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Through this lecture, we aim to convey the usefulness of intelligent systems 
capable of understanding and collaborating with humans towards the 
accomplishment of a common goal. Specifically, we will focus on the theory of 
collaborative discourse and plan recognition and their role in current 
collaborative assistants. 
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Hello, Computer? 

“Hello, computer?”  These were the words uttered by Professor Scotts (a.k.a. 
Scotty) to the mouse of a 20th century computer when the crew of the 
Enterprise traveled back in time to year 1986. This scene is probably a 
familiar sight to all Star Trek fans, but one may wonder “what does it have to 
do with cognitive robotics?” 

Well, anyone who’s seen any form of Star Trek probably encountered 
scenario(s) where a crewmember works with the onboard computer system to 
solve various types of complex problems. And although not immediately 
obvious, this problem solving process not only involves command inputs from 
the human party but also demands a computer software system capable of 
keeping track of the problem’s state, any progress made, and what still needs 
to be done while providing inputs and quires as needed. When Scotty said 
“hello computer,” he was not simply seeking a “how do you do” reply but was 
trying to start a collaborative session in which the computer would assist him in 
the accomplishment of a goal (in this case, constructing the molecular 
structure of transparent aluminum). 

Through this lecture, we will demonstrate the importance/usefulness of such 
computer/software agents, present a couple of such agents currently under 
development, and dive into the theory behind a couple of key building blocks of 
these agents. 
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TRIPS Demo 

Before going into technical details, we would first like to show a demonstration 
of a collaborative agent TRIPS applied to a military scenario. The demo is self 
explanatory in terms of the problem statement and final goals. We are 
showing this demo early on to give people a sense of what is ava ilable today. 

Note that in this scenario the computer received a high level goal from the 
user, provided relevant information without being specifically prompted to do 
so, made recommendations towards the course of action, kept track of parallel 
solution approaches to the goal, retraced steps when an approach did not 
work out, asked for clarification when information provided is unclear or 
incomplete, and provided both visual and vocal feedback to the user.  These 
are all important properties for this type of collaborative agents, and towards 
the end of this lecture we will show a similar demo in which we link these key 
features to the theory that we will soon present. 

This demo can be found at the following url: 
http://www.cs.rochester.edu/research/cisd/projects/trips/movies/TRIPS_CPoF/ 
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How can we create computer or robotic 
systems that not only follow user 
commands but also collaborate with 
humans toward the achievement of a 
common goal? 

This question outlines the main objective of this lecture. Key words to note are 
“collaborate” and “common goal.” 
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Technical Approach 

• Derive intentions from observed or 
communicated information 

• Decompose goals into organized structure 
• Refine goal structures by seeking 

additional information 
• Identify shared elements of agents’ goals 
• Execute communications and actions to 

achieve multi-agent objectives 

Human-computer/robot interaction is a wide field.  Even a specific type of 
interactive agent such as TRIPS is very complex. This slide only outlines the 
technical approach to what we consider to be the most important components 
to this type of agents. 
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Outline 

• Travel Scheduling Example 
• Collaborative Discourse 
• Plan Recognition 
• TRIPS 
• COLLAGEN 

For the reminder of this lecture, we will first introduce a travel planning 
example in which collaborative agents can be applied. And we will continue to 
refer back to this example through our technical discussion on Collaborative 
Discourse and Plan Recognition. Finally we will end the lecture with a more 
detailed analysis of how the 2 leading collaborative agents TRIPS and 
COLLAGEN embody the theory presented along with a demo for each agent. 
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Air Travel Scheduling Scenario 

San 
Francisco 

Boston 

Dallas 

Phoenix 

Leave: 
Tuesday night 
or Wednesday 
morning 

Return: Friday 
before 5pm 

Thursday 

Prefer to fly American Airlines 
because of frequent flier miles 

11am-3pm 

Many people are familiar with the complexity and headaches associated with 
travel scheduling and ticket purchasing. Above is a scenario where a Boston 
based traveler wants to make a trip to Dallas, Phoenix, and San Francisco.  
There are some hard constraints such as he must be in Phoenix on Thursday 
between 11am and 3pm and return to Boston by Friday 5pm. There are also 
lose constraints and preferences such as he would like to leave Wednesday 
morning but can leave Tuesday night, and he would like to fly American 
Airlines as much as possible (but this is not a requirement). 
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If he visits a website such as Yahoo! Travel to plan his trip, one can 
immediately see the problem. The simple “to” and “from” fields along with date 
constraints as no where near sophisticated enough to solve this multi-
destination trip with varying levels of constraints. 
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Problems with Travel Planning 

• Order of actions may not be flexible 
• Difficult to recover from mistakes 
• Easy to get stuck or get lost 
• May over or under constrain 
• Lack of support for the user’s problem 

solving process as it unfolds over time 

Here are some of the common problems with travel planning systems, or even 
planners and schedulers in general. 

1) Order of actions may not be flexible: The user may be required to enter the 
destination before the date and time information. 

2) Difficult to recover from mistakes: Due to the inflexibility of actions changing 
the destination may erase other data already entered. 

3) Easy to get stuck or get lost: After trying 20 or 30 combinations of departure 
and destination location and time, various airlines, perhaps eve n multiple 
websites, it would be very easy to loose track of the combinations that have 
been tried and the possible itineraries listed. 

4) May over or under constrain: One can easily over or under constrain the 
problem and receive 100 possible itineraries or no itinerary at all. 

5) And the main reason for all this confusion is that software like the one used 
on Yahoo! Travel lack support for the user’s problem solving process as it 
unfolds over time: it does not keep track of what has been and what still needs 
to be accomplished. 
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Collaborative Interface Agent 

• User and agent share 
a common goal 

• Both parties work in 
close collaboration 

• All relevant actions 
are either observed or 
reported. 

To solve these problems and make the planning process simpler, consider a 
collaborative agent in addition to the basic software application.  Notice that 
aside from direct communication between user and agent, both the user and 
agent can observe the other’s interaction with the specific application.  With 
direct communication and observations both user and agent are fully aware of 
the other’s actions and intentions; this is a property of such systems important 
to the theory that we will present. 

We also want to emphasize that the topic of this lecture does not involve the 
design of the application on the bottom of the figure, but rather the 
collaborative agent on the right, which is modular and independent of the 
application. 
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Collaborative Travel Assistant 

Here is an example of a travel assistant with a collaborative agent.  The back 
ground is the actual travel planning application where the user can directly 
select options such as time, destination(s), and the airline.  On the bottom left 
corner is the user interface window that reflects all verbal inp uts of the users.  
And on the upper right corner is the dialogue box of the agent containing 
verbal communication from the agent. Both text displayed in the dialogue 
boxes and any direct actions that the user makes upon the application are 
considered by the agent through the entire planning process. Later, we will 
cover an example of such a transaction and how collaborative discourse and 
plan recognition analyze and extract relevant information from these 
transactions real-time. 
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Outline 

• Travel Scheduling Example 
• Collaborative Discourse 
• Plan Recognition 
• TRIPS 
• COLLAGEN 

As illustrated in the travel scheduling example above, current interactive 
automated agents lack a structured framework for interpreting and contributing 
to user goals, leading them to rely on restrictive, formulaic command sets and 
operation sequences. 

A more sophisticated agent should engage in flexible discourse with the user, 
extracting and supplying information relevant to shared objectives. The 
challenge is to limit the overhead associated with interaction so that it does not 
outweigh the advantages of collaboration between agents of differing 
capabilities. 

Here we outline a framework for collaborative discourse. 
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Elements of Collaborative Discourse 

Intentional Structure 
? model agent goals and intersections 

to identify collaboration opportunities 

Linguistic Structure 
? resolve agent interactions 

to build intentional model 

? maintain immediate context 
to interpret agent interactions 

(Grosz and Sidner) 

Attentional Structure 

Grosz and Sidner propose three essential elements for collaborative 
discourse: 

Intentional Structure. Agents must build a model of the goals of each other 
agent and how they may be decomposed into sub-goals. When goals or sub-
goals intersect between multiple agents, agents should identify them as 
shared goals, so that their individual specialized capabilities can be used in 
collaboration. 

Linguistic Structure. Agents must construct the intentional model by 
extracting relevant information from linguistic or observational dialogue. They 
must decompose dialog into distinct relevant segments of information. 

Attentional Structure. Agents must interpret the relevance of dialog 
according to the flow of discourse: the same exchange in two different 
contexts may convey entirely different meanings with respect to the semantics 
of intention. They must maintain an immediate context in order to correctly 
interpret interactions. 
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(Grosz and Kraus) 

Goal 

Recipe 

action action action 

Successful collaboration requires: 

• viable recipes 

• constituent actions 

• action plan 

• execution 

Intentional Structure: SharedPlans 

common goal ? 

shared recipe ? 

agent assignment ? 

agent commitment ? 

SharedPlans recursive to 
level of primitive actions … 

Grosz and Kraus describe intentional structure by means of the SharedPlan

formalism, which models the recursive decomposition of goals int o sub-goals. 


The figure illustrates two higher-level goals, one of the user (blue) and one of 

the automated agent (red), which share a constituent sub-goal (purple). This 

shared goal is further decomposed according to the following steps:


Identify common goal. Agents can then identify the possible recipes (viable 

sequences of constituent sub-goals) from a recipe library to achieve the 

shared goal.


Select shared recipe. Agents agree upon a sequence of lower-level actions 

to be carried out between them to achieve the goal.


Assign agents to actions. Agents allocate individual efforts in carrying out 

different constituent actions according to their specialized capabilities.


Commit to collaboration. Agents agree to the shared agenda and commit to 

completing the sub-goals at subsequent levels through collaborative 

interaction.


SharedPlans exhibit a recursive structure: each sub-goal generated becomes 

a new goal presenting the opportunity for further collaboration. Goals are 

decomposed until they reach the level of so-called primitive actions, for which 

no recipes exist in the library.
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(Grosz and Kraus) 

Goal 

Recipe 

action action action 

Intentional Structure: SharedPlans 

“schedule a trip” 

“work backwards from destination” 

“specify arrival constraints” 

“track viable itineraries” 

“Okay” 

“Okay” 

This illustrates the process of collaboration using the SharedPlan framework in 
the context of the travel scheduling example. 

Here, the user and automated agent identify scheduling a trip as a shared 
goal. 

They agree to construct the schedule by working backwards from the 
destination, one of the recipes known to the agent. 

They partition the tasks so that the user (with knowledge of his schedule) 
specifies constraints on arrival and the agent (with knowledge of available 
flights) tracks the corresponding viable itineraries. 

Finally, they agree to carry out the plan and continue the collaboration. 
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Linguistic Structure: Segmentation 

Goal 

Recipe 

action action action 

Interactions identified by purpose: 

• directly achieve current goal 

• identify recipe to be used for goal 

• achieve step in recipe for goal 

• specify parameter of step/goal 

• identify agent to perform step/goal 

Hierarchy used to track content 

(Grosz; Lochbaum) 

and context of discourse … 

Grosz and Lochbaum describe the essential principle of dialog decomposition: 
communications and observed actions are grouped into segments 
corresponding to a specific purpose. Segments are grouped into a recursive 
hierarchy paralleling the intentional structure of the SharedPlan. 

Relevant bits of information from these segments may be incorporated into the 
intentional structure in any order. Segments may be relevant in five basic 
ways, wherein they: 

•declare the completion of the current goal; 

•identify the recipe to be used for the current goal; 

•declare the completion of a step in the recipe for the current goal; 

•specify a parameter of a step in the recipe or the current goal; or 

•identify the agent responsible for performing a step in the recipe or the current 
goal. 

Segments not relevant to the current goal are known as interrupts, and 
generate new top-level goals in the intentional structure and the corresponding 
segment hierarchy. 
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Linguistic Structure: Segmentation 

Goal 

Recipe 

action action action 

Interactions identified by purpose: 

• directly achieve current goal 

• identify recipe to be used for goal 

• achieve step in recipe for goal 

• specify parameter of step/goal 

• identify agent to perform step/goal 

Hierarchy used to track content 

(Grosz; Lochbaum) 

and context of discourse … 
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Linguistic Structure: Segmentation 

Goal 

Recipe 

action action action 

Interactions identified by purpose: 

• directly achieve current goal 

• identify recipe to be used for goal 

• achieve step in recipe for goal 

• specify parameter of step/goal 

• identify agent to perform step/goal 

Hierarchy used to track content 

(Grosz; Lochbaum) 

and context of discourse … 
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Linguistic Structure: Segmentation 

Goal 

Recipe 

action action action 

Interactions identified by purpose: 

• directly achieve current goal 

• identify recipe to be used for goal 

• achieve step in recipe for goal 

• specify parameter of step/goal 

• identify agent to perform step/goal 

Hierarchy used to track content 

(Grosz; Lochbaum) 

and context of discourse … 
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Linguistic Structure: Segmentation 

Goal 

Recipe 

action action action 

Interactions identified by purpose: 

• directly achieve current goal 

• identify recipe to be used for goal 

• achieve step in recipe for goal 

• specify parameter of step/goal 

• identify agent to perform step/goal 

Hierarchy used to track content 

(Grosz; Lochbaum) 

and context of discourse … 
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Linguistic Structure: Segmentation 

Goal 

Recipe 

action action action 

Interactions identified by purpose: 

• directly achieve current goal 

• identify recipe to be used for goal 

• achieve step in recipe for goal 

• specify parameter of step/goal 

• identify agent to perform step/goal 

Hierarchy used to track content 

(Grosz; Lochbaum) 

and context of discourse … 
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The figure shows the purpose-driven segmentation of some dialog between a 
user and the collaborative travel scheduling agent presented earlier. The first 
line of each segment (box) states the purpose with which the segment is 
identified. 

The segments are interpreted with relevance to goals at different levels in the 
hierarchy: the top level segment references the overall goal of scheduling a 
trip; one of the next-level segments references the sub-goal of specifying an 
airline; and the lowest-level segment shown references the sub-sub-goal of 
selecting United Airlines. 
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Tracks current context of discourse: 

• maintains active path in segment hierarchy 

• goal decomposition increases depth ; 
goal completion decreases depth 

• goal abandonment (interrupt) 

Restricted context mitigates 

of general plan recognition 

Attentional Structure: Focus Stack 
(Lochbaum) 

generates new top-level focus 

worst-case exponential complexity 

As seen in the previous example, interpreting discourse requires using the 
immediate context of the dialog to differentiate meaning. Even if meanings 
could be determined without context, this would require astronomical 
computation, since segments would require interpretation with respect to every 
possible element of the joint intention structure. The immediate context of the 
conversation makes interpretation feasible in both respects. 

Attentional structure is maintained by the focus stack, a stored path in the 
segment hierarchy identifying the current context of the discourse. When goals 
are decomposed into sub-goals, the depth of this path increases: the newly 
generated sub-goals become the current focus (top). When sub-goals are 
completed, the focus jumps upward to the parent goals in progress, 
decreasing the depth of the stack (middle). When the current goal is 
abandoned via an interrupt, the focus jumps to the newly generated top-level 
goal, which may eventually become linked with the rest of the intentional 
structure (bottom). 
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The figure illustrates the focus stack at a particular point in the travel 
scheduling dialog seen above. Here the relevant path in the hierarchy of goals 
and segments is highlighted: the focus stack informs the agent that current 
dialog references airline selection, which allows the agent to propose the 
choice of United Airlines based on its information about itineraries. 
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Discourse State Representation 

focus segments for subsequent 
reference during discourse 

A B C 
A B C 

Plan Tree 

Focus Stack 

History List 

History list maintains top-level 

We saw earlier that interrupts (segments irrelevant to the immediate context) 
can generate new top-level goals in the intentional structure, whose 
relationship with the rest of the structure may not be readily apparent. Because 
they start out as disconnected elements, the system requires one additional 
component: a history list to keep track of top-level nodes in the structure. This 
prevents loss of information gathered from prior collaboration by maintaining 
references to the entire collaboration history. 

The plan tree (SharedPlan), focus stack, and history list comprise the 
discourse state representation maintained by the collaboration manager. 
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Collaboration Architecture 

A B C A B C 

Discourse State 

Discourse Interpretation 

Discourse Generation 

Agenda 

Recipe Library 

Communications, 
Observations 

Actions, 
Queries 

Collaboration Manager 

Collaborative agents like our later example, COLLAGEN, use a multi-agent 
collaboration architecture like the one illustrated above. Shown here for a 
human user and automated agent, the architecture generalizes nat urally to 
many agents. 

The discourse interpretation process accepts communications and 
observations from the agents along with recipes from a library (known to one 
or more agents) to construct the discourse state representation. The discourse 
generation (inverse) process generates an agenda of communications and 
actions (often in the form of decision points) for the agents with which to 
continue their collaboration. The agents themselves perform individual actions 
and query individual sources of information in accordance with their 
SharedPlans. Finally, while the automated agent can retrieve a complete view 
of the discourse state (by accessing the data structure), human users can 
obtain a partial view by examining the real-time segment hierarchy generated 
by the dialog stream, presented in a natural interface. 
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Collaborative Discourse: Recap 

• 
to interpret and generate discourse, interleaving
planning and execution 

• 
by limited immediate focus 

• Localization ensures small number of 
communication choices, immediately relevant
and manageable for the user 

• 
representation of parallel tasks to avoid
excessive interrupt behavior 

Collaboration manager uses goal-based model 

Worst-case exponential plan recognition avoided 

Future work may pursue higher-level 

27




28 

Outline 

• Travel Scheduling Example 
• Collaborative Discourse 
• Plan Recognition 
• TRIPS 
• COLLAGEN 
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Setting for Collaboration 

Two participants can both communicate with each other and observe each 
other’s actions on some shared artifact. Sometimes the communication can be 
reduced by more observations. 
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Without plan recognition With plan recognition 
1 USER: "Let's work on email." USER: "Let's work on email." 
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages." 
3 USER: "Let's read a message." 
4 USER: <Select message from Chuck> USER: <Select message from Chuck> 
5 USER: "Let's read message in its own window." 
6 USER: <Open message> USER: <Open message> 
7 USER: "Let's do something using message." 
8 USER: USER: 
9 ...long lunch... ...long lunch... 
10 USER: "What was I doing?" USER: "What was I doing?" 

AGENT: "Working on email. 
12 Reading message from Chuck. Reading message from Chuck. 
13 Reading message in its own window. Reading message in its own window. 
14 Done something using message. Done something using message. 
15 
16 Expecting to react to message (opt)." Expecting to react to message (opt)." 
17 USER: "Let's react to message." 
18 USER: "Let's send email." 
19 USER: <Start new message> USER: <Start new message> 
20 USER: "Let's fill in message." 
21 USER: <Address message to Dan> USER: <Address message to Dan> 
22 AGENT: "Why are you sending email to Dan? 
23 (a) reacting to message from Chuck 
24 (b) as a new goal " 
25 USER: "I am reacting to message from Chuck." 
26 ...additional editing actions... ...additional editing actions... 
27 USER: "Done filling in message." USER: "Done filling in message." 

AGENT: "Let's send, cancel or save message." 
29 USER: "Please save message." USER: "Please save message." 

AGENT: <Save message> 

COLLAGEN E-mail Example 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

11 AGENT: "Working on email. 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

28 AGENT: "Let's send, cancel or save message." 

30 AGENT: <Save message> 

Here is an example where a collaborative agent assists a user in checking e-
mail. On the left is a transcript of the interaction between the user and an 
agent that does not use plan recognition, and on the right is a transcript of the 
interaction between the user and an agent that does use plan recognition. As 
can be seen from the boxed portion of the interaction, plan recognition helps 
the agent to identify the user’s intents without requiring the user to specify 
through verbal communication each primitive action that the user takes. 
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Without plan recognition With plan recognition 
1 USER: "Let's work on email." USER: "Let's work on email." 
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages." 
3 USER: "Let's read a message." 
4 USER: <Select message from Chuck> USER: <Select message from Chuck> 
5 USER: "Let's read message in its own window." 
6 USER: <Open message> USER: <Open message> 
7 USER: "Let's do something using message." 
8 USER: USER: 
9 ...long lunch... ...long lunch... 
10 USER: "What was I doing?" USER: "What was I doing?" 

AGENT: "Working on email. 
12 Reading message from Chuck. Reading message from Chuck. 
13 Reading message in its own window. Reading message in its own window. 
14 Done something using message. Done something using message. 
15 
16 Expecting to react to message (opt)." Expecting to react to message (opt)." 
17 USER: "Let's react to message." 
18 USER: "Let's send email." 
19 USER: <Start new message> USER: <Start new message> 
20 USER: "Let's fill in message." 
21 USER: <Address message to Dan> USER: <Address message to Dan> 
22 AGENT: "Why are you sending email to Dan? 
23 (a) reacting to message from Chuck 
24 (b) as a new goal " 
25 USER: "I am reacting to message from Chuck." 
26 ...additional editing actions... ...additional editing actions... 
27 USER: "Done filling in message." USER: "Done filling in message." 

AGENT: "Let's send, cancel or save message." 
29 USER: "Please save message." USER: "Please save message." 

AGENT: <Save message> 

COLLAGEN E-mail Example 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

11 AGENT: "Working on email. 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

28 AGENT: "Let's send, cancel or save message." 

30 AGENT: <Save message> 

This boxed portion shows a couple of things: 

1.	 The agent’s knowledge of the user’s actions is identical in both cases, i.e. 
in the case without plan recognition where the user had to verbally specify 
all primitive actions, and in the case with plan recognition where the agent 
learns of the user’s intent by observations of the user’s actions. 

2.	 In both cases the agent is able to regurgitate the history of the user’s 
actions. This is very useful for the user after taking a break (eg. “long 
lunch”) from the continuum of working. 
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Without plan recognition With plan recognition 
1 USER: "Let's work on email." USER: "Let's work on email." 
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages." 
3 USER: "Let's read a message." 
4 USER: <Select message from Chuck> USER: <Select message from Chuck> 
5 USER: "Let's read message in its own window." 
6 USER: <Open message> USER: <Open message> 
7 USER: "Let's do something using message." 
8 USER: USER: 
9 ...long lunch... ...long lunch... 
10 USER: "What was I doing?" USER: "What was I doing?" 

AGENT: "Working on email. 
12 Reading message from Chuck. Reading message from Chuck. 
13 Reading message in its own window. Reading message in its own window. 
14 Done something using message. Done something using message. 
15 
16 Expecting to react to message (opt)." Expecting to react to message (opt)." 
17 USER: "Let's react to message." 
18 USER: "Let's send email." 
19 USER: <Start new message> USER: <Start new message> 
20 USER: "Let's fill in message." 
21 USER: <Address message to Dan> USER: <Address message to Dan> 
22 AGENT: "Why are you sending email to Dan? 
23 (a) reacting to message from Chuck 
24 (b) as a new goal " 
25 USER: "I am reacting to message from Chuck." 
26 ...additional editing actions... ...additional editing actions... 
27 USER: "Done filling in message." USER: "Done filling in message." 

AGENT: "Let's send, cancel or save message." 
29 USER: "Please save message." USER: "Please save message." 

AGENT: <Save message> 

COLLAGEN E-mail Example 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

11 AGENT: "Working on email. 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

28 AGENT: "Let's send, cancel or save message." 

30 AGENT: <Save message> 

Agents that act with plan recognition learns the user’s intent by observing the 
user’s actions, but sometimes the user’s actions may be ambiguous to the 
agent. For example, in this case, the user starts a new message, but the 
user may do this for a variety of reasons: 

1. To start a new thread of messages, 

2. To reply someone else’s thread. 
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Without plan recognition With plan recognition 
1 USER: "Let's work on email." USER: "Let's work on email." 
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages." 
3 USER: "Let's read a message." 
4 USER: <Select message from Chuck> USER: <Select message from Chuck> 
5 USER: "Let's read message in its own window." 
6 USER: <Open message> USER: <Open message> 
7 USER: "Let's do something using message." 
8 USER: USER: 
9 ...long lunch... ...long lunch... 
10 USER: "What was I doing?" USER: "What was I doing?" 

AGENT: "Working on email. 
12 Reading message from Chuck. Reading message from Chuck. 
13 Reading message in its own window. Reading message in its own window. 
14 Done something using message. Done something using message. 
15 
16 Expecting to react to message (opt)." Expecting to react to message (opt)." 
17 USER: "Let's react to message." 
18 USER: "Let's send email." 
19 USER: <Start new message> USER: <Start new message> 
20 USER: "Let's fill in message." 
21 USER: <Address message to Dan> USER: <Address message to Dan> 
22 AGENT: "Why are you sending email to Dan? 
23 (a) reacting to message from Chuck 
24 (b) as a new goal " 
25 USER: "I am reacting to message from Chuck." 
26 ...additional editing actions... ...additional editing actions... 
27 USER: "Done filling in message." USER: "Done filling in message." 

AGENT: "Let's send, cancel or save message." 
29 USER: "Please save message." USER: "Please save message." 

AGENT: <Save message> 

COLLAGEN E-mail Example 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

11 AGENT: "Working on email. 

<Visit http://foo.bar.com> <Visit http://foo.bar.com> 

28 AGENT: "Let's send, cancel or save message." 

30 AGENT: <Save message> 

Thus in these ambiguous circumstances, the agent must ask the user for 
clarification. 

Notice that this interaction is unnecessary in the case without plan recognition 
because the user already specified his/her intent. However, plan recognition is 
more advantageous because generally, ambiguous actions are not frequent, 
and the amount of verbal communications that can be omitted by using plan 
recognition is greater than the amount of clarification questions necessary. 
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Task Structure Model 

Primitive actions 

High-level goals 

Lower-level goals 

“working on e-mail” 

“filling in a message” 

The task structure is a hierarchy of goals and actions, where high-level goals 
such as working on e-mail breaks down to lower-level goals such as preparing 
a message. At the bottom of the hierarchy are primitive actions such as 
clicking a mouse or typing in text. 
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1 USER: "Propose scheduling a trip." 
2 AGENT: "Ok." 

to San Francisco to Boston, allowing 100+ itineraries) 
3 USER: <Add Boston to the route.> 
4 USER: <Add Dallas to the route, allowing 97 itineraries.> 
5 USER: <Add Denver to the route, allowing 100+ itineraries.> 
6 USER: <Add San Francisco to the route, allowing 100+ itineraries.> 
7 USER: <Add Boston to the route, allowing 100+ itineraries.> 
8 USER: "Ok." 

9 AGENT: "How should a trip on the route be scheduled?" 
10 USER: "Propose scheduling a trip on the route via working backward." 

11 AGENT: "Propose you work on San Francisco to Boston leg." 
12 USER: <Add Boston final interval with arrival Sun 11:30p.> 
13 USER: <Change Boston final interval to arrival Fri noon.> 
14 USER: 

allowing 70 itineraries.> 
15 USER: 
16 USER: "Ok.“ 

… 

Air Travel Example 

(Done user identifying route of scheduling a trip as Boston to Dallas to Denver 

(Done user proposing a trip on the route be scheduled via working backward) 

(Done user working on San Francisco to Boston leg, allowing 70 itineraries) 

<Add San Francisco stopover with arrival Wed 1:55a departure Wed 9:55a, 

<Change San Francisco stopover to arrival Thu 6:00p departure Fri 1:57a.> 

High-level goal 

Low-level goal 

Here we see the air travel scheduling example in the context of task structure. 

The top-level goal is to schedule a trip from Boston to Dallas to Denver to San 
Francisco and back to Boston. The first box contains the actions that the user 
takes to identify the high-level goals. The second box contains the actions for 
accomplishing a lower-level goal such as planning the travel leg from San 
Francisco to Boston. 
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… 

17 AGENT: "Propose you work on Denver to San Francisco leg." 
18 USER: 

... 
(Done jointly specifying airlines, allowing 4 itineraries) 

36 USER: <Add American specification, allowing no itineraries.> 
(Done agent adding United specification, allowing 4 itineraries) 

37 AGENT: "Propose I add United specification." 
38 USER: "Ok." 
39 AGENT: <Add United specification, allowing 4 itineraries.> 

(User displaying and selecting itineraries) 
40 USER: <Display 4 itineraries.> 
41 USER: <Select itinerary Wed AA/1099 Wed AA/313 Thu UA/343 Fri AA/928.> 

Air Travel Example 

(Done user working on Denver to San Francisco leg, allowing 61 itineraries) 

<Add Denver stopover with arrival Thu 8:21a departure Thu 3:19p.> 

Notice that the lower-level goals can be performed by either the user or in the 
case shown in the box, they can be performed by the agent as well. 
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With Plan Recognition 

• User need not announce each goal 

• Intentions conveyed through actions 

• Verbal clarification resolves ambiguities 

To summarize what we have seen thus far in the e-mail example and the air 
travel scheduling example: 

Plan recognition allows the user more flexibility in performing the actions that 
lead to goals by not requiring the user to verbally communicate to the agent 
every goal that the user is pursuing. The agent will derive the user’s goals by 
observing the user’s actions. If there are instances where the user’s actions 
are unclear or may imply multiple possible user goals, then the agent can ask 
the user for verbal clarification. 
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Collaboration Architecture 

A B C A B C 
Discourse State 

Discourse Interpretation 

Discourse Generation 

Agenda 

Recipe Library 

Communications, 
Observations 

Actions, 
Queries 

Collaboration Manager 

Plan Recognition 

Within the overall collaboration architecture, plan recognition is applied in 
Discourse Interpretation. 
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Plan Recognition Overview 

SharedPlan 

Plan P1… 
Action A 

During plan recognition, the user performs some action A. Based on previous 
observations, the agent maintains a SharedPlan in its knowledge space. 
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Plan Recognition Overview 

SharedPlan 

Plan P1… 
Plan P2… 
… 

Observation 

Action A 

Suppose the agent observes the user perform the action A. 

Plan recognition identifies the set of possible extensions to the agent’s current 
SharedPlan which are consistent with its recipe knowledge and contains the 
user performing A. 
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Plan Recognition Overview 

SharedPlan 

Plan P2… 
Action A 

Ask for Clarification 

Multiple extensions require clarification to reduce the SharedPlan to a more 
manageable domain size. 
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Properties of Collaborative Setting 

• Focus of attention 

• Incremental extension on a plan 

• Clarification reduces recognizer 
interpretations 

In a collaborative setting, the agent and user share a focus of attention on 
some specific action. The plans that are generated are dynamic in that they 
are incrementally extended when necessary. This differs from most existing 
forms of human-computer interaction, where the computer executes a 
predefined plan of actions, and if some step of the plan fails, then the planning 
must start over. Within dynamic plan generation, the agent must keep track of 
the possible goals that the user is trying to pursue at each step. To keep the 
list of possible goals small and tractable, the agent may ask for clarifications. 
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Plan Recognition Example 

In this example, the user sees new input actions K and L from the user.  The 
current plan has A -> B and C. The focus of attention is on action B. The 
recipe library holds 8 recipes that may be helpful in expanding the plan. 

The plan recognizer performs an exhaustive search of all possible ways of 
extending the input plan to explain the input actions. 

The plan recognizer takes the current plan, and expands it on the focus action 
B using all the necessary recipes. It will stop expanding once it reaches an 
explanation for a target (input) action. The two plans on the right goes from the 
current plan to the target actions via B using the least amount of actions. 
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To set up the algorithm, we need to define a plan as a tuple of a set of actions, 
edges and constraints. We also define the set of all actions which are divided 
into primitive and top level actions. We then define a set of recipes that map 
non-primitive actions to plans. 

Curly letters represents set values; normal variables are single elements. 
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Plan Recognition Algorithm 

A B C D 

Top level actions 

… 

Q: {[A1,… An], 

{[A1,… An], ({B}, 0, 0), B}, 

{[A1,… An], ({C}, 0, 0), C}, 

{[A1,… An], ({D}, 0, 0), D}, 

… 

[A1,… An], P (0,0,0) 

({A}, 0, 0), A}, 

The plan recognition function is called with a list of input actions [A1, … An], 
some existing plan P, a focus action f, and a recipe library R. 

When plan recognition first starts off, there are no plans, so it will add all of the 
top level actions to the queue (Q). 
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Plan Recognition Algorithm 

AA BB 

… 
[A1,… An], P (A,E,C), f = B 

A B C D … 

Q: {[A1,… An], ({AA, B}, E, C), AA}, 

{[A1,… An], ({BB, B}, E, C), BB}, 

{[A1,… An], 

{[A1,… An], ({B}, 0, 0), B}, 

… 

({A}, 0, 0), A}, 

When performing plan recognition with some plans already in place, we will 
choose the focus action (in this case action B shown in yellow), and expand on 
the focus action, adding the leaves (AA and BB) to the queue as shown. 
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Plan Recognition Algorithm 

A,E,C), f = B 

Q: {[A1,… An], ({AA, B}, E, C), AA}, 

{[A1,… An], ({BB, B}, E, C), BB}, 

{[A1,… An], 

{[A1,… An], ({B}, 0, 0), B}, 

… 
P’ 

{[A1,… An], ({A1, B}, E, C), A1} 

P” 

[A1,… An], P (

({A}, 0, 0), A}, 

Items are taken off the queue, and the first item’s plan is assigned to P’. We 
then replace the action in P’ with the first action in the input action sequence. 
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Plan Recognition Algorithm 

Consistent �
 

P”: {[A1,… An], ({A1, B}, E, C), A1} 

[A1] [A1,… An] 

EXPL: ({A1, B}, E, C) 

Q: {[A2,… An], ({A1, B}, E, C), A1}, 

{[A1,… An], ({AA, B}, E, C), AA}, 

… 

If the plan P” which contains A1 (from the input action sequence) is consistent, 
i.e. the actions follow the constraints, then we look at the length of the input 
action sequence. If there was only one action in the input seque nce, then we 
know that it is consistent, so we can add it to the list of extended plans, or 
EXPL. If there are more actions in the input sequence, then we add to the 
queue with the first action removed from the list of input actions. 
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Plan Recognition Algorithm 

AA not primitive action 

S1, S2 

Q: {[A1,… An], ({S1, AA, B}, E, C), S1}, 

{[A1,… An], ({S2, AA, B}, E, C), S2}, 

… 

AA ? 

If the current action of interest is not a primitive action, the n it can be 
expanded using the recipe library. Here, we see that the recipe library says AA 
-> S1 and S2, so we add to the queue those extensions. 
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Focus and Clarification Algorithm 

Ainput 

(0,0,0) 

[ A ] 

null 

Done �P: 

… 

plan ? 

focus ?  null 

acts ?  

pick ?  

For the focus, ambiguity and clarification algorithm, we use variables plan to 
represent the current plan, focus to represent the focus action which may be 
updated by a function called UpdateFocus, acts to represent the input actions, 
and pick to take on extended plans. Initially, we wait for the next input action 
and add it to acts. Everything else is set to null. 
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Focus and Clarification Algorithm 
(0,0,0) 

[ A ] 

null 

Plan Recognition 

EXPL

plan ? 

focus ?  null 

acts ?  

pick ?  

: … 

We first perform plan recognition on this initial action and get some EXPL in 
return, which may or may not be empty. 
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Focus and Clarification Algorithm 

EXPL: 0 

… 

focus 

Plan Recognition 

P: 

If EXPL is empty, or in other words there was no extended plan returned, then 
we set the focus to the root of the plan and perform plan recognition again. 
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Focus and Clarification Algorithm 

EXPL: {(…)} 

one plan 

(…) pick 

If the EXPL returned one plan, then set that plan to pick, removing it from 
EXPL. 
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Focus and Clarification Algorithm 

EXPL: 0 acts: [ A, B, C,…] 

Ask for Clarification 

pick 

MaxWait = 2 

If EXPL returned nothing, or if the number of input actions exceeds the set 
value MaxWait (which is the maximum number of actions to observe before 
inquiring for clarification), then the algorithm calls a Clarify function, which will 
narrow down the possible plans to some single plan, which is set to pick. 
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Focus and Clarification Algorithm 

(…)pick 

plan 

UpdateFocus 

A 

focus 

[ A ] 

[ ] 

acts ?  

acts ?  

If pick is actually set, then that becomes our current plan, which we can use to 
update the focus. The list of input actions is set back to empty and we are 
ready to repeat this whole process again… “wait for next input action”, etc. 
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Complexity 

• Size of search space to explain one action: 
F(R×S)L 

– S: max number of steps in a recipe 
– R: max number of recipes applicable to an action 
– F: number of actions on the fringe of P 
– L: length of longest sequence of recipes the algorithm 

must consider 
• 

O((F’(R×S)L)N) 
– N: number of input actions 

• RS)d) 
– d: depth of deepest possible plan 

Recursion for each action: worst-case complexity 

General case: O((

Complexity to explain one action is given by F(R×S)L. But since there are N 
input actions, the complexity needs to be raised to the power of N, namely 
F’(R×S)L)N . 

In the general case, the complexity is on the order of (RS)d where d is the 
depth of the deepest possible plan. 

If number of input actions is small (N is small), collaborative plan recognition 
problem is significantly more tractable than general plan recognition problem. 
Small number of input actions is guaranteed through clarification. 
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Focus, Ambiguity and Clarification 

What to do when recognizer returns multiple 
explanations? 

Wait Ask for 
clarification 

Agent 

Longer wait requires 
more CPU 

More clarification requires 
more user response 

When plan recognition returns more than one explanation for an action, the 
agent can either wait for more observations on user actions, or it can ask for 
clarification right away. 

When the agent waits for more observations, it saves the user the 
inconvenience of constantly communicating with the agent. However, the more 
actions that the agent waits, the larger the domain space, and as we saw in 
the previous slide, there is more complexity in solving the problem. 

Asking for clarification keeps the complexity down, but it requires more user 
response. So the key is to keep a good balance between these two. 
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0 

0.5 

1 

1.5 

2 

2.5 

3 

1 2 3 

Number of Actions to Wait 

Questions asked per plan 

Steps per plan with ambiguity 

CPU secs used by recognizer 

Average Results for 100 E-mail Scenarios 

Here is shown some results from the e-mail problem. These are all average 
values obtained from averaging 100 cases. 

On the x-axis is the number of actions that the agent waited to observe before 
asking for clarification. As we can see, the red bars indicating the number of 
questions asked per plan decreased as the agent waited for more 
observations. The number of steps per plan with ambiguity increased with 
more waiting, and the CPU time that was needed increased with more waiting. 
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Comparisons With and 

Without Plan Recognition 
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We can see in this graph that with plan recognition, the agent had to ask on 
average 1.2 clarification questions, but without plan recognition, the user had 
on average needed to make 4.4 communications to the agent. Both of these 
accomplished the same tasks, but it is obvious that plan recognition reduces 
the overall agent-user communications required to complete a task. 
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Outline 

• Travel Scheduling Example 
• Collaborative Discourse 
• Plan Recognition 
• TRIPS 
• COLLAGEN 
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TRIPS Architecture 

We showed a demo of the collaborative agent TRIPS in the beginni ng of this 
lecture. Here is a high-level architectural diagram of TRIPS.  Notice the 
complexity of this agent: the technology behind speech input and output 
modules on the top to the actual planner and scheduler and event monitors on 
the bottom are not covered in this lecture. 

The discourse context module contains the algorithm concerning the 
collaborative discourse theory, and the task manager has plan recognition 
abilities. Both of them work with the higher level module Interpretation 
Manager towards the understanding of the user inputs. Discourse context is 
also used to generate agent responses through the Generation Manager. 
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TRIPS Demo 2 

This is another demo of the same TRIPS agent applied to another scenario concerning Pacifica 
refugee evacuation. Again, the goal of the exercise presented is self-explanatory.  Below is a list of 
running commentaries concerning specific elements of the demo. Plan recognition and collaborative
discourse are used throughout this exercise. We will only be pointing out some of the obvious 
occurrences. The number in the beginning of each bullet is the estimated time in the demo the 
commentary should take place followed by a brief description of what happened and how this relates 
to the theory we mentioned. 

•1:12 – TRIPS displays a map of Pacifica at the user’s request.  This is the level tasks that regular 
systems without collaborative discourse and plan recognition should be able to perform. However, 
this action also serves the purpose of narrowing the recipe library to recipes related to Pacifica. 
•1:29 – When the user asked for the location of the trucks, TRIPS gave a verbal response along with 
a visual indication of the truck’s location on the map. This shows that our collaboration theories are 
not limited to verbal communication alone. This also demonstrates the usefulness of a setting 
where the user can not only hear but also observe actions of the agent and vise versa.  A large 
amount of time can be saved because the agent and user does not need to fully explain all their 
actions. 
•1:41 – The user asks the agent to use “the truck,” the agent replies that it does not understand the 
request. (The user actually says “a truck” but “the truck” appears on the screen.  This is either a 
mistake the user made in typing, or a mistake in the speech recognition system.  In either case, the 
plan recognition part of the agent received “the truck” as an input) This is an example of clarification 
when the agent receives an ambiguous request. Since there are multiple trucks none of which 
officially labeled “the truck,” the agent got confused. Instead of taking a guess which would have 
increased the ambiguity, the agent asked for a clarification to refine the search space. 
•1:56 – Once both parties agreed to use a truck to get the people from Calypso to Delta, the agent 
highlighted that route on the map and displayed a schedule bar, this time without explicit request 
from the user. This further demonstrates the effectiveness of visual communication as well as the 
agent’s ability to give its own input to this problem solving process, this time in a non verbal format. 
•2:12 – This time the user asked a hypothetical questions “what if we went along the coast instead.”  
In this case, the agent starts a separate sub-segment in parallel with the current path given and 
designates this as the current active segment. (Notice that a new route appears on the map, and a 
new schedule window also opens on top of the old one.) When the user says “forget it,” the agent 
have to close this segment and return to the last active segment.  (The new route is removed and
the new schedule window closes, thus placing the former schedule window back on the screen.)  
This demonstrate the agent’s ability to track multiple scenarios at once. 
•2:57 – In this case the user first asked to use another truck to get people from Exodus to Delta, and 
then he changed his mind and asked the user to use “a helicopter instead.”  There are 2 significant
points associated with this action. First, it demonstrates the agent’s ability to retrace steps back to 
an earlier point in the planning process. Also, when the user used the word “instead,” the agent 
must realize that the user is referring to the same route and only changing the means of 
transportation. This is easily accomplished with the segmentation layers of collaborative discourse. 
•3:25 – Again when the user says “go on to Abyss,” he did not have to specify truck one to Abyss.  
The agent realizes this because that is the segment currently in focus. 
•3:47 –The rest of the demo works under the condition that the Delta bridge is out.  The agent
identifies the parts of the plan that are no longer executable, and a re-planning process begins.  
Since the rest of the demo covers much of the same concepts already discussed, we will stop the 
demo here in the interest of time. 

One last thing to note about this demo is that the user never stated the top level goal of refugee 
evacuation. However, the agent can still make inferences and perform tasks based on the sub-
goals such as moving people from one location to another. 

This demo can be found at the following url: 
http://www.cs.rochester.edu/research/cisd/projects/trips/movies/TRIPS-98_v4.0/. 
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Outline 

• Travel Scheduling Example 
• Collaborative Discourse 
• Plan Recognition 
• TRIPS 
• COLLAGEN 

COLLAGEN is another collaborative agent currently under development.  This 
is the same agent used to evaluated the email scenario covered in the plan 
recognition section above. However, below is the same COLLAGEN agent 
applied to a completely different platform 
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Mel the Robotic Penguin 

This is Mel, the robotic penguin. For most of this lecture, we focused on 
examples where the collaborative agent is linked to a static computer and 
communication only takes the form of speech or on-screen displays. However, 
we mentioned in the beginning of this lecture, that collaborative agents are 
modular and application independent. And we believe that Mel is a good 
demonstration of this fact. We want to emphasize that the COLLAGEN 
system used in Mel is the same agent used in the email application we 
discussed earlier. From email client to robotic penguin, one can see truly how 
mobile a collaborative agent can be. 
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Communicating with Mel 

• Mel can seek out a person to interact with for the 
demonstration. 

• Mel also recognizes and responds to head 
gestures (such as nods) to indicate interest in 
Mel and environment. 

• People find the Mel's gestures more natural than 
an unmoving conversational partner, and that 
they direct their attention more to Mel than the 
unmoving conversational partner. 

Here are some facts about Mel that distinguishes him from the ot her platforms 
used. 
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COLLAGEN Demo 

Up to this point, although we’ve seen collaborative agents work under various 
scenarios, all of them can be categorized as some from of planni ng and 
scheduling. However, this demo shows Mel performing an educational tutorial, 
completely unrelated to planning. This further demonstrates the versatility and 
modularity of collaborative agents. 

Again, below is a list of running commentaries concerning specific elements of 
this demo. The number in the beginning of each bullet is the estimated time in 
the demo the commentary should take place followed by a brief description of 
what happened and how this relates to the theory we mentioned. 

•0:48 – Mel uses gestures instead of words to indicated the location of the 
iGlassware system. 
•1:16 – The user poured water into the cup and Mel immediately noted that the 
task has been accomplished without any verbal confirmation from the user.  
This is a demonstration of plan recognition similar to the email example given 
above. A large amount of time can be saved when the agent recognizes 
actions through observation. In this case, Mel observed that the glass is full 
and thus inferred that the user is ready to move on. 
•1:42 – Again, through observation, Mel noticed that the glass is now empty. 
•1:51 – Mel asks whether the user would like to continue, the user replays 
“OK,” Mel then uses a nod instead of a verbal response to indicate that he 
understood the user and will continue. 
• 2:12 – The user says “OK,” but Mel could not make out the words.  So he 
asks for clarification to avoid confusion. 
•2:44 – Finally, Mel uses both words and gestures to indicate the end of the 
conversation. 

The important thing to note is that Mel is the one taking the lead in this demo, 
and he requires very little input from the user. However, he is constantly using 
words, gestures, and questions to keep the user interested. He also re­
confirms the users interest by directly asking. 

A CD containing this demo will be provided. 
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Summary 

• Resourceful, interactive collaboration agents can 
be tremendously useful 

• Many techniques are required to construct these 
agents including collaborative discourse and 
plan recognition 

• TRIPS and COLLAGEN are two such agents 
that uses these techniques 

• These agents are largely platform independent 
and can be applied to various different 
applications. 
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Further Work 

• Improve the flexibility and robustness of the 
algorithms to deal with incompleteness of the 
agent's recipe library and handle parallel 
interleaved goals 

• Support negotiation between the user and agent 
• Build agents that operate remotely (e.g., on the 

Internet), which will require more discussion 
between the agent and user about past and 
future actions. 
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