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Solving POMDPs through Macro 

POMDPs are a planning technique that accounts for uncertainty in the world.  While 
they have potential, they are very computationally complex. Macro operators can 
reduce this complexity. 
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Outline 

• 

• 

• 

Introduction to POMDPs 
– Brian Bairstow 

Demonstration of POMDPs 
– Larry Bush 

Approximating POMDPs with Macro Actions 
– Tony Jimenez 

We will begin with an overview of MDP and POMDPs, and then a visual 
demonstration of simple MDPs and POMDPs.  Finally we will discuss our 
advanced topic in POMDPS: the approximation of POMDPs using macro 
actions. 
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• 

• 
• 

Introduction to POMDPs 

Introduction to POMDPs 
– Markov Decision Processes (MDPs) 
– Value Iteration 
– Partially Observable Markov Decision Processes 

(POMDPs) 
– Overview of Techniques 

Demonstration of POMDPs 
Approximating POMDPs with Macro Actions 

Begin with completely observable Markov Decision Processes, or MDPs.  
Then discuss value iteration as a method of solving MDPs.  This will lay the 
groundwork for Partially Observable Markov Decision Processes, or 
POMDPs.  Finally there will be an overview of methods for solving POMDPs. 
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Navigation of a Building 

• Robot 

get there? 

– Knows building map 
– Wants to reach goal 
– Uncertainty in actions 
– What is the best way to 

Imagine a robot (in the lower right of the graphic) trying to navigate a 
building. It wants to reach a goal (the star in the graphic). It has difficulties in 
that there are uncertainties in its actions, for example its wheels could slip or 
catch. This might cause it to run into a wall, which is undesirable.  The 
problem then is to find the best way to reach the goal while dealing with the 
problem of uncertainty in actions. How can we solve this problem? 
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Markov Decision Processes 

• Model 
– States, S 
– Actions, A 
– Transition 

Probabilities, p(s,a) 
– Rewards, r(s,a) 

• Process 
– t in S 
– Choose action at in A 
– t t ,at) 
– State becomes st+1 according to 

probabilities p(s,a) 

• Goal 
p for choosing actions that 

maximizes the lifetime reward 
• Discount Factor g 

Value = r0 + gr1 + g2r2 + … 

Observe state s

Receive reward r = r(s

– Create a policy 

We can use a MDP to solve the previous problem. An MDP consists of a model with states, 
actions, transitions, and expected rewards. The states in the previous problem could be 
positions on the map. States are discrete, so the map would have to be divided into a grid or 
something similar. The actions then could be to move north, east, south, or west on the map.  
The transition probabilities tell you the chances that a certain action from a certain state takes 
you to different other states. For instance, if the robot was commanded to move north, there 
might be a large probability that it transitions to the next state north, and small probabilities it 
ends up east, west, or not move at all. The reward function tells you the expected reward 
received by taking an action from a state. In the previous problem this could be a large reward 
for reaching the goal, and a large negative reward for hitting a wall. 

The process in carrying out an MDP solution is to observe the state in time step t, to choose an 
appropriate action, to receive the reward corresponding to that state and action, and to change 
the state according to the transition probabilities. Note that the robot is in exactly one state at a 
time, that time is discrete, and all actions take one time step. 

The goal in solving an MDP is to create a policy (a method for c hoosing actions) that 
maximizes the expected lifetime reward. The lifetime reward is the sum of all rewards 
received. Thus a policy should not always maximize immediate reward, but also plan ahead.  
Future rewards are discounted by a factor for each time step they are in the future.  This 
follows an economic principle of the effect of time on values. Also, this makes the math work 
in calculating lifetime reward. Without discounting, it could be possible to receive a small 
reward over and over to get an infinite reward, and this is not useful in choosing a policy.  A 
typical discount factor might be 0.9. 
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MDP Model Example 

• States A, B, C 
• Actions 1, 2 
• Transition probabilities p and rewards r in diagram 
• C is terminal state 

A B C 

2 
1 

1 

2 

p = 0.3 

p = 0.7 

p = 0.4 

p = 0.6 

p = 0.5 

p = 0.5 

p = 0.7p = 0.3 

r = 1 

r = 1 

r = 1 
r = 1 

r = 0.2 

r = 0.2 

r = 0 

r = 0 

This is a simple example of an MDP model (unrelated to the previous robot 
example). There are 3 states and two actions. The probabilities and rewards 
are written in the diagram. For example, from state A, if action 1 is chosen 
then there is a 70% chance of staying in state A with 0 reward, and a 30% 
chance of moving to state C with 1 reward. State C is the termi nal state, since 
there are no actions that move out of state C. 
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Decision Tree Representation of MDP 

A 

1 

2 

A 

C 

0.7 

0.3 

C 

B0.6 

0.4 
1 

1 

0.2 

0 

0.3 

0.52 

0.52 

RewardExpected 
Reward 

Max Q Value 

A Decision tree is another form of visualization, and allows you to evaluate the values 
of states. 

Here is a 1 step horizon decision tree for the simple model show n.  From the starting 
point A there are two actions, 1 and 2. The action chosen gives probabilities of 
moving to different states. 

Notice that the rewards for moving to the states are listed in right at the leaf nodes.  
Expected rewards can then be calculated for taking actions. For instance, for action 1 
the expected reward is .7(0) + .3(1) = 0.3. When the expected rewards for the actions 
are known, then the highest reward path should be followed. This means that in a 1 
step problem at state A, action 2 should be taken, and state A has a value of 0.52, 
equal to the expected reward of taking action 2. 

However this is only a one step problem. We have not considered that it is important 
what state you end up in because of future rewards. For instance, we have just 
discovered that state A has a value of .52, but in the tree in the upper right we have 
evaluated it as having 0 value. Thus we need to look at a larger horizon problem. 
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Decision Tree Representation of MDP 

A 

1 

2 

A 

C 

0.7 

0.3 

C 

B0.6 

0.4 
1 

1 

0.9 

0.52 

0.664 

0.94 

0.94 

Max Q ValueTotal Future 
Reward 

Max Q Value 1 

2 

A 

C 

0.7 

0.3 
1 

0 

B 

C 

0.6 

0.4 

1 

0.20.52 

0.3 

1 

2 

A 

C 

0.3 

0.7 
1 

0 

B 

C 

0.5 

0.5 

1 

0.20.6 

0.7 

Expected 
Reward 

Reward 

Now we have a decision tree for a 2 step horizon starting at sta te A.  For simplicity a 

discount value of 1 has been used.


Again we start at the right and calculate the expected rewards, and then the values for 

the states. Thus after 1 step A has a value of 0.52. Note that B has a value of 0.7 ( 

future reward ) + 0.2 ( immediate reward ) = 0.9. When the values of the states for the 

one step horizon are known, they can be used to calculate the 2 step horizon values.  

The expected values for the actions are calculated again, and then the max value 

(0.94) is assigned to state A for the 2 step problem. In general this process can be 
iterated out. 
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Value Iteration 

• Finite Horizon, 1 step 
Q1(s,a) = r(s,a) 

• Finite Horizon, n steps 
Qn(s,a) = r(s,a) + gS[p(s’|s,a) maxa’Q (s’,a’)] 

• Infinite Horizon 
Q(s,a) = r(s,a) + gS a’

• Policy 
p a

n-1

[p(s’|s,a) max Q(s’,a’)] 

(s) = argmax Q(s,a) 

This brings us to the concept of value iteration. Value iteration is the process 
of assigning values to all states, which then solves the MDP. As shown, in a 1 
step horizon the value is merely the expected reward. In a larger horizon, the 
value is the expected reward plus the expected future reward discounted by the 
discount factor. After iterating to larger and larger horizons, the values change 
less and less. Eventually convergence criteria is met, and the problem is 
considered solved for an infinite horizon. At this point the policy is simply to 
take the action from each state that gives the largest reward. 
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Q Reinforcement Learning 

• Q can be calculated only if p(s,a) and r(s,a) 
are known 

• Otherwise Q can be trained: 
Qt+1 b)Qt(s,a) + b[R+gmaxa’Qt(s’,a’)] 

• Perform trial runs; get data from 
observations 

• Keep running combinations of s and a until 
convergence 

(s,a) = (1-

Note that value iteration can only be performed if the p and r functions are known.  

An alternate technique becomes very useful if you don’t have a model.  Instead of 

calculating p and r, they can be observed. The actions are carried out many times 

from each state, and the resultant state and reward are observed.  The Q values are 

calculated from the observations according to the equation above, and eventually the 

data converges (Qt+1 ~= Qt).


Q learning is used in our topic paper.


Beta is a weighting factor, R is the observed reward
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• Can no longer directly observe the state of the system 
• Instead at each step make an observation O, and know the 

probability of each observation for each state p(O|S) 
• Also have initial state distribution p(s0) 

S S S 

O O O 

A A 

p(O|S) 

p(s,a) Hidden 

Observable 

t1 t2 t3 

Partially Observable MDP’s 

Now we move to POMDPs.  Before actions were uncertain, but we always 
knew what state we were in. However, the real world has uncertainty, and 
POMDPs model that.  For example, sensors can give false or imprecise data.  
Thus instead of knowing the state, at each time step we receive an observation 
that gives us some data about the state. In this graphic we see that the states 
influence the observations, which influence the actions, which in turn 
influence the state. 
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State Estimation 

• States and Observations not independent of 
past observations 

• Maintain a distribution of state probabilities 
called a belief b 
bt = p(st|ot,at,o ,a ,…,o0,a0,s0) 

State 
Estimator Policy 

b a 
o 

t-1 t-1

Since we don’t know exactly what state we are in, we instead have a belief 
state. A belief state is a mass distribution of the probabilities of being in each 
state. For instance, a belief could be b = < .5 .2 .3> which would be 50% 
chance of state 1, 20% chance of state 2, and 30% chance of state 3 (the 
probabilities sum to 100%). Thus instead of being in a state at a time step, we 
are in a belief state. These belief states a continuous distribution of discrete 
states. Instead of being in a finite number of states, we are in a infinite number 
of belief states over those finite states. 

There is an additional step in the process of POMDPs compared to MDPs.  
Instead of observing a state and performing an action, we must make an 
observation, calculate the belief state, and then choose an action. 
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b(s2)0 1 

Q(b,a) 
Q(a1) = Q(s1,a1 2)) + Q(s2,a1)b(s2) 

Q(a2) 

• Finite horizon value function is piecewise linear and convex 
– Depending on the value of b(s2), a different action is optimal 

• 
– Need to consider effect on future belief states 

Value Iteration with POMDPs 

)(1-b(s

Here is a one-step finite horizon problem 

Value iteration is more complicated with POMDPs because we have an infinite 
number of belief states. Above is a representation of a 2 state problem with 
probability of being at state 2 in the x axis. Plotted are the values of taking the two 
actions. Thus on the left there is certainty of being at state 1, and at the right there is 
certainty of being at state 2, which a linear change between the m.  Thus the values of 
actions are also linear as described in the equation on the slide.  At any point in the 
belief space we choose the highest valued action to carry out. Thus in the left side we 
choose action 1, and on the right we choose action 2. In this manner our value 
function ends up piecewise linear and convex. In general there are more than two 
states, so we have hyperplanes instead of lines, but the principle of partitioning the 
belief space remains the same. 

This is merely a one step problem, and it gets much more complicated over more time 
steps. 
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Decision Tree Representation of POMDP 

b1 

a1 

a2 

b2 
11 

b2 
12o2 

o1 

b2 
21 

b2 
22o2 

o1 

a1 

a2 

a1 

a2 

a1 

a2 

a1 

a2 

To tackle the problem of additional time steps, we will return to decision trees.  
This decision tree is similar to the one for MDPs, with a couple differences.  
The states have become belief states. The actions used to have uncertainty 
shown in the tree, but now that is encapsulated in the probabilities of the belief 
states. The observations have been added here as an additional step, because 
getting different observations brings the problem to different belief states. 

Thus the process for value iteration is to first calculate the probabilities of 
observations given actions, and thus the distributions of the resultant belief 
states. Then the values of the belief states on the right in can be calculated 
based on expected rewards as one-step problems.  Then since we know the 
probabilities of observations given actions, we can assign expected rewards to 
the actions a1 and a2. Then the value of belief b1 will be know n.  In general 
this can be extended to larger problems of n steps. However, since the number 
of belief states visited becomes larger exponentially by the number of actions, 
observations, and steps, this quickly becomes complex. In order to get good 
results, advanced techniques need to be used. 
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• Concentrate on specific points in continuous belief space 

• How should beliefs be chosen? 
• Problems with high dimensionality 

b2 

b1 

b3 

b8 
b5 

b6 
b7 

b4 

Approximation: Point-Based 

Approximation techniques allow simplification of POMDPs to make them tractable.


The point-based approximation technique follows the idea of optimizing the value 

function only for certain points in the belief space; not all points.  This changes the 

problem from calculating a policy for a belief space to calculating a policy for a finite 

number of points.


This raises a question of how to choose belief points. One possibility is to do so 

dynamically. Also, when there is high dimensionality many points must be chosen in 

order to cover the space in a meaningful way.
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Approximation: Monte Carlo 

• Estimate values of actions for samples of belief space 
• Interpolate for arbitrary values 

• Computationally difficult to learn policy 

a1 

bi 
b1 

bk 
bj 

The Monte Carlo approach runs repeatedly on samples of belief space to learn their 

values. It is similar to reinforcement learning.


Arbitrary values are interpolated from nearby points.


This has the advantage of being a non-parametric representation, however it is still 

computationally difficult to learn a policy.


This technique is used in our advanced topic.
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• 
• Can use variable resolution 

• Size increases with dimensionality and resolution 

b2b1 b3 

b8 

b5 b6 

b7 

b4 

b9 

b10 

b12 

b14 

b13b11 

Approximation: Grid-Based 

Like point-based approximation, but with regular spacing 

Grid-based approximations are point-based approximations with a regular grid 
spacing. This solves the problem of choosing points, however number of points still 
increases with dimensionality and with grid resolution. 

One solution is to use variable resolution. This is the process of starting with a coarse 
grid resolution, and increasing the resolution only for interesting areas, essentially 
allowing zooming in on certain parts of the belief space. 

Our advanced topic uses grid based approximations. 
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• Assume that the state is the most likely state, and
perform corresponding MDP. 

• Only works if this is a good assumption! 

b = <0.08, 0.02, 0.1, 0.8> POMDP 

b = < 0 , 0 , 0 , 1 > MDP 

Heuristic: Maximum-Likelihood 

Now we move into different policy heuristics. 

The Maximum likelihood heuristic is simply assuming that the sta te is the most likely 
state. This reduces the POMDP into an MDP, which can then be easily solved. 

Of course, this only works if this is a good assumption. It works well when the 
uncertainty is due to bounded noise rather than uncertain state features. 
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Heuristic: Information Gathering 

• MDP is easy to solve 
• Valuable to learn about the state 

b = < 1 , 0 , 0 , 0 > b = < 0.1, 0.2, 0.4, 0.3 > 

b1 

The Information Gathering heuristic works on the idea that it is valuable to learn 

about the state, because then it is easy to maximize the reward.


Thus if two candidate actions have similar rewards, but one reduces the uncertainty in 

the system, then that one should be favored.
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Heuristic: Hierarchical Method 

• 
• Smaller state space reduces amount of computation 

Belief Space 
POMDP 

of 
POMDPs 

Split into top level POMDP and low level POMDPs 

Hierarchical Methods involve splitting a POMDP into a top level POMDP and low 
level POMDPs.  Each smaller POMDP has a smaller belief space, and thus the 
complexity is exponentially smaller. This is offset by the fact that there are more 
POMDPs to solve, but the number of POMDPs is polynomial, while the savings are 
exponential. 

An example would be macro actions, which are described and used in our advanced 
topic. 
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Heuristic: Policy Search 

• Reinforcement learning on policy instead of 
value 

• Value and Policy Search 

learning into a single update rule 
– Combine value and policy reinforcement 

The Policy Search heuristic is the idea of learning about the policy, not the value.  It is 
very similar to Q reinforcement learning but is on the policy. Essentially the policy is 
optimized directly by training it to produce best value. 
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Outline 

• 
• 

• 

Introduction to POMDPs 
Demonstration of POMDPs 
– Problem : UAV Navigation 
– MDP Visualizations 
– POMDP Visualizations 

Approximating POMDPs with Macro Actions 

This is the demonstration portion of our talk. The objective is : understanding 

POMDPs through visualization.


I will explain to you a UAV Navigation problem that I modeled as an MDP 

and a POMDP.


The visualizations will show the solution process and the policy execution 

process for an MDP, as a primer, and then a POMDP.


2 key points that I want you to take away from this demonstration are the 

essence of how POMDPs work, and the complexity of solving them.


For example:


The POMDP has a Continuous Belief State Space.


The POMDP’s Policy Tree is polynomial in the number of actions and 

observations and exponential in the length of the planning horizon.
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Demonstrations* 
• MATLAB 
• MDP 

– Map to Problem Domain 
– Value Iteration 
– Policy Execution 
– Visualization** 

• POMDP 
– Map to Problem Domain 
– Belief Space Search 
– Policy Execution 
– Visualization** 

* All coding is mine except for some basic 
MDP value iteration functionality. 

** Visualizations run in line with code. 

I implemented and solved the UAV Navigation problem, using MDPs and a 

POMDPs, in MATLAB.


This includes the policy execution and visualization code.


The visualizations that I created run inline with the code.


They were not generated after the fact.


They were generated in Matlab, as the code was running.


So, they allow you to peer inside and see what is happening.


I implemented everything that you will see with the exception of some basic 

MDP value iteration functionality.


Note:


I ran the code in various conditions and situations, some of which I will show 

you here.
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i 

UAV Land at Airport 

Problem : Introduction 

Landing 
Runway 

Runway+ 

UAV: + 

Take-off 

The point of this slide is to motivate the MDP and POMDP models / 

algorithms.


I mapped a small UAV navigation problem to the MDP and POMDP models.


In this navigation problem, we have a UAV ( represented by the red + ) who’s 

objective is to land on the landing runway at an airport.


The map above shows an airport on an island. The airport has a landing 

runway and a take-off runway.  
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Outline 
• 
• 

– Problem : UAV Navigation 
– MDP Visualizations 

• Value Iteration 
• Policy Execution 

– POMDP Visualizations 

• 

Introduction to POMDPs 
Demonstration of POMDPs 

Approximating POMDPs with Macro Actions 

This is the MDP portion of the demonstration.


You will see how the UAV navigation problem is mapped to the MDP model.


You will then see a visualization of MDP value iteration.


MDP value iteration is the process that MDPs use to find an optimal policy.


You will then see a visualization of the policy being executed.


In our UAV navigation problem, this represents the UAV navigating to the 

landing runway.
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MDP Utility Overlay 

UAV: + 

Reward (#) 

State Utility 
Exclusion 

Zone 

.04 

Transition 
Model 

Cost Probability 

.8 
.1 .1 

Problem : Utility Overlay 

This slide shows the utility overlay for an MDP problem. It shows how to map the UAV problem to an 
MDP. 

As Brian explained, the MDP model assumes that you know what state you are in.  For our UAV 
navigation problem, the state simply represents the UAV’s location. 

So, each of the red and yellow blocks represent the state that the UAV could be in. There are 11 states 
that the UAV could be in, each representing a particular locatio n. The color of each state indicates the 
utility of that state. Yellow indicates high utility and red indicates low utility.  

Legend and Chart: 

The red + represents the UAV. This will be used in the policy execution phase.  The numbers represent 
the reward. In our model, you receive a reward of +1 for navigating to the landing runway.  You receive 
a reward of -1 (or cost) for ending up on the take-off runway.  There is also a transition cost of .04 which 
is incurred for each action that is taken. This transition cost can also be represented as a negative reward.  
All of these rewards, collectively, make up the reward matrix. 

These rewards, are reflected in the state utility. The chart shows the initial state utilities.  The utility of 
the landing runway, is high (yellow) because you get a reward of 1 if you navigate to it.  The take-off 
runway has a low utility (dark red) because you incur a penalty of 1 if you end up there.  The other 9 
states have a relatively low utility which reflects the .04 action cost.  

Another part of our model is the transition model. Our transition model is probabilistic.  In other words, 
if you take a particular action, you will end up in another state (location, for our problem) 
probabilistically. For example, if you try to go up, there is a .8 probability that you will end up in the 
state or block just above you. There is also a small probability (.1) that you will end up in an adjacent 
state. 

One last point is that the “center” block represents an exclusio n zone.  This simply means that it is not 
possible to go there. 26 
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MDP Value Iteration : Until Convergence 

UAV: + 

Reward (#) 

State Utility 

Policy 

.04 

Transition 
Model 

Cost Probability 

.8 
.1 .1 

MDP Value Iteration 

This chart shows the value iteration process in action. 

Value iteration is the process that an MDP goes through to generate a policy. 

It involves looking ahead one step to see which move would generate the highest utility. 

For example, let’s say that you (the UAV) are in the location just to the left of the landing runway.  The 
MDP model of the world is able to look ahead one step, and see what reward we get for each of the 4 
possible actions. Once it knows what the rewards are, it knows what action is the best.  This information 
is used to set the policy for that state. The policy is set to be that (best) action.  In addition to setting the 
policy, the state also resets the value of its state to reflect the future value of that action. 

This process is then repeated. It does this iteratively until the process converges (the utilities stop 
changing by more than a very small value). An MDP is able to use this iterative process because it 
assumes that it knows what state it is in. Consequently, an action will generate a probabilistically 
predicable outcome based on the transition model. 

The point is the visualization that you will see is to show you the process in action.  When you see it you 
can try to imagine each state simultaneously looking ahead one step.  The visualization should also give 
you a feel for how the effect of a high utility location (the la nding runway) is spread (or conveyed) about 
the entire state utility model. 

You will see the yellow (high utility) state utility in the upper right hand corner be spread toward the 
lower left-hand corner.  As this happens, the policy of each state will be set appropriately.  Essentially, 
the arrows (which indicate the policy) will all point in the general direction of the landing runway.  

After the yellow reaches the lower left-hand corner, the MDP has not yet converged.  You will also see 
some of the states at the bottom of the model change their polic y. 
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MDP Value Iteration : Until Convergence 

UAV: + 

Reward (#) 

State Utility 
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MDP Value Iteration 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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UAV: + 

Reward (#) 

State Utility 

Policy 

INFO 
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MDP Policy Execution 

.04 

Transition 
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Cost Probability 
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.1 .1 

MDP Policy Execution 

This chart shows the execution of the policy that was discovered using MDP 
value iteration. 

The point of this slide is to show the policy in action and make it clear what is 
going on / what we have accomplished. 

You will see the UAV, represented by the red +, navigate from an initial 
starting position to the landing runway. 
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UAV: + 

Reward (#) 

State Utility 

Policy 

INFO 
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.04 

Transition 
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Cost Probability 

.8 
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i 

MDP Policy Execution 

MDP Policy Execution 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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UAV: + 

Reward (#) 

State Utility 

Policy 
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MDP Policy Execution 
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Cost Probability 
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MDP Policy Execution 

This chart shows another policy execution. This time, the UAV is starting in a 
different position. 

You will see the UAV, navigate from a different initial starting position to the 
landing runway. This chart shows the execution of the same policy as before. 
In this example, the UAV will take a long route to the landing runway, as 
dictated by the policy. 

This brings up an interesting point. You may recall from the value iteration 
that the last state to change its policy was the state on the bottom, 2nd from the 
right. It initially was pointing up. That was a shorter route. Eventually it 
pointed left. This is a longer route. However, it results in a higher expected 
reward. This is due to the probabilistic transition model. If the UAV went up / 
then up again, there is a probability that it would end up at the take-off 
runway, which is bad. Consequently, the UAV takes an alternate circuitous 
route. 
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Reward (#) 
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MDP Policy Execution 
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MDP Policy Execution 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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Outline 
• 
• 

– Problem : UAV Navigation 
– MDP Visualizations 
– POMDP Visualizations 

• Belief State Space Search 
• Policy Comparison 

– 3 Step Horizon 
– 10 Step Horizon 
– 
– Fuel Observation 

• 

Introduction to POMDPs 
Demonstration of POMDPs 

AIMA (Russell & Norvig) 

Approximating POMDPs with Macro Actions 

This is the POMDP portion of the demonstration.


You will see how the UAV navigation problem is mapped to the POMDP 

model.


You will then see a visualization of the POMDP solution process.


You will then see a visualization of the policy being executed.


The solution process that you will see is a belief state space search.


This is one way to find a policy for the POMDP model.


This method is particularly interesting because it demonstrates directly the 

complexity of the policy tree, given a finite horizon.


There are also other ways to solve POMDPs, which Brian mentioned.  


In addition, this demonstration will provide motivation for Tony’s part, which 

explains more efficient methods.


In addition to the solution process, you will also see visualizations of the 

policy execution process.


This visualization is more complex and interesting than the MDP policy 

execution, due to the fact that POMDPs do not assume that they know where 

they are in their state space (unlike MDPs).
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POMDP Belief State Space Search : No Observations 

POMDP Belief State Space Search 

POMDP, are different than MDPs, in that they do not assume absolute positional (or state) knowledge. MDPs simply 

assume positional certainty even though it is an incorrect assumption. MDPs may use, for example, our expected 

location (MLE). This is an acceptable strategy under low uncertainty, however, it results in bad policies when there is 

high uncertainty.


For a POMDP, the policy creation is different (than an MDP) because we do not assume absolute positional 

knowledge. Our position is represented in our belief space.  Therefore, in order to asses the value of a given action, we 

have to asses the value of all of the best possible subsequent actions.  When we execute an action, we generate a new 

belief space given our current belief space and the particular action.  Which each action, (for example ‘up’) we have a 

probability of ending up in the next block up. There is also a probability of ending up in other blocks.  (This was also 

the case with the MDP.)


However, with the POMDP, we do not assume absolute positional (state) knowledge.  Therefore, we must propagate 

forward the chosen action for each possible belief. If we look ahead 1 time -step, we then get a matrix of values for 

each possible action. We then multiply our current belief distribution by this matrix to find out which action has the 

best outcome. When we find out which action has the best outcome, we set our policy to the respective reward.  


In a 3-step look-ahead / Belief State Space Search, which we will see here, we have to search ahead every combination 

of action sequences. For the 3 step look-ahead shown here (4 actions), there are 64 combinations which result in 85 

possible futures (or beliefs) each with ~11 states. For a 10 step look-ahead, there are 1.4 million possible futures 

which have to be assessed. 


Chart and Legend: 


The main difference between the MDP and POMDP representation is that the POMDP does not assume that you know 

exactly where you are. Therefore, the POMDP represents your location (more generally, your state) probabilistically.  

For example, there is a .6 probability that I am in state A, and a .4 probability that I am in state B.  In the MDP model, 

we would make a decision based on our expected state. In this case, state A.  However, in a POMDP, we represent this 

as a belief state which assigns a probability to each possible state.


In this chart, the colors of the squares represent something different than they did for the MDP.  Here, each square is an 

individual state. All of them together represent the belief state. The color of the individual states indicates the 

probability that we are in that individual state. For example, there is an equal probability (of .11) that we are in each of 

the 9 orange states. Likewise, there is a zero probability, initially, that we are at the landing or take-off runway.  

Collectively, these represent our belief state. 
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POMDP Belief State Space Search 

(Continued) 

Note that our belief space is continuous, which is a prime reason why POMDPs are difficult to solve.  In 
the MDP model, we created a policy for the 11 possible states. Here we have innumerable belief states. 
Generating a universal plan (or policy) requires partitioning the belief state into a state-action mapping.  
In our visualization, you will see a belief state search starting at one particular point in the belief space.  
That is just one point our of a continuous belief state space (with an infinate number of points).  The 
belief state space search essential explores the policy tree that Brian explained in the previous part of this 
talk. The size of the policy is exponential in the number of actions taken (depth) and polynomial in the 
number of possible actions and observations. 

The numbers represent the reward matrix. 

The color of the rectangle just to the right of the belief state indicates the total current reward for that 
belief state, which depends on the reward matrix and the current belief state.  *The value of a given action 
depends on that reward and the subsequent actions. However, since we don’t know where we are, the 
value of a given action depends on the combined value of that action for each individual state in our 
belief state. If we propagate forward a chosen action we get a matrix of values for that action-belief 
combination. That is calculated using the new belief state and the reward matrix.  *Doing this for each 
possible action, will tell us which action is best, given our be lief state – it is the action that generates the 
highest future value, summed over the whole belief state. Recursive Process - Propagated forward 3 steps 
-- at each step, you would generate 4 new belief states, 1 for each action. Each belief state has 11 
individual states, with an associated probability. At the 3rd step you would have 64 different belief states, 
1 for each 3-step action sequence. For a 10 step look-ahead, there are 1.4 million different action 
sequences. This visualization shows this process for 3 steps. 

Animation Slide: This slide is used to activate the movie. It looks the same as the previous slide, but it 
has an embedded movie that runs when the slide is shown. 
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POMDP Policy Execution : No Observations 

POMDP Policy (3 Iterations) 

This chart shows the execution of the policy that was discovered using the 3 step POMDP belief state space search. 

Specifically, this slide demonstrates the 3 step policy: <Right, Right, Right>.  The point of this slide is to show this 

policy in action.


Since the POMDP represents the UAV location as a belief state, the location of the UAV is captured by the color of the 

individual states shown in the movie.


Again, for the POMDP visualizations, the colors of the squares represent the probability that we are in that individual 

state. Initially, there is an equal probability (of .11) that we are in each of the 9 orange states.  


Collectively, these represent our belief state. 


In the movie, we will execute an action, and generate a new belief state.  With each action, (‘right’) we have a .8 

probability of moving to that block as well as a small probability of ending up in another block.  (This was also the 

case with the MDP.) However, with the POMDP, we do not assume absolute positional knowledge, thus, our action 

generates a new probabilistic belief state.


So, what you will see in this movie, is the higher probabilities move toward the right.  The higher probabilities are 

indicated by yellow, and the lower probabilities are indicated by the red.  We initially don’t know very accurately 

where we are. As we execute this policy, we will have a better idea of where we are.


There is one more detail about this representation. The reward incurred by landing on the landing runway should only 

happen once. The same holds for the take-off runway.  


For example, we wouldn’t want to reward a plane for sitting on the landing runway for multiple steps.  Therefore, the 

POMDP is modeled such that after the plane lands on either runway, it goes to a sink on the next time-step.  A sink is a 

state that has no reward or penalty. It’s transition model dictates that there is a zero probability that you can leave the 

state. 


You may notice the above detail in the visualization. The landing runway will become yellow, indicating a high 

probability that the UAV just landed there.


This may be followed by the block becoming more red, indicating a low probability of the UAV being there.  This is 

due to the sink model. 
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POMDP Policy Execution : No Observations 

POMDP Policy (3 Iterations) 

Please watch the video.


The policy shown here isn’t very good, because it is very likely that we end up in the bottom right corner, 

or on the take-off runway.  You may also notice that a good portion of our belief state got “stuck” behind 

the exclusion zone. This is because our look-ahead was too short.


In the next slide, we will see the policy that is generated from a 10-step look-ahead.


Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs when the slide is shown.
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POMDP Policy Execution : No Observations 

POMDP Policy (10 Iterations) 

This slide shows the execution of a policy generated from a 10-step look-
ahead. Remember that we haven’t discussed observations yet. Therefore, this 
policy assumes an initial position distribution. Our belief space currently only 
represents our position distribution. 

Our action cost is relatively low here. Therefore, the policy is to move left 
first. This gets us out of the lower right hand corner (if we were there, we 
don’t know exactly). 

The we go up… < Left, Up, Up, Right, Up, Up, Right, Right, Right, Right > 

With each action, we gain positional accuracy. You can see this from the 
color scheme. The color scheme indicates the probability that we are in a 
given location. It is initially uniform for the 9 possible starting positions.  It 
then gets more yellow to the left. The Yellow high probability trail then 
makes it’s way up and over to the runway. The policy exploits the bounded-
ness of the grid (we can’t go too far to the left) to gain positional accuracy, and 
generate a better policy. This policy causes us to end up at the desired 
destination with high probability. Note that the representation has a sink.  
Once we hit the runway, we go to the sink in the next iteration. That is why 
the yellow disappears from the runway after it arrives. Note that the yellow 
high probability disappears from the grid. This problem is the exact same 
problem represented in the Russel and Norvig (AIMA) book.  The book gives 
a different policy for this POMDP with no observations. The policy we 
generated is better, as I will show you. 38 
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POMDP Policy Execution : No Observations 

POMDP Policy (10 Iterations) 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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POMDP Policy Execution : No Observations 

POMDP Policy (AIMA) 

This visualization shows another interesting policy.


You may recognize this problem for the AIMA / Russell and Norvig book.


In that book, they give an optimal policy that is different (tho ugh similar) from 

the policy that I just demonstrated.


This movie shows that policy being executed for 10 steps.


The policy is as follows:


AIMA < Left, Up, Up, Right, Up, Up, Right, Up, Up, Right >


After running this policy for 10 steps, you may notice that it leaves some 

yellow on the field at the end. This means that there is a high probability that 

the UAV did not make it to the landing strip, in 10 steps, under this policy. 


In other words, this policy is not as effective as the previous policy for 10 

steps. 


This is because the AIMA policy is oriented toward a longer planning horizon.
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POMDP Policy Execution : No Observations 

POMDP Policy (AIMA) 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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POMDP Policy Execution : Fuel Observation 

POMDP Policy (Fuel Observation) 

Next we introduce how observations play into POMDPs. 

Let’s say you have a fuel gauge and it is telling us that we are low on fuel. This will cause us to take a 
shorter route home, even if it has additional risk. 

This causes the policy to be more risky, we may land on the take-off runway. However, our overall risk 
is minimized. 

The policy generated here assumes we are low on fuel, which makes each action (relatively) more costly. 
This requires a more complex belief state space which captures our belief about how much fuel we have. 
This also requires (for this problem) an augmented reward matrix which covers all of these individual 
belief states. 

This slide shows that policy in action: < Up, Up, Right, Right, Right, Up, Right, Right, Right, Right > 

You can see that under this policy, it is more likely that the UAV lands on the take-off runway.  
However, this risky policy optimizes the risk-reward trade-off. 

Summary of the complexity of POMDPs in the context of this example: 

POMDPs are difficult to solve due to the combination of the belief state space size, and the number of 
possible action-observation sequences. 

Imagine if our fuel gauge blinks on and off (sound familiar?). Then combine this observation with 
several other possible types of observations, for example, using landmarks to reduce your position 
uncertainty. This increases the complexity of the policy tree, and thus the solution process. 

This is why POMDPs are so difficult to solve.  Consequently, efficient methods for solving POMDPs is 
an area of active research. 
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POMDP Policy Execution : Fuel Observation 

POMDP Policy (Fuel Observation) 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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Demonstration Conclusion 

• Difficult to Solve 

• Efficient Methods 

2 key points that I want you to take away from this demonstration is the essence of how POMDPs work, 
and the complexity of solving them. 

The visualizations that you have seen demonstrate the nature of the policy creation process.  In particular, 
they show what it is that you want to explore, and how complex this space is. 

In particular, due to the continuous belief state space, POMDPs are difficult to solve.  Furthermore, the 
complexity of the policy tree, explored in the belief state space search adds to the problem. 

Specifically: 

•The POMDP has a Continuous Belief State Space. 
•The POMDP’s Policy Tree is polynomial in the number of actions and observations and exponential in 
the length of the planning horizon. 

•For every level of the policy tree, there are m^j*n^j possible 
action/observation sequences. 

It is important to realize that just exploring the policy tree, given a particular belief, on a small problem, 
is somewhat complex. Creating a universal plan for a large problem is incredibly complex.  These issues 
lead to the need for efficient methods for computing policies, which is the topic of Tony’s section of our 
talk. 
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Outline 

• 
• 
• 

Actions 

Introduction to POMDPs 
Demonstration of POMDPs 
Approximating POMDPs with Macro 

– Belief Compression using Grid Approximation 
– Macro-Actions in the Semi-MDP’s framework 
– Reinforcement Learning with a model 

The previous demo simplified the problem into 12 states. 
However, this was a gross simplification of the problem, but trying to solve 
POMDPs exactly limits us computationally to the number of states on this 
order. To solve a more realistic navigational problem with over 1000 states 
will require different methods. 

The algorithm from “Approximating POMDPs with Macro 
Actions” by Georgios Theocharous and Leslie Kaelbling will be presented 
next. To introduce this, some foundational methods are first presented.  What 
will be covered first is “Belief Compression using Grid Approximation” then 
“Macro-Actions in the Semi-MDP framework” before finally going into the 
actual algorithm in “Reinforcement Learning with a model”. 
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Approximation Methods 

• 
• Monte Carlo Method 
• 

– 

Point-Based Approximations 

Grid-Based Approximations 
Dynamic Grid -Resolution 

This is a review of the previous approximation methods that were presented in the 
first part of the lecture. Of these, the algorithm will use a Monte Carlo method and a 
Grid-based approximation.  More specifically, it will use “Dynamic Grid-Resolution”.  
This will be covered in more detail in a few slides. 
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Policy Heuristics 

• 
• Information Gathering 
• Hierarchical Methods 

– 

• Policy Search 

Maximum-Likelihood 

Macro-Actions 

Of the policy heuristics mentioned, Macro-Actions will be used in addition to the 
methods from the previous slide. 
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Grid Approximation 

S2 
(0,1,0) 

S3 
(0,0,1) 

S1 
(1,0,0) 

Resolution 1 

S2 
(0,1,0) 

S3 
(0,0,1) 

S1 
(1,0,0) 

Resolution 2 

S2 
(0,1,0) 

S3 
(0,0,1) 

S1 
(1,0,0) 

Resolution 4 

This slide demonstrates the discretization of a 3-dimensional 
belief simplex. Each point on the graph represents a belief state, which is a 
probability distribution across the states. In this example, we have 3 states, S1, 
S2, and S3. So a 100% certain belief that we are in S1 would be represented in 
this example as (1,0,0), whereas a certain belief that we are in S2 would be 
(0,1,0). Certain belief for S3 would be (0,0,1). You can see these points on 
the left-most graph.  If we had an equal belief that we are in either S1 or S2, 
that would be represented as (0.5,0.5,0). This point on the graph would be on 
the line halfway between S1 and S2. As you can see, a probability distribution 
across the states will sum to 1. Because of this, every point in the belief space 
will on the plane formed by the lines between each of the states.  This plane is 
trimmed to a triangle. 

This surface of the triangle is referred to as a simplex. This is 
the belief space of the original POMDP. 

If we increase the resolution to 2, we divide the lines into 2 
parts, and connect the new grid points to create smaller triangles.  These 
smaller triangles are called sub-simplexes.  The algorithm was tested up to a 
resolution of 4. 

For a given belief state in a POMDP, you can discretize it to its 
nearest grid point. The new grid points become states in an MDP problem.   
The key idea here is that it is possible to approximate solutions to a POMDP 
by solving an MDP that takes the grid points as states. 
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Dynamic Grid Allocation 

• Allocate grid points from a uniformly spaced grid 
dynamically 
– Simulate trajectories of the agent through the belief 

space 

• When experiencing belief state: 
– Find grid point closest to belief state 
– Add it to set of grid points explicitly considered 

• Derived set of grid points is small and adapted to 
parts of belief space typically inhabited by agent 

The more states the problem has, the more dimensions there are 
in the belief simplexes. The number of grid points quickly becomes large in a 
uniformly spaced grid. Instead of using a variable resolution method, the 
algorithm will use dynamic allocation. It does this by simulating the 
trajectories of the agent through the belief space. So when a belief state is 
experienced, the closest grid point to the belief state is used and added to the 
set of grid points that are explicitly considered. In other words, instead of 
allocating the memory for all the grid points initially, it is only allocated when 
the belief state is experienced. Memory is needed to store the state action 
value and the state value of the grid-point. 

Using this method, the derived set of grid points is small and 
will cover the belief space that is typically inhabited by the agent. 
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• Temporally Extended Actions 

• 
• 

• Turn
• 

• 

Macro-Actions 

– For example: 
Move-Down-Corridor 
Go-to-Chicago 

– Versus primitive actions, such as: 
-Right 

One-Step-Forward 

POMDP’s breakdown into a hierarchical 
structure of smaller POMDP’s 

Or “time-extended” actions. 

Some examples of macro-actions are given here.  These are 
actions that will take an extended amount of time, versus primitive actions 
such turn-right or one-step-forward.  Macro-actions can take the form of a 
POMDP policy to move down a corridor. The top-level POMDP can issue the 
macro-action to move down the corridor and not have to explicitly deal with 
the smaller POMDP of navigating the corridor and not hitting any walls. 

Good macro-actions are ones that will allow us to localize and 
reduce the uncertainty of our belief state. 

To recap, the hierarchical structure grows polynomially, so we 
get a polynomially-growing structure of smaller problems that will grow 
exponentially. This is an improvement over the otherwise expone ntial growth 
of the total problem. 
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MDP 

SMDP 

Macro-Actions 

This is a graphical representation of how primitive actions 
compare to macro-actions in an MDP.  While primitive actions cause the MDP 
to step through each state, using macro-actions across longer lengths of time, 
we are able to reduce the complexity of the problem. 

To model Macro-actions in a POMDP framework, we use 
SMDPs, which are covered next. 
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• 
– S : finite set of states 
– A : set of actions 
– P : state and action transition probability functions 
– R : reward function 
– F : probability of transition time function for each 

• F(s’, t|s,a) : specifies the joint probability that a transition 
from state s to state s’ occurs after t steps with action a 

• 
Qt+1 b)Qt(s,a) + b[R+gt maxa’Qt(s’,a’)] 

Semi-Markov Decision Process 

Defined as a five-tuple (S,A,P,R,F) 

state-action pair 

Q-learning rule for SMDP’s 
(s,a) = (1-

SMDPs are defined with 5 components.  S,A,P, and R are the 
same type of components found in a regular MDP, but what is new here is F.  
This is the function that gives the probability of the transition time for each 
state-action pair.  For a discrete time SMDP, this is represented as F(s’, 
tau|s,a). 

The Q-learning rule for SMDPs is very similar to the Q-
learning rule for regular MDPs that was presented earlier in the lecture.  The 
only difference here is that the discount factor is raised to the tau.  As a 
reminder, this discount factor reduces the rewards of future sta te-action values.  
It also causes infinite horizon values to converge. 
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Problem Reformulation 

• 
the SMDP are used to learn the policy 

POMDP Grid 
Approx. 

MDP Macro 
Actions 

SMDP 

Monte Carlo Updates of the Q-values for 

So with these foundational methods presented, here is an 
overview of how the algorithm will simplify the problem. The original 
POMDP is converted into an MDP using dynamic grid approximation. This 
MDP is abstractly converted into an SMDP through the use of macro-actions.  
Finally, the algorithm will use Monte Carlo updates of the Q-values for the 
SMDP to quickly learn a policy solution. 

53 



Graphical Overview of the 
Algorithm 

b’ 

g 

b 

b’’ 

g3 

g2 

g1 

This slide shows a graphical overview of the presented algorithm. 

b is discretized to g, the nearest grid point to b.  Then a macro-
action is simulated from g to b’’. At b’’, the Q-value is interpolated from the 
vertices of the sub-simplex of which b’’ is located.  The macro-action is 
simulated repeatedly to estimate the expected value function of b’’.  The state-
action value of g is then updated with this expected value function.  Finally, 
the macro-action is executed on state b and b is moved to b’. 
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Reinforcement Learning 
With a Model 

1. Assume a current true state 
• Which is physical true location of agent 
• b(s) „ 0 

2. b fi gi 
• gi 

of the belief space. 
• If gi is missing add it to the table of belief states to 

explicitly consider 
• Interpolate its initial value from coarser resolutions. 

Discretize the current belief state 
is the closest grid-point in a regular discretization 

Reinforcement learning with a model is otherwise called Real Time Dynamic 
Programming (RTDP) 

To begin in the algorithm, we start with a current true state, 
which is the physical true location of the agent in this navigational problem.  
This means that the belief state cannot equal zero. The model has to believe 
that we can be located at that state. 

In step 2, we discretize the current belief state to its nearest grid 
point. If that grid point is missing, we add it to the table of belief states that 
we are explicitly considering. To do this, we allocate memory for the state-
action value and the state value for the belief state that this grid point 
represents. To get its initial value, we interpolate it from coarser resolutions.  
If the resolution is 1, meaning that there are no coarser resolutions, we 
initialize gi’s value to zero. 

55 



Reinforcement Learning 
With a Model 

3. 
current Q values 

• Random action e% of the time 
• Interpolate over the Q values of the vertices 

b 

Choose the best macro-action from the 

of the sub-simplex that contains 

We choose the best macro-action from the current Q-values of 
the belief state. However, we need to balance exploitation with exploration, so 
we will choose a random action a set percentage of the time. To get the Q-
values of the belief state, we interpolate over the Q-values of the vertices of 
the sub-simplex that contains b.  In the 3-state example, this is the smaller 
triangle that b is located in. 
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Reinforcement Learning 
With a Model 

4. Estimate i,m) + gt V (b’)] by sampling: 
• Sample a state s gi 

– Choose primitive action a m 

– Sample the next state s’ and observation z from models 
– Store the reward and update the belief state 

– Set t = t+1, b = b’, s = s’ and repeat with next primitive action 
until m terminates 

• Compute the value of the resulting belief state b’ 
– 

• Repeat multiple times and average the estimate 

E [R(g
from the current grid-belief state 

according to macro-action 

Interpolate over vertices in resulting belief sub-simplex 

As a note, “E” in this notation means expected value. 

The next step is to estimate the expected value function by 
sampling using a macro-action on the current grid point.  We sample the state 
from the current grid point. As a reminder, the belief state and grid points are 
probability distributions across the total set of states. Then we choose a 
primitive action according to our macro-action, which in the test case of a 
robot navigating corridors, is the policy for how to go down a hall. 

Next, we sample the next state and observations from the 
models. The representation for the models used are: T(s,a,.) for s’ and 
O(a,s’,.) for z. We then store the reward and update the belief state along 
macro-action. 
To store the reward, we use these equations: 

R(g ,m) := R( g ,m) + gt R(s, a)i i

or with reward-shaping: 

R(g ,m) := R( g ,m) + gt V (s’) - gt V(s)i i

Where V(s) is the value function of state s. The test results will show that 
using reward-shaping is very important in being able to solve the problem. 

We move our states resulting from the primitive action and we 
repeat with the next primitive action until the macro-action terminates.  From 
the resulting belief state, we can compute its value. We do this by 
interpolating its value from the vertices of the belief sub-simplex that the 
resulting belief is located in. We repeat this whole step multiple times and 
average the estimate to get the expected value function. 
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Reinforcement Learning 
With a Model 

5. Update the state action value: 
i,m b)q(gi,m) + b [R + gt v(b’)] 

6. Update the state value: 
i m i,m) 

Q(g ) = (1-

V(g ) = argmax Q(g

Once we have estimated the value function, we must update the 
Q and V values for the grid point that we discretize to in step 2.  This is the 
belief state for the overall POMDP, which is represented by “b” on the 
graphical overview of the algorithm. 
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Reinforcement Learning 
With a Model 

7. m starting from 
the belief state until termination 

• Generate observations during execution 
• Set and and go to step 2 

8. Repeat this learning epoch multiple times 
starting from the same b 

Execute the macro-action 

b = b’ s = s’ 

Once we have updated our state-action values and state values 
for the grid point, we will execute the macro-action starting from the belief 
state mentioned on the last slide, until it terminates. We generate observations 
by sampling the POMDP model during execution. Once the macro-action 
terminates, we move our state and belief state and repeat from step 2. 

For the test results, this learning epoch is repeated multiple 
times starting from the same b. 
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------------

Tested Results 

• 

number of grid points: 
• 5.410 with regular discretization 
• 
• 

actions 

Benefits of using dynamic grid-resolution 
– For 1068 world states and resolution of 4, 

~3500 with dynamic grid-resolution 
~1000 with dynamic grid-resolution and macro-

In the tests run with this algorithm, we can see the benefits of 
using dynamic grid resolution. The number of grid points for a regular 
discretization of the space is given by: 

(r+|S|-1)! 

r! (|S|-1)! 

Where |S| is the number of states, and r is the resolution. 

This gives 5.4^10 for the test problem with regular 
discretization. However, adding dynamic grid-resolution will only create 
~3500 grid points. And once we add macro-actions, this number reduces to 
~1000. This reduction due to macro-actions is because grid points are not 
created along the simulation of the macro-action, but only at the end of the 
macro-action.  We do not have to discretize to the nearest grid point and create 
it for every primitive action if we use macro-actions. 
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Tested Results 

• 

the dynamic grid model 

• 

actions 90~95% 

Benefits of using macro-actions 
– Requires fewer training steps per episode 
– Performs better with increased grid-resolution in 

– Better quality policy overall 

Benefits of using reward-shaping 
– Successful completion of test with macro-

– 0~10% without reward-shaping 

The test results found that fewer training steps per episode were 
required when using macro-actions.  Macro-actions perform better with 
increased grid-resolution in the dynamic grid model because you don’t have to 
generate so many grid-points when you are not limited to primitive actions.  
The test results also showed that macro-actions generated a better quality 
policy overall. These benefits were realized because the test used “good” 
macro-actions that helped the agent to localize and reduce the uncertainty of 
its belief state. 

One key component that this test showed was that using reward 
shaping was critical in being able to solve the problem. Without it, the agent 
was not able to solve the problem in any of the cases except for in 10% of time 
when it used macro-actions and a resolution of 4.  This is in contrast to 90­
95% of the time across resolutions 1,2 and 4 when it used macro-actions. 
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What Is Next? 

• 
• 

actions? 

Able to solve POMDP’s with 1000+ states 
How do we generate a set of “good” macro-

– Current research is focused on the dynamic 
generation of macro-actions 

So this lecture showed that we are able to solve relatively large 
POMDPs by reducing its complexity through the use of spatial and temporal 
abstractions (grid approximation and macro-actions).  We were able to move 
from solving 10’s of states in a POMDP to solving over 1000 states.  However, 
the question arises, how do we generate “good” macro-actions?  Good macro-
actions are ones that will allow us to localize and reduce the uncertainty of our 
belief state. However, the current setup requires that the user create the set of 
macro-actions.  Current research by the author of the paper is focused on the 
dynamic generation of macro-actions. 
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End 
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An Extra Visualization 

• This visualization (and others) were cut 
from the talk, for brevity. However, we 
thought that it was worthwhile to include 
this one in the tutorial slides. 
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UAV: + 

Reward (#) 

INFO 

Total 
Belief 
State 
Reward 

Policy 

3 Step Horizon 

State 
Probability 

i 

POMDP Belief State Space Search : Coastal Observation 

POMDP Belief State Space Search 
(Coastal Observation) 

Next we introduce how observations play into POMDPs. 

Let’s say that if you are in position 8, you can clearly see the coast line.  
Consequently, you gain positional accuracy. 

This visualization shows that policy being generated. 

The observation model affects (or updates) our belief state. This is reflected 
above. Our initial belief state assumes that we are in the state shown above 
(row 2, column 3). 

This positional accuracy is due to the positive observation. This level of 
certainty is simpler, and therefore useful for demonstrating this process. 

A nice aspect of this visualization is that the low uncertainty makes it easier to 
follow (visually) the process. 
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Reward (#) 
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i 

POMDP Belief State Space Search : Coastal Observation 

POMDP Belief State Space Search 
(Coastal Observation) 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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UAV: + 
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Policy 

< Up, Up, Right, 
Up, Right, 
Up, Right, 
Up, Right > 

State 
Probability 

i 

POMDP Policy Execution 

POMDP Policy (Coastal Observation) 

This slide shows the execution of a policy generated in the last slide.


It used a 3-step look-ahead and an initial coastal observation.


The policy if as follows:


< Up, Up, Right, Up, Right, Up, Right, Up, Right >
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UAV: + 

Reward (#) 

INFO 

Total 
Belief 
State 
Reward 

Policy 

< Up, Up, Right, 
Up, Right, 
Up, Right, 
Up, Right > 

. 

State 
Probability 

i 

POMDP Policy Execution 

POMDP Policy (Coastal Observation) 

Animation Slide:


This slide is used to activate the movie.


It looks the same as the previous slide, but it has an embedded movie that runs 

when the slide is shown.
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