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Outline

� Motivate problem

� Define PRMs

� Extensions and future work
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Our Goal

� Observation: the world consists of many distinct
entities with similar behaviors

� Exploit this redundancy to make our models simpler

� This was the idea of FOL: use quantification to
eliminate redundant sentences over ground literals
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Example: A simple domain

� a set of students, S = {s1,s2,s3}

� a set of professors, P = {p1, p2, p3}

� Well-Funded, Famous : P →{true, f alse}

� Student-Of : S ×P →{true, f alse}

� Successful : S →{true, f alse}
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Example: A simple domain

We can express a certain self-evident fact in one
sentence of FOL:

∀s∈ S ∀p∈ P

Famous(p) and Student-Of(s, p)
⇒ Successful(s)
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Example: A simple domain

The same sentence converted to propositional logic:

(¬(p1_ f amousand student_o f_s1_p1) or s1_success f ul) and

(¬(p1_ f amousand student_o f_s2_p1) or s2_success f ul) and

(¬(p1_ f amousand student_o f_s3_p1) or s3_success f ul) and

(¬(p2_ f amousand student_o f_s1_p1) or s1_success f ul) and

(¬(p2_ f amousand student_o f_s2_p1) or s2_success f ul) and

(¬(p2_ f amousand student_o f_s3_p1) or s3_success f ul) and

(¬(p3_ f amousand student_o f_s1_p1) or s1_success f ul) and

(¬(p3_ f amousand student_o f_s2_p1) or s2_success f ul) and

(¬(p3_ f amousand student_o f_s3_p1) or s3_success f ul)
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Our Goal

� Unfortunately, the real world is not so clear-cut

� Need a probabilistic version of FOL

� Proposal: PRMs

Propositional
Logic

First-order
Logic

Bayes
Nets

PRMs
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Defining the Schema

� The world consists of base entities, partitioned into
classes X1,X2, ...,Xn

� Elements of these classes share connections via a
collection of relations R1,R2, ...,Rm

� Each entity type is characterized by a set of
attributes, A(Xi). Each attribute A j ∈ A(Xi)
assumes values from a fixed domain, V(A j)

� Defines the schemaof a relational model
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Continuing the example...

We can modify the domain previously given to this new
framework:

� 2 classes: S ,P
� 1 relation: Student-Of ⊂ S ×P

� A(S ) = {Success}

� A(P ) = {Well-Funded, Famous}
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Instantiations

An instantiation I of the relational schema defines

� a set of base entities OI (Xi) for each class Xi

OI ′
(P ) = {p1, p2, p3}, OI ′

(S ) = {s1,s2,s3}
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Instantiations

An instantiation I of the relational schema defines

� a set of base entities OI (Xi) for each class Xi

OI ′
(P ) = {p1, p2, p3}, OI ′

(S ) = {s1,s2,s3}

� Ri(X1, ...,Xk) ⊂ OI (X1)× ...×OI (Xk) for each Ri

Student-Of = {(s1, p1),(s2, p3),(s3, p3)}
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Instantiations

An instantiation I of the relational schema defines

� a set of base entities OI (Xi) for each class Xi

OI ′
(P ) = {p1, p2, p3}, OI ′

(S ) = {s1,s2,s3}

� Ri(X1, ...,Xk) ⊂ OI (X1)× ...×OI (Xk) for each Ri

Student-Of = {(s1, p1),(s2, p3),(s3, p3)}

� values for the attributes of each base entity for each
class
p1.Famous = f alse,
p3.Well-Funded = true,
s2.Success = true, ...
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Slot chains

We can project any relation R(X1, ...,Xk) onto its ith and
j th components to obtain a binary relation ρ(Xi,Xj)

Notation: for x∈ OI (Xi), let
x.ρ = {y∈ OI (Xj)|(x,y) ∈ ρ(Xi,Xj)}

We call ρ a slot of Xi . Composition of slots (via transitive
closure) gives a slot chain

E.g. x1.Student-Of.Famous is the fame of x1’s adviser
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Probabilities, finally

� The idea of a PRM is to express a joint probability
distribution over all possible instantiations of a
particular relational schema

� Since there are infinitely many possible
instantiations to a given schema, specifying the full
joint distribution would be very painful

� Instead, compute marginal probabilities over
remaining variables given a partial instantiation
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Partial Instantiations

A partial instantiation I ′ specifies

� the sets OI ′
(Xi)

OI ′
(P ) = {p1, p2, p3}, OI ′

(S ) = {s1,s2,s3}
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Partial Instantiations

A partial instantiation I ′ specifies

� the sets OI ′
(Xi)

OI ′
(P ) = {p1, p2, p3}, OI ′

(S ) = {s1,s2,s3}

� the relations Rj

Student-Of = {(s1, p1),(s2, p3),(s3, p3)}
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Partial Instantiations

A partial instantiation I ′ specifies

� the sets OI ′
(Xi)

OI ′
(P ) = {p1, p2, p3}, OI ′

(S ) = {s1,s2,s3}

� the relations Rj

Student-Of = {(s1, p1),(s2, p3),(s3, p3)}

� values of some attributes for some of the base
entities
p3.Famous = true, s1.Success = f alse
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Locality of Influence

� BNs and PRMs are alike in that they both assume
that real-world data exhibits locality of influence, the
idea that most variables are influenced by only a few
others

� Both models exploit this property through
conditional independence

� PRMs go beyond BNs by assuming that there are
few distinct patterns of influence in total
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Conditional independence

� For a class X, values of the attribute X.A are
influenced by attributes in the set Pa(X.A) (its
parents)

� Pa(X.A) contains attributes of the form X.B (B an
attribute) or X.τ.B (τ a slot chain)

� As in a BN, the value of X.A is conditionally
independent of the values of all other attributes,
given its parents
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An example

Student

Professor

Well-Funded

Famous

Student-Of

Successful

Captures the FOL sentence from before in a probabilistic

framework.
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Compiling into a BN

A PRM can be compiled into a BN, just as a statement in
FOL can be compiled to a statement in PL

p1_well-funded

p1_famous

s1_success

p2_well-funded

p2_famous

p3_well-funded

p3_famous

s2_success

s3_success
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PRM

p1_well-funded

p1_famous

s1_success

p2_well-funded

p2_famous

p3_well-funded

p3_famous

s2_success

s3_success

We can us this network to support inference over queries
regarding base entities
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Aggregates

� Pa(X.A) may contain X.τ.B for slot chain τ, which is
generally a multiset.

� Pa(X.A) dependent on the value of the set, not just
the values in the multiset

� Representational challenge, again |X.τ.B| has no
bound a priori

Intro to Probabilistic Relational Models – p.19/24



Aggregates

� γ summarizes the contents of X.τ.B

� Let γ(X.τ.B) be a parent of attributes of X

� Many useful aggregates: mean, cardinality, median,
etc

� Require computation of γ to be deterministic (we can
omit it from the diagram)
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Example: Aggregates

� Let γ(A) = |A|

� Let Adviser-Of = Student-Of−1

� e.g. p1.Adviser-Of = {s1},
p2.Adviser-Of = {},
p3.Adviser-Of = {s2,s3}

� To represent the idea that a professor’s funding is
influenced by the number of advisees:

Pa(P .Well-Funded) =

{P .Famous,γ(P .Adviser-Of)}
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Extensions

� Reference uncertainty. Not all relations known a
priori; may depend probabilistically on values of
attributes. E.g., students prefer advisers with more
funding

� Identity uncertainty. Distinct entities might not refer
to distinct real-world objects

� Dynamic PRMs. Objects and relations change over
time; can be unfolded into a DBN at the expense of
a very large state space
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Resources

� “Approximate inference for first-order probabilistic
languages” gives a promising MCMC approach for
addressing relational and identity uncertainty.

� “Inference in Dynamic Probabilistic Relational
Models”, Sanhai et al. Particle-filter based DPRM
inference that uses abstraction smoothing to
generalize over related objects.
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Extensions of Bayesian Networks

Ethan Howe,
James Lenfestey,
Tom Temple

Outline

l Intro to Dynamic Bayesian Nets (Tom)
l Exact inference in DBNs with demo (Ethan)
l Approximate inference and learning (Tom)
l Probabilistic Relational Models (James)

Reasoning under Uncertainty

l How do we use prior knowledge and new 
observations to judge what is likely and what 
is not?

l But that is a very large joint distribution

) ,|( knowledgepriornsobservatiosP

Bayesian Network

AcceptedRecsGPA

.1GoodHigh

.25GreatHigh

.05GoodAve

.1GreatAve

.01GoodLow

.05GreatLow

Bayesian Network

l A Bayesian Network is a Directed Acyclic Graph 
(DAG) with variables as nodes.

l Edges go from parent to child such that
– Each child, x, has a conditional probability table 

P(x|parents(x)) that defines the affects that x feels from its 
parents.

l Intuitively, these edges codify direct relationships
between nodes in a cause-effect manner.

l The lack of an edge between nodes implies that they 
are conditionally independent.

Features of Bayesian Networks

l Arbitrarily descriptive; allows encapsulation 
of all the available prior knowledge

l The model makes no distinction between 
observed variables and inferred variables

l The DAG restriction is somewhat limiting
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HMM as a Bayes Net

………………

….9.01.01.01S4

….01.6.1.05S3

….02.1.5.01S2

….01.2.2.8S1

…S4S3S2S1

Dynamic Bayesian Networks

l DBNs are BNs with a 
temporal regularity 
analogous to the HMM

l The full representation 
of a DBN grows with 
time.

Hybrid State in DBNs

l For basis functions, parent 
variables are used as 
function parameters

l Usually the function is a 
mixture of Gaussians with 
known means and variances 
and the parent variables 
decides the mixture weights.

Exact Inference in Bayesian Networks

l Queries of the network are fielded by 
“summing out” all of the non-query variables

l A variable is summed out by collecting all of 
the factors that contain it into a new factor.  
Then sum over all of the possible states of 
the variable to be eliminated.

Temporal Inference

l Filtering
– Probabilities of current states

l Prediction
– Probabilities of future states

l Smoothing
– Probabilities of past states

1 t

Smoothing

Filtering
Prediction

l Xt+1: set of hidden variables in the t+1 time 
slice

l xt+1: set of values for those hidden variables 
at t+1

l e t+1: set of evidence at time t+1
l e1:t: set of evidence from all times from 1 

to t
l a: normalization constant 

Notation



3

Toy Example

Raint-1 Raint Raint+1

Rt-1 P(Rt)
t      0.7
f      0.3

Umbrella t-1 Umbrella t Umbrella t+1

Rt P(Ut)
t      0.9
f      0.2

Markov Assumptions

l First-order Markov process
– P(Xt|X0:t-1) = P(Xt|Xt-1)

l Markov assumption of evidence
– P(Et|X0:t,E0:t-1)= P(Et|Xt)

Prediction: Separating Time Slices

P(Xt+1|e1:t+1) = P(Xt+1|e1:t,et+1)  (divide evidence)

= a P(et+1|Xt+1,e1:t) P(Xt+1|e1:t)  (Bayes' rule)

= a P(et+1|Xt+1) P(Xt+1|e1:t)  (Markov property 

of evidence)

Predict Next Time Slice from 
Current

P(Xt+1|e1:t+1) 

= a P(et+1|Xt+1) S P(Xt+1|xt,e1:t) P(xt|e1:t)

=a P(et+1|Xt+1) S P(Xt+1|xt) P(xt|e1:t) 

xt

xt

Example: Umbrella Seen on Day 1

P(R0) = {0.5,0.5}

P(R1|u1) = a P(u1|R1) S P(R1|r0) P(r0) 

= a {0.9,0.2} (0.5 {0.7,0.3}+ 0.5 {0.3,0.7})

= a {0.45, 0.1}

= {0.818, 0.182}
Rain0

Rain1

Umbrella
1

Example: Umbrella Seen Again on 
Day 2

P(R2|u1) = S P(R2|r1) P(r1|u1)

P(R2|u1,u2) = a P(u2|R2) P(R2|u1)

= a{0.9, 0.2}(0.818{0.7,0.3}+0.182{0.3,0.7})

= a{0.565,0.075} = {0.883, 0.117}

r1

Rain0 Rain1 Rain2

Umbrella
1

Umbrella
2
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Encapsulate Prediction

l Repeating actions at each step of time
l Formalize as procedure

– P(Xt+1|e1:t+1) = FORWARD(previous state set, 
new evidence set)

l Only need to pass message from previous 
time step
– f1:t+1= a FORWARD(f1:t,et+1)

l Can forget about previous times

Smoothing: Break into data before 
and after

P(Xk|e1:t) = P(Xk|e1:k ,ek+1:t)  (divide evidence)

= a P(Xk|e1:k) P(ek+1:t|Xk,e1:k)  (Bayes' rule)

= a P(Xk|e1:k) P(ek+1:t|Xk)  (Markov Indep.)

= a f1:kbk+1:t

Backwards message

P(Xk+1:t|ek) 

= S P(ek+1:t|Xk,xk+1) P(xk+1|Xk)   (cond. on Xk+1)

=S P(ek+1:t|xk+1) P(xk+1 |Xk)       (Markov indep.)

=S P(ek+1 ,ek+2:t|xk+1) P(xk+1|Xk)

=S P(ek+1 |xk+1) P(ek+2:t|xk+1) P(xk+1 |Xk)

xk+1

xk+1

xk+1

xk+1

Backwards procedure

l Repeating actions at each step of time
l Formalize as procedure

– P(ek+1:t|Xk) = BACKWARD(next state set, future 
evidence set)

l Message passing goes backwards in time
– bk+1:t= BACKWARD(bk+2:t,ek+1:t)

P(u2|R1) = S P(u2|r2) P(u3:2 |r2) P(r2|R1)

= (0.9*1*{0.7,0.3})+(0.2*1*{0.3,0.7})

= {0.69, 0.41}

P(R1|u1:2) = a f1:1 b2:2

= a {0.818,0.182} {0.69,0.41}

= {0.883,0.117}

Example: Was it really raining 
day 1?

Rain0 Rain1 Rain2

Umbrella
1

Umbrella
2

r2

Forward-Backwards Algorithm

l Save FORWARD values at each time step
l Each time new data arrives, recompute 

BACKWARD values.
l Time Complexity O(t)
l Space Complexity O(t) 
l Both can be bounded if only care about last k 

slices.



5

Demo: Battery Meter Model

BMBroken0 BMBroken1

BMeter1

Battery1Battery0

B0 P(B1)
t      1.0

f     0.001

Battery Drain

Exact Inference in DBNs

l There are some additional difficulties with 
exact inference in DBNs
– The factors grow to include all the states which 

sharply decreases the advantage over HMMs
– Constant memory requirement

Approximate Inference

l While a number of inference algorithms exist 
for the standard Bayes Net, few of them 
adapt well to the DBN.

l One that does adapt is Particle filtering, due 
to its ingenuitive use of resampling
– Particle filtering deals well with hybrid state

l Sampling has trouble with unlikely events

Learning

l The three components of a BN
– the probabilities
– the structure
– the variables

can all be learn automatically, though with 
varying degrees of complexity

Probability learning

AcceptedRecsGPA

??GoodHigh

??GreatHigh

??GoodAve

??GreatAve

??GoodLow

??GreatLow

How do we generate the Network?

l The network contains variables, edges and 
probabilities all of which need to be known 
ahead of time.

l Given all the variables and their 
relationships, it is relatively easy to estimate 
the probabilities from sample data, even if 
that sample data does not include every 
variable.
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Structure Learning Structure Learning

l Given the variables only, we can guess a 
structure, learn parameters for that structure 
and then rate it based on how well it 
“predicts” the data.  

l Care must be taken not to overfit.
l Search the structure space with greedy-

ascent on this rating
l Randomization helps avoid local maxima

Hidden Variable Learning Hidden Variable Learning

l Given a subset of the variables, generate 
new variables, structure and parameters.

l Greedy ascent on the output of Structure 
learning.

l Some risk of overfit

Applications

l Windows printer troubleshooter and goddamn paper-clip

More exciting applications

l Speech and Vision recognition
– Fewer parameters than traditional HMMs mean 

better learning
– Allows for easier experimentation with intuitive 

(i.e. hand coded) hierarchical models
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In Depth Training

l Since the DBN model doesn’t make a 
distinction between observed variables and 
hidden variables, it can learn a model with 
access to data that we don’t have during 
prediction.

l For example, in Speech Recognition,
– We know that sounds are made by the pose of 

the lips mouth and tongue
– While training we can measure the pose

Isolated Word Recognition

Recall a few important points

l Bayesian networks are an arbitrarily expressive model for joint 
probability distributions

l DBNs can be more compact than HMMsand therefore easier to 
learn and faster to use

l Dynamic Bayesian networks allow for reasoning in a temporal 
model 

– Tolerant of missing data, likewise able to exploit bonus data
– Computationally, the compactness advantage is often lost in exact 

reasoning
l Particle Filters are an alternative for exploiting this 

compactness as long as the important probabilities are large 
enough to be sampled from.
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