Macro
Actions

SMDP

Monte Carlo Updates of the Q-values for

So with these foundational methods presented, here is an
overview of how the algorithm will simplify the problem. The original
POMDP is converted into an MDP using dynamic grid approximation. This
MDP is abstractly converted into an SMDP through the use of macro-actions.
Finally, the algorithm will use Monte Carlo updates of the Q-values for the
SMDP to quickly learn a policy solution.

53

Graphical Overview of the
Algorithm

b’

g

b

b’’

g3

g2

g1

This slide shows a graphical overview of the presented algorithm.

b is discretized to g, the nearest grid point to b. Then a macro-
action is simulated from g to b’’. At b’’, the Q-value is interpolated from the
vertices of the sub-simplex of which b’’ is located. The macro-action is
simulated repeatedly to estimate the expected value function of b’’. The state-
action value of g is then updated with this expected value function. Finally,
the macro-action is executed on state b and b is moved to b’.

54

Reinforcement Learning
With a Model

1. Assume a current true state
• Which is physical true location of agent
• b(s) „ 0

2. b fi gi
• gi

of the belief space.
• If gi is missing add it to the table of belief states to

explicitly consider
• Interpolate its initial value from coarser resolutions.

Discretize the current belief state
is the closest grid-point in a regular discretization

Reinforcement learning with a model is otherwise called Real Time Dynamic
Programming (RTDP)

To begin in the algorithm, we start with a current true state,
which is the physical true location of the agent in this navigational problem.
This means that the belief state cannot equal zero. The model has to believe
that we can be located at that state.

In step 2, we discretize the current belief state to its nearest grid
point. If that grid point is missing, we add it to the table of belief states that
we are explicitly considering. To do this, we allocate memory for the state-
action value and the state value for the belief state that this grid point
represents. To get its initial value, we interpolate it from coarser resolutions.
If the resolution is 1, meaning that there are no coarser resolutions, we
initialize gi’s value to zero.

55

Reinforcement Learning
With a Model

3.
current Q values

• Random action e% of the time
• Interpolate over the Q values of the vertices

b

Choose the best macro-action from the

of the sub-simplex that contains

We choose the best macro-action from the current Q-values of
the belief state. However, we need to balance exploitation with exploration, so
we will choose a random action a set percentage of the time. To get the Q-
values of the belief state, we interpolate over the Q-values of the vertices of
the sub-simplex that contains b. In the 3-state example, this is the smaller
triangle that b is located in.

56

Reinforcement Learning
With a Model

4. Estimate i,m) + gt V (b’)] by sampling:
• Sample a state s gi

– Choose primitive action a m

– Sample the next state s’ and observation z from models
– Store the reward and update the belief state

– Set t = t+1, b = b’, s = s’ and repeat with next primitive action
until m terminates

• Compute the value of the resulting belief state b’
–

• Repeat multiple times and average the estimate

E [R(g
from the current grid-belief state

according to macro-action

Interpolate over vertices in resulting belief sub-simplex

As a note, “E” in this notation means expected value.

The next step is to estimate the expected value function by
sampling using a macro-action on the current grid point. We sample the state
from the current grid point. As a reminder, the belief state and grid points are
probability distributions across the total set of states. Then we choose a
primitive action according to our macro-action, which in the test case of a
robot navigating corridors, is the policy for how to go down a hall.

Next, we sample the next state and observations from the
models. The representation for the models used are: T(s,a,.) for s’ and
O(a,s’,.) for z. We then store the reward and update the belief state along
macro-action.
To store the reward, we use these equations:

R(g ,m) := R(g ,m) + gt R(s, a)i i

or with reward-shaping:

R(g ,m) := R(g ,m) + gt V (s’) - gt V(s)i i

Where V(s) is the value function of state s. The test results will show that
using reward-shaping is very important in being able to solve the problem.

We move our states resulting from the primitive action and we
repeat with the next primitive action until the macro-action terminates. From
the resulting belief state, we can compute its value. We do this by
interpolating its value from the vertices of the belief sub-simplex that the
resulting belief is located in. We repeat this whole step multiple times and
average the estimate to get the expected value function.

57

Reinforcement Learning
With a Model

5. Update the state action value:
i,m b)q(gi,m) + b [R + gt v(b’)]

6. Update the state value:
i m i,m)

Q(g) = (1-

V(g) = argmax Q(g

Once we have estimated the value function, we must update the
Q and V values for the grid point that we discretize to in step 2. This is the
belief state for the overall POMDP, which is represented by “b” on the
graphical overview of the algorithm.

58

Reinforcement Learning
With a Model

7. m starting from
the belief state until termination

• Generate observations during execution
• Set and and go to step 2

8. Repeat this learning epoch multiple times
starting from the same b

Execute the macro-action

b = b’ s = s’

Once we have updated our state-action values and state values
for the grid point, we will execute the macro-action starting from the belief
state mentioned on the last slide, until it terminates. We generate observations
by sampling the POMDP model during execution. Once the macro-action
terminates, we move our state and belief state and repeat from step 2.

For the test results, this learning epoch is repeated multiple
times starting from the same b.

59

Tested Results

•

number of grid points:
• 5.410 with regular discretization
•
•

actions

Benefits of using dynamic grid-resolution
– For 1068 world states and resolution of 4,

~3500 with dynamic grid-resolution
~1000 with dynamic grid-resolution and macro-

In the tests run with this algorithm, we can see the benefits of
using dynamic grid resolution. The number of grid points for a regular
discretization of the space is given by:

(r+|S|-1)!

r! (|S|-1)!

Where |S| is the number of states, and r is the resolution.

This gives 5.4^10 for the test problem with regular
discretization. However, adding dynamic grid-resolution will only create
~3500 grid points. And once we add macro-actions, this number reduces to
~1000. This reduction due to macro-actions is because grid points are not
created along the simulation of the macro-action, but only at the end of the
macro-action. We do not have to discretize to the nearest grid point and create
it for every primitive action if we use macro-actions.

60

Tested Results

•

the dynamic grid model

•

actions 90~95%

Benefits of using macro-actions
– Requires fewer training steps per episode
– Performs better with increased grid-resolution in

– Better quality policy overall

Benefits of using reward-shaping
– Successful completion of test with macro-

– 0~10% without reward-shaping

The test results found that fewer training steps per episode were
required when using macro-actions. Macro-actions perform better with
increased grid-resolution in the dynamic grid model because you don’t have to
generate so many grid-points when you are not limited to primitive actions.
The test results also showed that macro-actions generated a better quality
policy overall. These benefits were realized because the test used “good”
macro-actions that helped the agent to localize and reduce the uncertainty of
its belief state.

One key component that this test showed was that using reward
shaping was critical in being able to solve the problem. Without it, the agent
was not able to solve the problem in any of the cases except for in 10% of time
when it used macro-actions and a resolution of 4. This is in contrast to 90­
95% of the time across resolutions 1,2 and 4 when it used macro-actions.

61

What Is Next?

•
•

actions?

Able to solve POMDP’s with 1000+ states
How do we generate a set of “good” macro-

– Current research is focused on the dynamic
generation of macro-actions

So this lecture showed that we are able to solve relatively large
POMDPs by reducing its complexity through the use of spatial and temporal
abstractions (grid approximation and macro-actions). We were able to move
from solving 10’s of states in a POMDP to solving over 1000 states. However,
the question arises, how do we generate “good” macro-actions? Good macro-
actions are ones that will allow us to localize and reduce the uncertainty of our
belief state. However, the current setup requires that the user create the set of
macro-actions. Current research by the author of the paper is focused on the
dynamic generation of macro-actions.

62

End

63

An Extra Visualization

• This visualization (and others) were cut
from the talk, for brevity. However, we
thought that it was worthwhile to include
this one in the tutorial slides.

64

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

3 Step Horizon

State
Probability

i

POMDP Belief State Space Search : Coastal Observation

POMDP Belief State Space Search
(Coastal Observation)

Next we introduce how observations play into POMDPs.

Let’s say that if you are in position 8, you can clearly see the coast line.
Consequently, you gain positional accuracy.

This visualization shows that policy being generated.

The observation model affects (or updates) our belief state. This is reflected
above. Our initial belief state assumes that we are in the state shown above
(row 2, column 3).

This positional accuracy is due to the positive observation. This level of
certainty is simpler, and therefore useful for demonstrating this process.

A nice aspect of this visualization is that the low uncertainty makes it easier to
follow (visually) the process.

65

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

.

State
Probability

3 Step Horizon

i

POMDP Belief State Space Search : Coastal Observation

POMDP Belief State Space Search
(Coastal Observation)

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

66

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Up, Up, Right,
Up, Right,
Up, Right,
Up, Right >

State
Probability

i

POMDP Policy Execution

POMDP Policy (Coastal Observation)

This slide shows the execution of a policy generated in the last slide.

It used a 3-step look-ahead and an initial coastal observation.

The policy if as follows:

< Up, Up, Right, Up, Right, Up, Right, Up, Right >

67

UAV: +

Reward (#)

INFO

Total
Belief
State
Reward

Policy

< Up, Up, Right,
Up, Right,
Up, Right,
Up, Right >

.

State
Probability

i

POMDP Policy Execution

POMDP Policy (Coastal Observation)

Animation Slide:

This slide is used to activate the movie.

It looks the same as the previous slide, but it has an embedded movie that runs

when the slide is shown.

68

