
Collaborative Discourse
and Plan Recognition

Thomas Coffee
Shannon Dong

4/13/2005

Human-Computer Interaction

Shen Qu

Through this lecture, we aim to convey the usefulness of intelligent systems
capable of understanding and collaborating with humans towards the
accomplishment of a common goal. Specifically, we will focus on the theory of
collaborative discourse and plan recognition and their role in current
collaborative assistants.

1

2

Hello, Computer?

“Hello, computer?” These were the words uttered by Professor Scotts (a.k.a.
Scotty) to the mouse of a 20th century computer when the crew of the
Enterprise traveled back in time to year 1986. This scene is probably a
familiar sight to all Star Trek fans, but one may wonder “what does it have to
do with cognitive robotics?”

Well, anyone who’s seen any form of Star Trek probably encountered
scenario(s) where a crewmember works with the onboard computer system to
solve various types of complex problems. And although not immediately
obvious, this problem solving process not only involves command inputs from
the human party but also demands a computer software system capable of
keeping track of the problem’s state, any progress made, and what still needs
to be done while providing inputs and quires as needed. When Scotty said
“hello computer,” he was not simply seeking a “how do you do” reply but was
trying to start a collaborative session in which the computer would assist him in
the accomplishment of a goal (in this case, constructing the molecular
structure of transparent aluminum).

Through this lecture, we will demonstrate the importance/usefulness of such
computer/software agents, present a couple of such agents currently under
development, and dive into the theory behind a couple of key building blocks of
these agents.

2

3

TRIPS Demo

Before going into technical details, we would first like to show a demonstration
of a collaborative agent TRIPS applied to a military scenario. The demo is self
explanatory in terms of the problem statement and final goals. We are
showing this demo early on to give people a sense of what is ava ilable today.

Note that in this scenario the computer received a high level goal from the
user, provided relevant information without being specifically prompted to do
so, made recommendations towards the course of action, kept track of parallel
solution approaches to the goal, retraced steps when an approach did not
work out, asked for clarification when information provided is unclear or
incomplete, and provided both visual and vocal feedback to the user. These
are all important properties for this type of collaborative agents, and towards
the end of this lecture we will show a similar demo in which we link these key
features to the theory that we will soon present.

This demo can be found at the following url:
http://www.cs.rochester.edu/research/cisd/projects/trips/movies/TRIPS_CPoF/

3

4

How can we create computer or robotic
systems that not only follow user
commands but also collaborate with
humans toward the achievement of a
common goal?

This question outlines the main objective of this lecture. Key words to note are
“collaborate” and “common goal.”

4

5

Technical Approach

• Derive intentions from observed or
communicated information

• Decompose goals into organized structure
• Refine goal structures by seeking

additional information
• Identify shared elements of agents’ goals
• Execute communications and actions to

achieve multi-agent objectives

Human-computer/robot interaction is a wide field. Even a specific type of
interactive agent such as TRIPS is very complex. This slide only outlines the
technical approach to what we consider to be the most important components
to this type of agents.

5

6

Outline

• Travel Scheduling Example
• Collaborative Discourse
• Plan Recognition
• TRIPS
• COLLAGEN

For the reminder of this lecture, we will first introduce a travel planning
example in which collaborative agents can be applied. And we will continue to
refer back to this example through our technical discussion on Collaborative
Discourse and Plan Recognition. Finally we will end the lecture with a more
detailed analysis of how the 2 leading collaborative agents TRIPS and
COLLAGEN embody the theory presented along with a demo for each agent.

6

7

Air Travel Scheduling Scenario

San
Francisco

Boston

Dallas

Phoenix

Leave:
Tuesday night
or Wednesday
morning

Return: Friday
before 5pm

Thursday

Prefer to fly American Airlines
because of frequent flier miles

11am-3pm

Many people are familiar with the complexity and headaches associated with
travel scheduling and ticket purchasing. Above is a scenario where a Boston
based traveler wants to make a trip to Dallas, Phoenix, and San Francisco.
There are some hard constraints such as he must be in Phoenix on Thursday
between 11am and 3pm and return to Boston by Friday 5pm. There are also
lose constraints and preferences such as he would like to leave Wednesday
morning but can leave Tuesday night, and he would like to fly American
Airlines as much as possible (but this is not a requirement).

7

8

If he visits a website such as Yahoo! Travel to plan his trip, one can
immediately see the problem. The simple “to” and “from” fields along with date
constraints as no where near sophisticated enough to solve this multi-
destination trip with varying levels of constraints.

8

9

Problems with Travel Planning

• Order of actions may not be flexible
• Difficult to recover from mistakes
• Easy to get stuck or get lost
• May over or under constrain
• Lack of support for the user’s problem

solving process as it unfolds over time

Here are some of the common problems with travel planning systems, or even
planners and schedulers in general.

1) Order of actions may not be flexible: The user may be required to enter the
destination before the date and time information.

2) Difficult to recover from mistakes: Due to the inflexibility of actions changing
the destination may erase other data already entered.

3) Easy to get stuck or get lost: After trying 20 or 30 combinations of departure
and destination location and time, various airlines, perhaps eve n multiple
websites, it would be very easy to loose track of the combinations that have
been tried and the possible itineraries listed.

4) May over or under constrain: One can easily over or under constrain the
problem and receive 100 possible itineraries or no itinerary at all.

5) And the main reason for all this confusion is that software like the one used
on Yahoo! Travel lack support for the user’s problem solving process as it
unfolds over time: it does not keep track of what has been and what still needs
to be accomplished.

9

10

Collaborative Interface Agent

• User and agent share
a common goal

• Both parties work in
close collaboration

• All relevant actions
are either observed or
reported.

To solve these problems and make the planning process simpler, consider a
collaborative agent in addition to the basic software application. Notice that
aside from direct communication between user and agent, both the user and
agent can observe the other’s interaction with the specific application. With
direct communication and observations both user and agent are fully aware of
the other’s actions and intentions; this is a property of such systems important
to the theory that we will present.

We also want to emphasize that the topic of this lecture does not involve the
design of the application on the bottom of the figure, but rather the
collaborative agent on the right, which is modular and independent of the
application.

10

11

Collaborative Travel Assistant

Here is an example of a travel assistant with a collaborative agent. The back
ground is the actual travel planning application where the user can directly
select options such as time, destination(s), and the airline. On the bottom left
corner is the user interface window that reflects all verbal inp uts of the users.
And on the upper right corner is the dialogue box of the agent containing
verbal communication from the agent. Both text displayed in the dialogue
boxes and any direct actions that the user makes upon the application are
considered by the agent through the entire planning process. Later, we will
cover an example of such a transaction and how collaborative discourse and
plan recognition analyze and extract relevant information from these
transactions real-time.

11

12

Outline

• Travel Scheduling Example
• Collaborative Discourse
• Plan Recognition
• TRIPS
• COLLAGEN

As illustrated in the travel scheduling example above, current interactive
automated agents lack a structured framework for interpreting and contributing
to user goals, leading them to rely on restrictive, formulaic command sets and
operation sequences.

A more sophisticated agent should engage in flexible discourse with the user,
extracting and supplying information relevant to shared objectives. The
challenge is to limit the overhead associated with interaction so that it does not
outweigh the advantages of collaboration between agents of differing
capabilities.

Here we outline a framework for collaborative discourse.

12

13

Elements of Collaborative Discourse

Intentional Structure
? model agent goals and intersections

to identify collaboration opportunities

Linguistic Structure
? resolve agent interactions

to build intentional model

? maintain immediate context
to interpret agent interactions

(Grosz and Sidner)

Attentional Structure

Grosz and Sidner propose three essential elements for collaborative
discourse:

Intentional Structure. Agents must build a model of the goals of each other
agent and how they may be decomposed into sub-goals. When goals or sub-
goals intersect between multiple agents, agents should identify them as
shared goals, so that their individual specialized capabilities can be used in
collaboration.

Linguistic Structure. Agents must construct the intentional model by
extracting relevant information from linguistic or observational dialogue. They
must decompose dialog into distinct relevant segments of information.

Attentional Structure. Agents must interpret the relevance of dialog
according to the flow of discourse: the same exchange in two different
contexts may convey entirely different meanings with respect to the semantics
of intention. They must maintain an immediate context in order to correctly
interpret interactions.

13

14

(Grosz and Kraus)

Goal

Recipe

action action action

Successful collaboration requires:

• viable recipes

• constituent actions

• action plan

• execution

Intentional Structure: SharedPlans

common goal ?

shared recipe ?

agent assignment ?

agent commitment ?

SharedPlans recursive to
level of primitive actions …

Grosz and Kraus describe intentional structure by means of the SharedPlan

formalism, which models the recursive decomposition of goals int o sub-goals.

The figure illustrates two higher-level goals, one of the user (blue) and one of

the automated agent (red), which share a constituent sub-goal (purple). This

shared goal is further decomposed according to the following steps:

Identify common goal. Agents can then identify the possible recipes (viable

sequences of constituent sub-goals) from a recipe library to achieve the

shared goal.

Select shared recipe. Agents agree upon a sequence of lower-level actions

to be carried out between them to achieve the goal.

Assign agents to actions. Agents allocate individual efforts in carrying out

different constituent actions according to their specialized capabilities.

Commit to collaboration. Agents agree to the shared agenda and commit to

completing the sub-goals at subsequent levels through collaborative

interaction.

SharedPlans exhibit a recursive structure: each sub-goal generated becomes

a new goal presenting the opportunity for further collaboration. Goals are

decomposed until they reach the level of so-called primitive actions, for which

no recipes exist in the library.

14

15

(Grosz and Kraus)

Goal

Recipe

action action action

Intentional Structure: SharedPlans

“schedule a trip”

“work backwards from destination”

“specify arrival constraints”

“track viable itineraries”

“Okay”

“Okay”

This illustrates the process of collaboration using the SharedPlan framework in
the context of the travel scheduling example.

Here, the user and automated agent identify scheduling a trip as a shared
goal.

They agree to construct the schedule by working backwards from the
destination, one of the recipes known to the agent.

They partition the tasks so that the user (with knowledge of his schedule)
specifies constraints on arrival and the agent (with knowledge of available
flights) tracks the corresponding viable itineraries.

Finally, they agree to carry out the plan and continue the collaboration.

15

16

Linguistic Structure: Segmentation

Goal

Recipe

action action action

Interactions identified by purpose:

• directly achieve current goal

• identify recipe to be used for goal

• achieve step in recipe for goal

• specify parameter of step/goal

• identify agent to perform step/goal

Hierarchy used to track content

(Grosz; Lochbaum)

and context of discourse …

Grosz and Lochbaum describe the essential principle of dialog decomposition:
communications and observed actions are grouped into segments
corresponding to a specific purpose. Segments are grouped into a recursive
hierarchy paralleling the intentional structure of the SharedPlan.

Relevant bits of information from these segments may be incorporated into the
intentional structure in any order. Segments may be relevant in five basic
ways, wherein they:

•declare the completion of the current goal;

•identify the recipe to be used for the current goal;

•declare the completion of a step in the recipe for the current goal;

•specify a parameter of a step in the recipe or the current goal; or

•identify the agent responsible for performing a step in the recipe or the current
goal.

Segments not relevant to the current goal are known as interrupts, and
generate new top-level goals in the intentional structure and the corresponding
segment hierarchy.

16

17

Linguistic Structure: Segmentation

Goal

Recipe

action action action

Interactions identified by purpose:

• directly achieve current goal

• identify recipe to be used for goal

• achieve step in recipe for goal

• specify parameter of step/goal

• identify agent to perform step/goal

Hierarchy used to track content

(Grosz; Lochbaum)

and context of discourse …

17

18

Linguistic Structure: Segmentation

Goal

Recipe

action action action

Interactions identified by purpose:

• directly achieve current goal

• identify recipe to be used for goal

• achieve step in recipe for goal

• specify parameter of step/goal

• identify agent to perform step/goal

Hierarchy used to track content

(Grosz; Lochbaum)

and context of discourse …

18

19

Linguistic Structure: Segmentation

Goal

Recipe

action action action

Interactions identified by purpose:

• directly achieve current goal

• identify recipe to be used for goal

• achieve step in recipe for goal

• specify parameter of step/goal

• identify agent to perform step/goal

Hierarchy used to track content

(Grosz; Lochbaum)

and context of discourse …

19

20

Linguistic Structure: Segmentation

Goal

Recipe

action action action

Interactions identified by purpose:

• directly achieve current goal

• identify recipe to be used for goal

• achieve step in recipe for goal

• specify parameter of step/goal

• identify agent to perform step/goal

Hierarchy used to track content

(Grosz; Lochbaum)

and context of discourse …

20

21

Linguistic Structure: Segmentation

Goal

Recipe

action action action

Interactions identified by purpose:

• directly achieve current goal

• identify recipe to be used for goal

• achieve step in recipe for goal

• specify parameter of step/goal

• identify agent to perform step/goal

Hierarchy used to track content

(Grosz; Lochbaum)

and context of discourse …

21

22

The figure shows the purpose-driven segmentation of some dialog between a
user and the collaborative travel scheduling agent presented earlier. The first
line of each segment (box) states the purpose with which the segment is
identified.

The segments are interpreted with relevance to goals at different levels in the
hierarchy: the top level segment references the overall goal of scheduling a
trip; one of the next-level segments references the sub-goal of specifying an
airline; and the lowest-level segment shown references the sub-sub-goal of
selecting United Airlines.

22

23

Tracks current context of discourse:

• maintains active path in segment hierarchy

• goal decomposition increases depth ;
goal completion decreases depth

• goal abandonment (interrupt)

Restricted context mitigates

of general plan recognition

Attentional Structure: Focus Stack
(Lochbaum)

generates new top-level focus

worst-case exponential complexity

As seen in the previous example, interpreting discourse requires using the
immediate context of the dialog to differentiate meaning. Even if meanings
could be determined without context, this would require astronomical
computation, since segments would require interpretation with respect to every
possible element of the joint intention structure. The immediate context of the
conversation makes interpretation feasible in both respects.

Attentional structure is maintained by the focus stack, a stored path in the
segment hierarchy identifying the current context of the discourse. When goals
are decomposed into sub-goals, the depth of this path increases: the newly
generated sub-goals become the current focus (top). When sub-goals are
completed, the focus jumps upward to the parent goals in progress,
decreasing the depth of the stack (middle). When the current goal is
abandoned via an interrupt, the focus jumps to the newly generated top-level
goal, which may eventually become linked with the rest of the intentional
structure (bottom).

23

24

The figure illustrates the focus stack at a particular point in the travel
scheduling dialog seen above. Here the relevant path in the hierarchy of goals
and segments is highlighted: the focus stack informs the agent that current
dialog references airline selection, which allows the agent to propose the
choice of United Airlines based on its information about itineraries.

24

25

Discourse State Representation

focus segments for subsequent
reference during discourse

A B C
A B C

Plan Tree

Focus Stack

History List

History list maintains top-level

We saw earlier that interrupts (segments irrelevant to the immediate context)
can generate new top-level goals in the intentional structure, whose
relationship with the rest of the structure may not be readily apparent. Because
they start out as disconnected elements, the system requires one additional
component: a history list to keep track of top-level nodes in the structure. This
prevents loss of information gathered from prior collaboration by maintaining
references to the entire collaboration history.

The plan tree (SharedPlan), focus stack, and history list comprise the
discourse state representation maintained by the collaboration manager.

25

26

Collaboration Architecture

A B C A B C

Discourse State

Discourse Interpretation

Discourse Generation

Agenda

Recipe Library

Communications,
Observations

Actions,
Queries

Collaboration Manager

Collaborative agents like our later example, COLLAGEN, use a multi-agent
collaboration architecture like the one illustrated above. Shown here for a
human user and automated agent, the architecture generalizes nat urally to
many agents.

The discourse interpretation process accepts communications and
observations from the agents along with recipes from a library (known to one
or more agents) to construct the discourse state representation. The discourse
generation (inverse) process generates an agenda of communications and
actions (often in the form of decision points) for the agents with which to
continue their collaboration. The agents themselves perform individual actions
and query individual sources of information in accordance with their
SharedPlans. Finally, while the automated agent can retrieve a complete view
of the discourse state (by accessing the data structure), human users can
obtain a partial view by examining the real-time segment hierarchy generated
by the dialog stream, presented in a natural interface.

26

27

Collaborative Discourse: Recap

•
to interpret and generate discourse, interleaving
planning and execution

•
by limited immediate focus

• Localization ensures small number of
communication choices, immediately relevant
and manageable for the user

•
representation of parallel tasks to avoid
excessive interrupt behavior

Collaboration manager uses goal-based model

Worst-case exponential plan recognition avoided

Future work may pursue higher-level

27

28

Outline

• Travel Scheduling Example
• Collaborative Discourse
• Plan Recognition
• TRIPS
• COLLAGEN

28

29

Setting for Collaboration

Two participants can both communicate with each other and observe each
other’s actions on some shared artifact. Sometimes the communication can be
reduced by more observations.

29

30

Without plan recognition With plan recognition
1 USER: "Let's work on email." USER: "Let's work on email."
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages."
3 USER: "Let's read a message."
4 USER: <Select message from Chuck> USER: <Select message from Chuck>
5 USER: "Let's read message in its own window."
6 USER: <Open message> USER: <Open message>
7 USER: "Let's do something using message."
8 USER: USER:
9 ...long lunch... ...long lunch...
10 USER: "What was I doing?" USER: "What was I doing?"

AGENT: "Working on email.
12 Reading message from Chuck. Reading message from Chuck.
13 Reading message in its own window. Reading message in its own window.
14 Done something using message. Done something using message.
15
16 Expecting to react to message (opt)." Expecting to react to message (opt)."
17 USER: "Let's react to message."
18 USER: "Let's send email."
19 USER: <Start new message> USER: <Start new message>
20 USER: "Let's fill in message."
21 USER: <Address message to Dan> USER: <Address message to Dan>
22 AGENT: "Why are you sending email to Dan?
23 (a) reacting to message from Chuck
24 (b) as a new goal "
25 USER: "I am reacting to message from Chuck."
26 ...additional editing actions... ...additional editing actions...
27 USER: "Done filling in message." USER: "Done filling in message."

AGENT: "Let's send, cancel or save message."
29 USER: "Please save message." USER: "Please save message."

AGENT: <Save message>

COLLAGEN E-mail Example

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

11 AGENT: "Working on email.

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

28 AGENT: "Let's send, cancel or save message."

30 AGENT: <Save message>

Here is an example where a collaborative agent assists a user in checking e-
mail. On the left is a transcript of the interaction between the user and an
agent that does not use plan recognition, and on the right is a transcript of the
interaction between the user and an agent that does use plan recognition. As
can be seen from the boxed portion of the interaction, plan recognition helps
the agent to identify the user’s intents without requiring the user to specify
through verbal communication each primitive action that the user takes.

30

31

Without plan recognition With plan recognition
1 USER: "Let's work on email." USER: "Let's work on email."
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages."
3 USER: "Let's read a message."
4 USER: <Select message from Chuck> USER: <Select message from Chuck>
5 USER: "Let's read message in its own window."
6 USER: <Open message> USER: <Open message>
7 USER: "Let's do something using message."
8 USER: USER:
9 ...long lunch... ...long lunch...
10 USER: "What was I doing?" USER: "What was I doing?"

AGENT: "Working on email.
12 Reading message from Chuck. Reading message from Chuck.
13 Reading message in its own window. Reading message in its own window.
14 Done something using message. Done something using message.
15
16 Expecting to react to message (opt)." Expecting to react to message (opt)."
17 USER: "Let's react to message."
18 USER: "Let's send email."
19 USER: <Start new message> USER: <Start new message>
20 USER: "Let's fill in message."
21 USER: <Address message to Dan> USER: <Address message to Dan>
22 AGENT: "Why are you sending email to Dan?
23 (a) reacting to message from Chuck
24 (b) as a new goal "
25 USER: "I am reacting to message from Chuck."
26 ...additional editing actions... ...additional editing actions...
27 USER: "Done filling in message." USER: "Done filling in message."

AGENT: "Let's send, cancel or save message."
29 USER: "Please save message." USER: "Please save message."

AGENT: <Save message>

COLLAGEN E-mail Example

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

11 AGENT: "Working on email.

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

28 AGENT: "Let's send, cancel or save message."

30 AGENT: <Save message>

This boxed portion shows a couple of things:

1.	 The agent’s knowledge of the user’s actions is identical in both cases, i.e.
in the case without plan recognition where the user had to verbally specify
all primitive actions, and in the case with plan recognition where the agent
learns of the user’s intent by observations of the user’s actions.

2.	 In both cases the agent is able to regurgitate the history of the user’s
actions. This is very useful for the user after taking a break (eg. “long
lunch”) from the continuum of working.

31

32

Without plan recognition With plan recognition
1 USER: "Let's work on email." USER: "Let's work on email."
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages."
3 USER: "Let's read a message."
4 USER: <Select message from Chuck> USER: <Select message from Chuck>
5 USER: "Let's read message in its own window."
6 USER: <Open message> USER: <Open message>
7 USER: "Let's do something using message."
8 USER: USER:
9 ...long lunch... ...long lunch...
10 USER: "What was I doing?" USER: "What was I doing?"

AGENT: "Working on email.
12 Reading message from Chuck. Reading message from Chuck.
13 Reading message in its own window. Reading message in its own window.
14 Done something using message. Done something using message.
15
16 Expecting to react to message (opt)." Expecting to react to message (opt)."
17 USER: "Let's react to message."
18 USER: "Let's send email."
19 USER: <Start new message> USER: <Start new message>
20 USER: "Let's fill in message."
21 USER: <Address message to Dan> USER: <Address message to Dan>
22 AGENT: "Why are you sending email to Dan?
23 (a) reacting to message from Chuck
24 (b) as a new goal "
25 USER: "I am reacting to message from Chuck."
26 ...additional editing actions... ...additional editing actions...
27 USER: "Done filling in message." USER: "Done filling in message."

AGENT: "Let's send, cancel or save message."
29 USER: "Please save message." USER: "Please save message."

AGENT: <Save message>

COLLAGEN E-mail Example

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

11 AGENT: "Working on email.

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

28 AGENT: "Let's send, cancel or save message."

30 AGENT: <Save message>

Agents that act with plan recognition learns the user’s intent by observing the
user’s actions, but sometimes the user’s actions may be ambiguous to the
agent. For example, in this case, the user starts a new message, but the
user may do this for a variety of reasons:

1. To start a new thread of messages,

2. To reply someone else’s thread.

32

33

Without plan recognition With plan recognition
1 USER: "Let's work on email." USER: "Let's work on email."
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages."
3 USER: "Let's read a message."
4 USER: <Select message from Chuck> USER: <Select message from Chuck>
5 USER: "Let's read message in its own window."
6 USER: <Open message> USER: <Open message>
7 USER: "Let's do something using message."
8 USER: USER:
9 ...long lunch... ...long lunch...
10 USER: "What was I doing?" USER: "What was I doing?"

AGENT: "Working on email.
12 Reading message from Chuck. Reading message from Chuck.
13 Reading message in its own window. Reading message in its own window.
14 Done something using message. Done something using message.
15
16 Expecting to react to message (opt)." Expecting to react to message (opt)."
17 USER: "Let's react to message."
18 USER: "Let's send email."
19 USER: <Start new message> USER: <Start new message>
20 USER: "Let's fill in message."
21 USER: <Address message to Dan> USER: <Address message to Dan>
22 AGENT: "Why are you sending email to Dan?
23 (a) reacting to message from Chuck
24 (b) as a new goal "
25 USER: "I am reacting to message from Chuck."
26 ...additional editing actions... ...additional editing actions...
27 USER: "Done filling in message." USER: "Done filling in message."

AGENT: "Let's send, cancel or save message."
29 USER: "Please save message." USER: "Please save message."

AGENT: <Save message>

COLLAGEN E-mail Example

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

11 AGENT: "Working on email.

<Visit http://foo.bar.com> <Visit http://foo.bar.com>

28 AGENT: "Let's send, cancel or save message."

30 AGENT: <Save message>

Thus in these ambiguous circumstances, the agent must ask the user for
clarification.

Notice that this interaction is unnecessary in the case without plan recognition
because the user already specified his/her intent. However, plan recognition is
more advantageous because generally, ambiguous actions are not frequent,
and the amount of verbal communications that can be omitted by using plan
recognition is greater than the amount of clarification questions necessary.

33

34

Task Structure Model

Primitive actions

High-level goals

Lower-level goals

“working on e-mail”

“filling in a message”

The task structure is a hierarchy of goals and actions, where high-level goals
such as working on e-mail breaks down to lower-level goals such as preparing
a message. At the bottom of the hierarchy are primitive actions such as
clicking a mouse or typing in text.

34

35

1 USER: "Propose scheduling a trip."
2 AGENT: "Ok."

to San Francisco to Boston, allowing 100+ itineraries)
3 USER: <Add Boston to the route.>
4 USER: <Add Dallas to the route, allowing 97 itineraries.>
5 USER: <Add Denver to the route, allowing 100+ itineraries.>
6 USER: <Add San Francisco to the route, allowing 100+ itineraries.>
7 USER: <Add Boston to the route, allowing 100+ itineraries.>
8 USER: "Ok."

9 AGENT: "How should a trip on the route be scheduled?"
10 USER: "Propose scheduling a trip on the route via working backward."

11 AGENT: "Propose you work on San Francisco to Boston leg."
12 USER: <Add Boston final interval with arrival Sun 11:30p.>
13 USER: <Change Boston final interval to arrival Fri noon.>
14 USER:

allowing 70 itineraries.>
15 USER:
16 USER: "Ok.“

…

Air Travel Example

(Done user identifying route of scheduling a trip as Boston to Dallas to Denver

(Done user proposing a trip on the route be scheduled via working backward)

(Done user working on San Francisco to Boston leg, allowing 70 itineraries)

<Add San Francisco stopover with arrival Wed 1:55a departure Wed 9:55a,

<Change San Francisco stopover to arrival Thu 6:00p departure Fri 1:57a.>

High-level goal

Low-level goal

Here we see the air travel scheduling example in the context of task structure.

The top-level goal is to schedule a trip from Boston to Dallas to Denver to San
Francisco and back to Boston. The first box contains the actions that the user
takes to identify the high-level goals. The second box contains the actions for
accomplishing a lower-level goal such as planning the travel leg from San
Francisco to Boston.

35

36

…

17 AGENT: "Propose you work on Denver to San Francisco leg."
18 USER:

...
(Done jointly specifying airlines, allowing 4 itineraries)

36 USER: <Add American specification, allowing no itineraries.>
(Done agent adding United specification, allowing 4 itineraries)

37 AGENT: "Propose I add United specification."
38 USER: "Ok."
39 AGENT: <Add United specification, allowing 4 itineraries.>

(User displaying and selecting itineraries)
40 USER: <Display 4 itineraries.>
41 USER: <Select itinerary Wed AA/1099 Wed AA/313 Thu UA/343 Fri AA/928.>

Air Travel Example

(Done user working on Denver to San Francisco leg, allowing 61 itineraries)

<Add Denver stopover with arrival Thu 8:21a departure Thu 3:19p.>

Notice that the lower-level goals can be performed by either the user or in the
case shown in the box, they can be performed by the agent as well.

36

37

With Plan Recognition

• User need not announce each goal

• Intentions conveyed through actions

• Verbal clarification resolves ambiguities

To summarize what we have seen thus far in the e-mail example and the air
travel scheduling example:

Plan recognition allows the user more flexibility in performing the actions that
lead to goals by not requiring the user to verbally communicate to the agent
every goal that the user is pursuing. The agent will derive the user’s goals by
observing the user’s actions. If there are instances where the user’s actions
are unclear or may imply multiple possible user goals, then the agent can ask
the user for verbal clarification.

37

38

Collaboration Architecture

A B C A B C
Discourse State

Discourse Interpretation

Discourse Generation

Agenda

Recipe Library

Communications,
Observations

Actions,
Queries

Collaboration Manager

Plan Recognition

Within the overall collaboration architecture, plan recognition is applied in
Discourse Interpretation.

38

39

Plan Recognition Overview

SharedPlan

Plan P1…
Action A

During plan recognition, the user performs some action A. Based on previous
observations, the agent maintains a SharedPlan in its knowledge space.

39

40

Plan Recognition Overview

SharedPlan

Plan P1…
Plan P2…
…

Observation

Action A

Suppose the agent observes the user perform the action A.

Plan recognition identifies the set of possible extensions to the agent’s current
SharedPlan which are consistent with its recipe knowledge and contains the
user performing A.

40

41

Plan Recognition Overview

SharedPlan

Plan P2…
Action A

Ask for Clarification

Multiple extensions require clarification to reduce the SharedPlan to a more
manageable domain size.

41

42

Properties of Collaborative Setting

• Focus of attention

• Incremental extension on a plan

• Clarification reduces recognizer
interpretations

In a collaborative setting, the agent and user share a focus of attention on
some specific action. The plans that are generated are dynamic in that they
are incrementally extended when necessary. This differs from most existing
forms of human-computer interaction, where the computer executes a
predefined plan of actions, and if some step of the plan fails, then the planning
must start over. Within dynamic plan generation, the agent must keep track of
the possible goals that the user is trying to pursue at each step. To keep the
list of possible goals small and tractable, the agent may ask for clarifications.

42

43

Plan Recognition Example

In this example, the user sees new input actions K and L from the user. The
current plan has A -> B and C. The focus of attention is on action B. The
recipe library holds 8 recipes that may be helpful in expanding the plan.

The plan recognizer performs an exhaustive search of all possible ways of
extending the input plan to explain the input actions.

The plan recognizer takes the current plan, and expands it on the focus action
B using all the necessary recipes. It will stop expanding once it reaches an
explanation for a target (input) action. The two plans on the right goes from the
current plan to the target actions via B using the least amount of actions.

43

Algorithm Setup

},,{

},,{

},,{
,,

1

1

1

C

E
A

C E A

sconstraint of set

edges acyclic directed of set

actions of set
Plan

achieving in step a is indicatesedge The

k

m

n

CC

EE

AA
P

ijji AAAA

”•

-

”•

”•
>=<

fi

K

K

K

ACT actions all of set ”
ACTPRIM ˝•

ACTTOP ˝•

'

'
', ' , '

EA
A

CEA
RECIPE

inedge an is there inevery For

in is
plan to non a from action primative ­

function a is each where recipes, of set

jiij

i

i

k

AAAA

A
A

R

fi„•

•
><

”

' 44

To set up the algorithm, we need to define a plan as a tuple of a set of actions,
edges and constraints. We also define the set of all actions which are divided
into primitive and top level actions. We then define a set of recipes that map
non-primitive actions to plans.

Curly letters represents set values; normal variables are single elements.

44

45

Plan Recognition Algorithm

A B C D

Top level actions

…

Q: {[A1,… An],

{[A1,… An], ({B}, 0, 0), B},

{[A1,… An], ({C}, 0, 0), C},

{[A1,… An], ({D}, 0, 0), D},

…

[A1,… An], P (0,0,0)

({A}, 0, 0), A},

The plan recognition function is called with a list of input actions [A1, … An],
some existing plan P, a focus action f, and a recipe library R.

When plan recognition first starts off, there are no plans, so it will add all of the
top level actions to the queue (Q).

45

46

Plan Recognition Algorithm

AA BB

…
[A1,… An], P (A,E,C), f = B

A B C D …

Q: {[A1,… An], ({AA, B}, E, C), AA},

{[A1,… An], ({BB, B}, E, C), BB},

{[A1,… An],

{[A1,… An], ({B}, 0, 0), B},

…

({A}, 0, 0), A},

When performing plan recognition with some plans already in place, we will
choose the focus action (in this case action B shown in yellow), and expand on
the focus action, adding the leaves (AA and BB) to the queue as shown.

46

47

Plan Recognition Algorithm

A,E,C), f = B

Q: {[A1,… An], ({AA, B}, E, C), AA},

{[A1,… An], ({BB, B}, E, C), BB},

{[A1,… An],

{[A1,… An], ({B}, 0, 0), B},

…
P’

{[A1,… An], ({A1, B}, E, C), A1}

P”

[A1,… An], P (

({A}, 0, 0), A},

Items are taken off the queue, and the first item’s plan is assigned to P’. We
then replace the action in P’ with the first action in the input action sequence.

47

48

Plan Recognition Algorithm

Consistent �

P”: {[A1,… An], ({A1, B}, E, C), A1}

[A1] [A1,… An]

EXPL: ({A1, B}, E, C)

Q: {[A2,… An], ({A1, B}, E, C), A1},

{[A1,… An], ({AA, B}, E, C), AA},

…

If the plan P” which contains A1 (from the input action sequence) is consistent,
i.e. the actions follow the constraints, then we look at the length of the input
action sequence. If there was only one action in the input seque nce, then we
know that it is consistent, so we can add it to the list of extended plans, or
EXPL. If there are more actions in the input sequence, then we add to the
queue with the first action removed from the list of input actions.

48

49

Plan Recognition Algorithm

AA not primitive action

S1, S2

Q: {[A1,… An], ({S1, AA, B}, E, C), S1},

{[A1,… An], ({S2, AA, B}, E, C), S2},

…

AA ?

If the current action of interest is not a primitive action, the n it can be
expanded using the recipe library. Here, we see that the recipe library says AA
-> S1 and S2, so we add to the queue those extensions.

49

50

Focus and Clarification Algorithm

Ainput

(0,0,0)

[A]

null

Done �P:

…

plan ?

focus ? null

acts ?

pick ?

For the focus, ambiguity and clarification algorithm, we use variables plan to
represent the current plan, focus to represent the focus action which may be
updated by a function called UpdateFocus, acts to represent the input actions,
and pick to take on extended plans. Initially, we wait for the next input action
and add it to acts. Everything else is set to null.

50

51

Focus and Clarification Algorithm
(0,0,0)

[A]

null

Plan Recognition

EXPL

plan ?

focus ? null

acts ?

pick ?

: …

We first perform plan recognition on this initial action and get some EXPL in
return, which may or may not be empty.

51

52

Focus and Clarification Algorithm

EXPL: 0

…

focus

Plan Recognition

P:

If EXPL is empty, or in other words there was no extended plan returned, then
we set the focus to the root of the plan and perform plan recognition again.

52

53

Focus and Clarification Algorithm

EXPL: {(…)}

one plan

(…) pick

If the EXPL returned one plan, then set that plan to pick, removing it from
EXPL.

53

54

Focus and Clarification Algorithm

EXPL: 0 acts: [A, B, C,…]

Ask for Clarification

pick

MaxWait = 2

If EXPL returned nothing, or if the number of input actions exceeds the set
value MaxWait (which is the maximum number of actions to observe before
inquiring for clarification), then the algorithm calls a Clarify function, which will
narrow down the possible plans to some single plan, which is set to pick.

54

55

Focus and Clarification Algorithm

(…)pick

plan

UpdateFocus

A

focus

[A]

[]

acts ?

acts ?

If pick is actually set, then that becomes our current plan, which we can use to
update the focus. The list of input actions is set back to empty and we are
ready to repeat this whole process again… “wait for next input action”, etc.

55

56

Complexity

• Size of search space to explain one action:
F(R×S)L

– S: max number of steps in a recipe
– R: max number of recipes applicable to an action
– F: number of actions on the fringe of P
– L: length of longest sequence of recipes the algorithm

must consider
•

O((F’(R×S)L)N)
– N: number of input actions

• RS)d)
– d: depth of deepest possible plan

Recursion for each action: worst-case complexity

General case: O((

Complexity to explain one action is given by F(R×S)L. But since there are N
input actions, the complexity needs to be raised to the power of N, namely
F’(R×S)L)N .

In the general case, the complexity is on the order of (RS)d where d is the
depth of the deepest possible plan.

If number of input actions is small (N is small), collaborative plan recognition
problem is significantly more tractable than general plan recognition problem.
Small number of input actions is guaranteed through clarification.

56

57

Focus, Ambiguity and Clarification

What to do when recognizer returns multiple
explanations?

Wait Ask for
clarification

Agent

Longer wait requires
more CPU

More clarification requires
more user response

When plan recognition returns more than one explanation for an action, the
agent can either wait for more observations on user actions, or it can ask for
clarification right away.

When the agent waits for more observations, it saves the user the
inconvenience of constantly communicating with the agent. However, the more
actions that the agent waits, the larger the domain space, and as we saw in
the previous slide, there is more complexity in solving the problem.

Asking for clarification keeps the complexity down, but it requires more user
response. So the key is to keep a good balance between these two.

57

58

0

0.5

1

1.5

2

2.5

3

1 2 3

Number of Actions to Wait

Questions asked per plan

Steps per plan with ambiguity

CPU secs used by recognizer

Average Results for 100 E-mail Scenarios

Here is shown some results from the e-mail problem. These are all average
values obtained from averaging 100 cases.

On the x-axis is the number of actions that the agent waited to observe before
asking for clarification. As we can see, the red bars indicating the number of
questions asked per plan decreased as the agent waited for more
observations. The number of steps per plan with ambiguity increased with
more waiting, and the CPU time that was needed increased with more waiting.

58

Comparisons With and

Without Plan Recognition

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Communications
Clarification questions

With plan recognition Without plan recognition

59

We can see in this graph that with plan recognition, the agent had to ask on
average 1.2 clarification questions, but without plan recognition, the user had
on average needed to make 4.4 communications to the agent. Both of these
accomplished the same tasks, but it is obvious that plan recognition reduces
the overall agent-user communications required to complete a task.

59

60

Outline

• Travel Scheduling Example
• Collaborative Discourse
• Plan Recognition
• TRIPS
• COLLAGEN

60

61

TRIPS Architecture

We showed a demo of the collaborative agent TRIPS in the beginni ng of this
lecture. Here is a high-level architectural diagram of TRIPS. Notice the
complexity of this agent: the technology behind speech input and output
modules on the top to the actual planner and scheduler and event monitors on
the bottom are not covered in this lecture.

The discourse context module contains the algorithm concerning the
collaborative discourse theory, and the task manager has plan recognition
abilities. Both of them work with the higher level module Interpretation
Manager towards the understanding of the user inputs. Discourse context is
also used to generate agent responses through the Generation Manager.

61

TRIPS Demo 2

This is another demo of the same TRIPS agent applied to another scenario concerning Pacifica
refugee evacuation. Again, the goal of the exercise presented is self-explanatory. Below is a list of
running commentaries concerning specific elements of the demo. Plan recognition and collaborative
discourse are used throughout this exercise. We will only be pointing out some of the obvious
occurrences. The number in the beginning of each bullet is the estimated time in the demo the
commentary should take place followed by a brief description of what happened and how this relates
to the theory we mentioned.

•1:12 – TRIPS displays a map of Pacifica at the user’s request. This is the level tasks that regular
systems without collaborative discourse and plan recognition should be able to perform. However,
this action also serves the purpose of narrowing the recipe library to recipes related to Pacifica.
•1:29 – When the user asked for the location of the trucks, TRIPS gave a verbal response along with
a visual indication of the truck’s location on the map. This shows that our collaboration theories are
not limited to verbal communication alone. This also demonstrates the usefulness of a setting
where the user can not only hear but also observe actions of the agent and vise versa. A large
amount of time can be saved because the agent and user does not need to fully explain all their
actions.
•1:41 – The user asks the agent to use “the truck,” the agent replies that it does not understand the
request. (The user actually says “a truck” but “the truck” appears on the screen. This is either a
mistake the user made in typing, or a mistake in the speech recognition system. In either case, the
plan recognition part of the agent received “the truck” as an input) This is an example of clarification
when the agent receives an ambiguous request. Since there are multiple trucks none of which
officially labeled “the truck,” the agent got confused. Instead of taking a guess which would have
increased the ambiguity, the agent asked for a clarification to refine the search space.
•1:56 – Once both parties agreed to use a truck to get the people from Calypso to Delta, the agent
highlighted that route on the map and displayed a schedule bar, this time without explicit request
from the user. This further demonstrates the effectiveness of visual communication as well as the
agent’s ability to give its own input to this problem solving process, this time in a non verbal format.
•2:12 – This time the user asked a hypothetical questions “what if we went along the coast instead.”
In this case, the agent starts a separate sub-segment in parallel with the current path given and
designates this as the current active segment. (Notice that a new route appears on the map, and a
new schedule window also opens on top of the old one.) When the user says “forget it,” the agent
have to close this segment and return to the last active segment. (The new route is removed and
the new schedule window closes, thus placing the former schedule window back on the screen.)
This demonstrate the agent’s ability to track multiple scenarios at once.
•2:57 – In this case the user first asked to use another truck to get people from Exodus to Delta, and
then he changed his mind and asked the user to use “a helicopter instead.” There are 2 significant
points associated with this action. First, it demonstrates the agent’s ability to retrace steps back to
an earlier point in the planning process. Also, when the user used the word “instead,” the agent
must realize that the user is referring to the same route and only changing the means of
transportation. This is easily accomplished with the segmentation layers of collaborative discourse.
•3:25 – Again when the user says “go on to Abyss,” he did not have to specify truck one to Abyss.
The agent realizes this because that is the segment currently in focus.
•3:47 –The rest of the demo works under the condition that the Delta bridge is out. The agent
identifies the parts of the plan that are no longer executable, and a re-planning process begins.
Since the rest of the demo covers much of the same concepts already discussed, we will stop the
demo here in the interest of time.

One last thing to note about this demo is that the user never stated the top level goal of refugee
evacuation. However, the agent can still make inferences and perform tasks based on the sub-
goals such as moving people from one location to another.

This demo can be found at the following url:
http://www.cs.rochester.edu/research/cisd/projects/trips/movies/TRIPS-98_v4.0/.

62

63

Outline

• Travel Scheduling Example
• Collaborative Discourse
• Plan Recognition
• TRIPS
• COLLAGEN

COLLAGEN is another collaborative agent currently under development. This
is the same agent used to evaluated the email scenario covered in the plan
recognition section above. However, below is the same COLLAGEN agent
applied to a completely different platform

63

64

Mel the Robotic Penguin

This is Mel, the robotic penguin. For most of this lecture, we focused on
examples where the collaborative agent is linked to a static computer and
communication only takes the form of speech or on-screen displays. However,
we mentioned in the beginning of this lecture, that collaborative agents are
modular and application independent. And we believe that Mel is a good
demonstration of this fact. We want to emphasize that the COLLAGEN
system used in Mel is the same agent used in the email application we
discussed earlier. From email client to robotic penguin, one can see truly how
mobile a collaborative agent can be.

64

65

Communicating with Mel

• Mel can seek out a person to interact with for the
demonstration.

• Mel also recognizes and responds to head
gestures (such as nods) to indicate interest in
Mel and environment.

• People find the Mel's gestures more natural than
an unmoving conversational partner, and that
they direct their attention more to Mel than the
unmoving conversational partner.

Here are some facts about Mel that distinguishes him from the ot her platforms
used.

65

66

COLLAGEN Demo

Up to this point, although we’ve seen collaborative agents work under various
scenarios, all of them can be categorized as some from of planni ng and
scheduling. However, this demo shows Mel performing an educational tutorial,
completely unrelated to planning. This further demonstrates the versatility and
modularity of collaborative agents.

Again, below is a list of running commentaries concerning specific elements of
this demo. The number in the beginning of each bullet is the estimated time in
the demo the commentary should take place followed by a brief description of
what happened and how this relates to the theory we mentioned.

•0:48 – Mel uses gestures instead of words to indicated the location of the
iGlassware system.
•1:16 – The user poured water into the cup and Mel immediately noted that the
task has been accomplished without any verbal confirmation from the user.
This is a demonstration of plan recognition similar to the email example given
above. A large amount of time can be saved when the agent recognizes
actions through observation. In this case, Mel observed that the glass is full
and thus inferred that the user is ready to move on.
•1:42 – Again, through observation, Mel noticed that the glass is now empty.
•1:51 – Mel asks whether the user would like to continue, the user replays
“OK,” Mel then uses a nod instead of a verbal response to indicate that he
understood the user and will continue.
• 2:12 – The user says “OK,” but Mel could not make out the words. So he
asks for clarification to avoid confusion.
•2:44 – Finally, Mel uses both words and gestures to indicate the end of the
conversation.

The important thing to note is that Mel is the one taking the lead in this demo,
and he requires very little input from the user. However, he is constantly using
words, gestures, and questions to keep the user interested. He also re­
confirms the users interest by directly asking.

A CD containing this demo will be provided.

66

67

Summary

• Resourceful, interactive collaboration agents can
be tremendously useful

• Many techniques are required to construct these
agents including collaborative discourse and
plan recognition

• TRIPS and COLLAGEN are two such agents
that uses these techniques

• These agents are largely platform independent
and can be applied to various different
applications.

67

68

Further Work

• Improve the flexibility and robustness of the
algorithms to deal with incompleteness of the
agent's recipe library and handle parallel
interleaved goals

• Support negotiation between the user and agent
• Build agents that operate remotely (e.g., on the

Internet), which will require more discussion
between the agent and user about past and
future actions.

68

69

Acknowledgements

• The video demo of COLLAGEN was provided by Dr.
Charles Rich at Mitsubishi Electric Research
Laboratories (MERL).

• The TRIPS demo can be found on the TRIPS website,

ps/movies/TRIPS_CPoF/.

• Star Trek IV: The Voyage Home is copyright of
Paramount Pictures.

url: http://www.cs.rochester.edu/research/cisd/projects/tri

69

70

References

•
Manager for Software Interface Agents", An International

,

•

Banff, Canada, July 1999.

Rich, C.; Sidner, C.L., "COLLAGEN: A Collaboration

Journal: User Modeling and User-Adapted Interaction
Vol. 8, Issue 3/4, pps 315-350, 1998

N. Lesh, C. Rich, Charles and C. Sidner. "Using Plan
Recognition in Human-Computer Collaboration." in
Proceedings of the Seventh Int. Conf. on User Modelling,

70

Questions?

71

