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Outline

B Motivate problem
B Define PRMs
B Extensions and future work
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Our Goal
Co

B Observation: the world consists of many distinct
entities with similar behaviors

B Exploit this redundancy to make our models simpler

B This was the idea of FOL: use guantification to
eliminate redundant sentences over ground literals
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Example: A simple domain

.- ]
B a set of students, S = {s1,5,S3}

B a set of professors, P = {p1, P2, P3}

m \\l | - Funded, Famous : P — {true, false}
m Student-O : § x P — {true, false}

m Successful : §— {true, false}
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Example: A simple domain
- 0000

We can express a certain self-evident fact in one
sentence of FOL.:

Vses§ Vpe?
Fanmous (p) and St udent - OF (s, p)
= Successful (s)
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Example: A simple domain
- 0000

The same sentence converted to propositional logic:

-

(p1_famousand studentof_s;_pz) or s1_successfyland
(p1_famousand studentof_s,_p;) or s,_successfyland
(p1_famousand studentof_s;_p1) or s3_successfyland
(p2_famousand studentof_s;_p;) or 53_successfyland
(p2_famousand studentof_s,_p1) or s,_successfyland
( )
( )
( )
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p2_famousand studentof_s3_p;) or s3_successfyland
ps_famousand studentof_s;_p;) or s;_successfyland
ps_famousand studentof_s,_p;) or s,_successfyland
ps_famousand studentof_s3_p;) or s3_successfyl
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Our Goal
Co

B Unfortunately, the real world is not so clear-cut
B Need a probabilistic version of FOL
B Proposal: PRMs

Propositional g Bayes
Logic Nets
\/ \/

First-order
. >
Logic
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Defining the Schema

B The world consists of base entities, partitioned into
classes X1, Xo, ...,Xn

B Elements of these classes share connections via a
collection of relations Ry, Ro, ...,Rm

B Each entity type Is characterized by a set of
attributes, 4(X;). Each attribute Aj € 4(X)

assumes values from a fixed domain, V(Aj)

B Defines the schemaof a relational model
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Continuing the example...
N

We can modify the domain previously given to this new
framework:

B 2classes: §,7P

B 1 relation: Student-Of C S x P
m 7(S)={Success}

m 4(P)={Well-Funded, Famus}
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Instantiations
R

An instantiation I of the relational schema defines
B a set of base entities O!(X;) for each class X

O (P) = {p1. p2, ps}, OF'(S) = {s1,%, 3}
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Instantiations
R

An instantiation I of the relational schema defines
B a set of base entities O!(X;) for each class X

O (P) = {p1. p2, ps}, OF'(S) = {s1,%, 3}

B R(Xqg,...%) C O (Xq) x ... x OF(X) for each R,
Student - Of = {(S1,P1),(S2, P3), (S3,P3) }
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Instantiations
R

An instantiation I of the relational schema defines
B a set of base entities O!(X;) for each class X

O (P) = {p1. p2, ps}, OF'(S) = {s1,%, 3}

B R (Xg,...Xc) € 01 (Xq) x ... x OF(X) for each R
St udent - OF = {(s1,P1), (S2, P3), (S3, P3) }

B values for the attributes of each base entity for each
class
p1.Fanous = false

p3.\el | - Funded = true,
Sp.Success =true, ...
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Slot chains
R

We can project any relation R(Xy, ...,Xk) onto its ith and
jth components to obtain a binary relation p(X, X;)

Notation: for x € O (X;), let
xp={ye 0'(X))|(xy) € p(%. X))}

We call p a slotof X;. Composition of slots (via transitive
closure) gives a slot chain

E.g. X1.St udent - OF .Fanous is the fame of X1's adviser
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Probabilities, finally

B The idea of a PRM is to express a joint probabllity
distribution over all possible instantiations of a
particular relational schema

B Since there are infinitely many possible
Instantiations to a given schema, specifying the full
joint distribution would be very painful

B Instead, compute marginal probabilities over
remaining variables given a partial instantiation
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Partial Instantiations

A partial instantiation I’ specifies

m the sets 07 (X)
O (P) = {p1. P2, p3}, OF'(S) = {s1, %, 53}
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Partial Instantiations
R

A partial instantiation I’ specifies

m the sets 07 (X)

O (P) = {p1, p2, 3}, OF'(S) = {s1, %, %3}
B the relations R;

St udent - Of = {(s, p1), (S, P3), (S3, P3) }
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Partial Instantiations
R

A partial instantiation I’ specifies

m the sets 07 (X)

O[/(T) — {p].! p21 p3}’ OI/ (5) — {81’32’83}
B the relations R;
St udent - Of = {(s, p1), (S, P3), (S3, P3) }

B values of some attributes for some of the base
entities

p3.Fanous = true, s;.Success = false
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Locality of Influence
T

B BNs and PRMs are alike in that they both assume
that real-world data exhibits locality of influencethe
iIdea that most variables are influenced by only a few
others

B Both models exploit this property through
conditional independence

B PRMs go beyond BNs by assuming that there are
few distinct patterns of influence In total
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Conditional independence
N

B For aclass X, values of the attribute X.A are
influenced by attributes in the set Pa(X.A) (its
parents)

m Pa(X.A) contains attributes of the form X.B (B an
attribute) or X.1.B (T a slot chain)

B Asin a BN, the value of X.Ais conditionally
iIndependent of the values of all other attributes,
given Its parents
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An example

Student

Student-Of \/—\ Professor

Successful Famous

Well-Funded

Captures the FOL sentence from before in a probabilistic
framework.
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Compiling into a BN

A PRM can be compiled into a BN, just as a statement In
FOL can be compiled to a statement in PL

@ p2_well-funded

p1_well-funded

p3_well-funded
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p1_well-funded p3_well-funded

We can us this network to support inference over queries
regarding base entities
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Aggregates

m Pa(X.A) may contain X.t.B for slot chain T, which is
generally a multiset.

m Pa(X.A) dependent on the value of the set, not just
the values In the multiset

B Representational challenge, again |X.1.B| has no
bound a priori
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Aggregates
7

By summarizes the contents of X.1.B

B et y(X.1.B) be a parent of attributes of X

B Many useful aggregates. mean, cardinality, median,
etc

B Require computation of y to be deterministic (we can
omit it from the diagram)
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Example: Aggregates
-]
m Lety(A) = A
B Let Advi ser-Of = Student - OF ~1

B e.g. pp.Adviser-Of ={s},
0p.Advi ser-Of = {},
03.Advi ser-Of = {sp,s3}

B To represent the idea that a professor’s funding is
Influenced by the number of advisees:

Pa(P.\el | - Funded) =
{P.Fanous,y(P.Advi ser-Cf )}
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Extensions
o

B Reference uncertainty. Not all relations known a
priori; may depend probabilistically on values of
attributes. E.g., students prefer advisers with more
funding

B |[dentity uncertainty. Distinct entities might not refer
to distinct real-world objects

B Dynamic PRMs. Objects and relations change over
time; can be unfolded into a DBN at the expense of
a very large state space
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Resources
/]

B “Approximate inference for first-order probabillistic
languages” gives a promising MCMC approach for
addressing relational and identity uncertainty.

B “Inference in Dynamic Probabilistic Relational
Models”, Sanhai et al. Particle-filter based DPRM
Inference that uses abstraction smoothing to
generalize over related objects.
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Extensions of Bayesian Networks
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Outline

. |
e Intro to Dynamic Bayesian Nets (Tom)
e Exact inference in DBNs with demo (Ethan)
e Approximate inference and learning (Tom)
e Probabilistic Relational Models (James)

Reasoning under Uncertainty
(e —

e How do we use prior knowledge and new
observations to judge what is likely and what
is not?

P(s|observatio ns, prior knowledge )

e But that is a very large joint distribution

Bayesian Network
- (et ~ = I
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Bayesian Network
(e —

e A Bayesian Network is a Directed Acyclic Graph
(DAG) with variables as nodes.
e Edges go from parent to child such that
- Each child, x, has a conditional probability table
P(x|parents(x)) that defines the affects that x feels from its
parents.
e Intuitively, these edges codify direct relationships
between nodes in a cause-effect manner.
e The lack of an edge between nodes implies that they
are conditionally independent.

Features of Bayesian Networks
. |

e Arbitrarily descriptive; allows encapsulation
of all the available prior knowledge

e The model makes no distinction between
observed variables and inferred variables

e The DAG restriction is somewhat limiting




HMM as a Bayes Net

S1[s2[s3][s4
e @ si|s [2 [2 [o1
sz|.01]5 [1 |02
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e e sa|.01].01[.01]9

Hybrid State in DBNs

e For basis functions, parent
variables are used as
function parameters
Usually the function is a
mixture of Gaussians with
known means and variances
and the parent variables
decides the mixture weights.

Temporal Inference

Filtering
) Smoothing I Prediction ,
Ll 1 1
[ 1
1 t
e Filtering
- Probabilities of current states
e Prediction

- Probabilities of future states
e Smoothing
- Probabilities of past states

Dynamic Bayesian Networks

e DBNs are BNs with a
temporal regularity
analogous to the HMM

e The full representation
of a DBN grows with
time.

Exact Inference in Bayesian Networks
. |
e Queries of the network are fielded by
“summing out” all of the non-query variables
e A variable is summed out by collecting all of
the factors that contain it into a new factor.

Then sum over all of the possible states of
the variable to be eliminated.

Notation

e X, ,: set of hidden variables in the t+1 time
slice

® X,,,: set of values for those hidden variables
att+l

e e, setof evidence at time t+1

e e, setof evidence from all times from 1
tot

e a: normalization constant




Toy Example
R4 PR)
0.7

0.3

Markov Assumptions
. |

e First-order Markov process
= P(XIXg.00) = PXIX0)
e Markov assumption of evidence

- P(ExIXO:t’EO:t-l)z P(E‘IX‘)

Prediction: Separating Time Slices

G
P(X,1€1.41) = P(X411€1.1,8441) (divide evidence)
=aP(e,,IX.1.8.) PX,, 181, (Bayes rule)

=aP(e,IX.,1) P(X.,1le) (Markov property

of evidence)

Predict Next Time Slice from
Current

. |
P(xt+1|el:t+1)

= aP(e,4X,,,J'S P(X,1 K€1) P ley)
=aP(e,;[X.1)S P(X,,,X,) P(x,le..,)

Example: Umbrella Seen on Day 1

P(R,) ={0.5,0.5}

P(Ry|u) =aP(u|R;) SP(R,r,) P(r,)
=a{0.9,0.2} (0.5{0.7,0.3}+ 0.5{0.3,0.7})
=a{04501 G Rain)

={0.818, 0.182}

Example: Umbrella Seen Again on

Day 2
P(Rzlul) = S P(Rzlrl) P(I’1|Ul)
PR |u;, W) = aP(W|R,) P(R|u;)

=2a{0.9, 0.2}(0.818{0.7,0.3}+0.182{ 0.3,0.7})
= a{0.565,0.075} ={0.883, 0.117}




Encapsulate Prediction
(e —

e Repeating actions at each step of time

e Formalize as procedure
- P(X,;1€,..s1) = FORWARD(previous state set,
new evidence set)
e Only need to pass message from previous
time step
- f,....= @a FORWARD(f, .e,,,)
e Can forget about previous times

Smoothing: Break into data before
and after

N
P(X, le;.1) = P(X, [eyy &iq,) (divide evidence)
=aP(Xley,) P X e) (Bayesrule)
=aP(X,le;) PE.1.X,) (Markov Indep.)

= afl:k bk+l:t

Backwards message

C
P(Xic+1:1180)

= §kF1)(ek+l:t |Xk’xk+l) P(Xk+1lxk) (COﬂd. on Xk+1)
:§ P81t K1) Py IX) (Markov indep.)

k+1

:§kFl’(ek+1 Er2:tPiern) POt X
=S P(ek+1 |Xk+1) P(ek+2:tlxk+1) P(Xk+1 |Xk)

Xk+1

Backwards procedure
. |

e Repeating actions at each step of time

e Formalize as procedure
- P(ey.14X) = BACKWARD(next state set, future
evidence set)
e Message passing goes backwards in time

- bk+1:t= BACKWARD(bk+Z:1’ek+1::)

Example: Was it really raining
day 1?
PLIR) = 5 P(LI,) Plu,lry) PrIRy)
= (0.9¥1%{0.7,0.3})+(0.2* 1*{0.3,0.7})
={0.69, 0.41}

I:)(Rllul:Z) = afl:l b2:2 @

Forward-Backwards Algorithm
. |

e Save FORWARD values at each time step

e Each time new data arrives, recompute
BACKWARD values.

e Time Complexity O(t)

e Space Complexity O(t)

e Both can be bounded if only care about last k
slices.




Demo: Battery Meter Model

Has] oD
t] 1.0 BMeter,
f 10.001

Exact Inference in DBNs

e There are some additional difficulties with

exact inference in DBNs
- The factors grow to include all the states which
sharply decreases the advantage over HMMs

- Constant memory requirement

Approximate Inference

(e —

e While a number of inference algorithms exist
for the standard Bayes Net, few of them
adapt well to the DBN.

e One that does adapt is Particle filtering, due
to its ingenuitive use of resampling

- Particle filtering deals well with hybrid state

e Sampling has trouble with unlikely events

Learning

. |
e The three components of a BN
- the probabilities
- the structure
- the variables
can all be learn automatically, though with
varying degrees of complexity

Probability learning
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How do we generate the Network?

. |

e The network contains variables, edges and
probabilities all of which need to be known
ahead of time.

e Given all the variables and their
relationships, it is relatively easy to estimate
the probabilities from sample data, even if
that sample data does not include every
variable.




Structure Learning
(e —
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Structure Learning
. |

e Given the variables only, we can guess a
structure, learn parameters for that structure
and then rate it based on how well it
“predicts” the data.

e Care must be taken not to overfit.

e Search the structure space with greedy-
ascent on this rating

e Randomization helps avoid local maxima

Hidden Variable Learning

~ ~ —
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Applications
(e —

e Windows printer troubleshooter and goddamn paper-clip

@ Help and Support Center

Hidden Variable Learning
. |

e Given a subset of the variables, generate
new variables, structure and parameters.

e Greedy ascent on the output of Structure
learning.

e Some risk of overfit

More exciting applications
. |

e Speech and Vision recognition
- Fewer parameters than traditional HMMs mean
better learning
- Allows for easier experimentation with intuitive
(i.e. hand coded) hierarchical models




In Depth Training

G

e Since the DBN model doesn’t make a
distinction between observed variables and
hidden variables, it can learn a model with
access to data that we don’t have during
prediction.

e For example, in Speech Recognition,
- We know that sounds are made by the pose of

the lips mouth and tongue

- While training we can measure the pose

Isolated Word Recognition
. |

7

AN

WER | # Param.
Acoustics Only (bascline) 9.8% 31488
2 Discrete Articulatory Values | 8.5% 62976
4 Discrete Articulatory Values | 7.7% 126690
8 Discrete Values | 84% | 257070

Recall a few important points
(e —

e Bayesian networks are an arbitrarily expressive model for joint
probability distributions
e DBNs can be more compact than HMMsand therefore easier to
learn and faster to use
e Dynamic Bayesian networks allow for reasoning in a temporal
model
- Tolerant of missing data, likewise able to exploit bonus data
- Computationally, the compactness advantage is often lost in exact
reasoning
e Particle Filters are an alternative for exploiting this
compactness as long as the important probabilities are large
enough to be sampled from.
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