
Cognitive Game Theory 

Inductive Adversary Modeling 
Evolutionary Chess 

Alpha-Beta minimax search 

Jennifer Novosad, Justin Fox and Jeremie Pouly 

Our lecture topic is cognitive game.


We are interested in this subject because games are a simple representation 

of reality on which we can test any concept developed in artificial intelligence. 

For this reason games have always been considered as an attractive 

framework for new developments.


Our talk in divided in three parts:


• Jeremie will first give a quick review of the minimax search and present a few 
improvements including alpha-beta cutoffs, transposition table and move 
ordering. He will also introduce the two demonstrations of the lecture. 

• Jennifer 

• Justin 
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Motivation 

• Good benchmark 

• Computer can beat humans 

• Fun 

• $ 

– Similar to military or financial domains 
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Reasoning Techniques for Games 

Games 

Search Statistical 
Inference 

Bayesian 
Nets 

Hidden 
Markov 
Models 

Minimax/ Evolutionary 
Algorithms … … Adversary 

modelAlpha-Beta 
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Cognitive Game Theory 

• 

• 

• 

Alpha/Beta Search – Jeremie 

Adversary Modeling – Jennifer 

Evolutionary Algorithms – Justin 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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Cognitive Game Theory 

• Alpha/Beta Search 

• Adversary Modeling 
• Evolutionary Algorithms 

– Minimax search 
– Evaluation function 
– Alpha-Beta cutoffs 
– Other improvements 
– Demo 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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Adversarial search 

• Max & Min 
– Max wants to win 
– Min wants Max to loose 

Initial Board Situation 

New Board 
Situations 

1 0 
Win Loss Draw Loss 

MAX 

MIN 

MAX 

: 
: 
: 

Two-person games: Players = 

Final Board Situations - End Games 

-1 -1 
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• Basic Assumption 

• 

• 

Minimax search 

Strategy: 
– MAX wants to maximise its payoff 
– MIN is trying to prevent this. 

MiniMax procedure maximises MAX’s 
moves and minimises MIN’s moves. 
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An example 

1 1 0 

a 

b 

d 

c 

e f g 

MAX 

MIN 

Terminal 
States 

1 

1 

Best value for MAX is 1 

-1 

-1 
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• If terminal state then return payoff 

• then use MINIMAX on 
the children and return the maximum of 
the results. 

• Otherwise (MIN node), use MINIMAX 
on the children and return the minimum 
of the results. 

Function MINIMAX (called at each node): 

Minimax recursive procedure 

Else if MAX node 
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Problems 

• m) 
b branching factor and m depth of the terminal states 
(Chess, b=35, m=100 � 35100»10154 nodes to visit) 

• Not possible to search the full game tree 

Cutoff the tree at a certain depth 

• But payoffs defined only at terminal states 

Time complexity: O(b
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Cognitive Game Theory 

• Alpha/Beta Search 

• Adversary Modeling 
• Evolutionary Algorithms 

– Minimax search 
– Evaluation function 
– Alpha-Beta cutoffs 
– Other improvements 
– Demo 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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Heuristic evaluation function 

• Estimate the chance of winning from board 
configuration. 

• Important qualities: 
– Must agree with terminal states 
– Must be fast to compute 
– Should be accurate enough 

• 
Value of all black pieces 
Chess or checkers: Value of all white pieces – 
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Heuristic evaluation function 

Val ???Val = (4*1) – (4*1+1*2) = -2 
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Our evaluation function 

• Normal checker = 
100000 

• 4 parameters (long): 
– King value 
– Bonus central square 

for kings 
– Bonus move forward 

for checkers 
– Bonus for order of the 

moves (*depth/2) 
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Our evaluation function 

• Normal checker = 
100000 

• 4 parameters (long): 
– King value 
– Bonus central square 

for kings 
– Bonus move forward 

for checkers 
– Bonus for order of the 

moves (*depth/2) 

No Bonus 

+ 1*Bonus 

+ 2*Bonus 

+ 3*Bonus 
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Cognitive Game Theory 

• Alpha/Beta Search 

• Adversary Modeling 
• Evolutionary Algorithms 

– Minimax search 
– Evaluation function 
– Alpha-Beta cutoffs 
– Other improvements 
– Demo 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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• Search deeper in the same amount of time 

• 
cannot possibly influence the final decision 

• 
(two searches in parallel: MAX and MIN) 

Alpha-Beta pruning 

Basic idea: prune away branches that 

Similar to the Branch-and-Bound search 
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General case 

: 
m 

n 

MAX 

MIN 

MAX 

MIN 

for MAX then n will never get into play 
will always be chosen in preference. 

If m is better than n 
because m 
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B1 

1 0 

3 12 8 4 4 6 

4 

root 

A3A2A1 

B2 B3 B1 B2 B3 

Best assignment: [A1,B1], value = 3 

Review of Branch-and-Bound 

Var A 

Var B 

= 4 
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• Search game tree keeping track of: 
– Alpha: Highest value seen so far on maximizing level 
– Beta: Lowest value seen so far on minimizing level 

• Pruning: 
: prune parent if node evaluation smaller 

than Alpha 

: prune parent if node evaluation greater 
than Beta 

Alpha-Beta procedure 

– MAX node

– MIN node
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• MIN: minimize board valuation �minimize 

• MAX: maximize board valuation � inverse 

• Prune parent instead of current node 
(stop expanding siblings) 

Branch-and-Bound analogy 

constraints in Branch-and-Bound 

of Branch-and-Bound (but same idea) 
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Example MIN 

3 1 

3 

4 

= 4 

1 0 2 

2 

Min 

Max 

Beta: Lowest value seen so far on minimizing level 

Beta = 3Beta not 
define Beta = 3 

-5 

3 2 
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Example MAX 

3 11 5 

3 

14 

£ 210 

Max 

Min 

Alpha: Highest value seen so far on maximizing level 

Alpha not 
define Alpha = 3 Alpha = 10 

224 10 

3 10 
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Beta cutoffs 

MaxValue ) 

For each Child of Node do 

Return a 

(Node,a,b
If CutOff-Test(Node) 

then return Eval(Node) 

a = Max(a, MinValue(Child,a,b)) 
if a = b then return b 

24




Alpha cutoffs 

MinValue ) 

For each Child of Node do 

Return b 

(Node,a,b
If CutOff-Test(Node) 

then return Eval(Node) 

b = Min(b, MinValue(Child,a,b)) 
if b = a then return a 
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• Effectiveness depends on nodes ordering 

• Worse case: no gain (no pruning) � O(bd) 

• Best case (best first search) � O(bd/2) i.e. 
allows to double the depth of the search! 

• Expected complexity: O(b3d/4) 

Alpha-Beta gains 
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Cognitive Game Theory 

• Alpha/Beta Search 

• Adversary Modeling 
• Evolutionary Algorithms 

– Minimax search 
– Evaluation function 
– Alpha-Beta cutoffs 
– Other improvements 
– Demo 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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Other improvements 

• Nodes ordering (heuristic) 

• Quiescent search (variable depth & 
stable board) 

• Transposition tables (reconnect nodes 
in search tree) 
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Advanced algorithm 
MaxValue ) 

If board already exist in transposition tables then 
if new path is longer return value in the table 

Save board in transposition table 

Find all the children and order them (best first) 
For each Child of Node (in order) do 

if a>=b then return b 
Return a 

(Node,a,b

If CutOff-Test(Node) then 
if quiescent board then return Eval(Node) 

a:=Max(a,MinValue(Child,a,b)) 
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Statistics: opening


Depth Minimax Alpha-
Beta 

+ Move 
ordering 

Quiesc. 
search 

Transpo. 
tables 

Number 
of nodes 

4 3308 278 271 * 2237 

6 217537 5026 3204 41219 50688 

8 15237252 129183 36753 649760 859184 

Search 
time 

4 0 0 0 * 0 

(sec.) 6 3 0 0 0 1 

8 201 1 0 9 12 
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Statistics: jumps available


Depth Minimax Alpha-
Beta 

+ Move 
ordering 

Quiesc. 
search 

Transpo. 
tables 

Number 
of nodes 

4 8484 2960 268 * 5855 

6 695547 99944 2436 170637 172742 

8 56902251 2676433 22383 2993949 3488690 

Search 
time 

4 0 0 0 * 0 

(sec.) 6 9 1 0 2 2 

8 739 34 0 38 46 
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Statistics: conclusions


First move Jumps available 
Depth 8 Basic Advanced Basic Advanced 

minimax algorithm minimax algorithm 

Number of 
nodes 

15237252 4835 56902251 6648 

Search 
time (sec.) 

201 0 739 0 

Gain of more than 99.9% both in time and number of nodes 
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Cognitive Game Theory 

• Alpha/Beta Search 

• Adversary Modeling 
• Evolutionary Algorithms 

– Minimax search 
– Evaluation function 
– Alpha-Beta cutoffs 
– Other improvements 
– Demo 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 

• Getting Chunks 
• Applying Chunks 

ab 

• Evolutionary Algorithms 

– Psychological Background 
– Structure of IAM 

– Results/Application to min-max 
– Flexibility in Other Domains 
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Inductive Adversary Modeler 

• 

Optimally 

• Reduce Computation 
• 

domains 

Incorporate Model of Opponent into aß 
– Currently, Assumes Opponent Plays 

Make aß More Extendable to other 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 

• Getting Chunks 
• Applying Chunks 

ab 

• Evolutionary Algorithms 

– Psychological Background 
– Structure of IAM 

– Results/Application to min-max 
– Flexibility in Other Domains 
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Modeling a Human Opponent 

Textual 
Memory 

Visual 
Memory* 

TimingSymmetry 

OrderContinuation 

VerbatimSimilarity 

Rote 
Memorization 

Proximity 

*From a study by Chase and Simon 
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• Recall Studies, Masters vs. Beginners 
• Frequently Used Pattern 
• Contains Previous Points (Proximity, 

Similarity, Continuation, Symmetry) 
• Used to Encapsulate Information 

Storing Data -- Chunks 
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Modeling a Human Opponent 

• Humans Acquire Chunks 

• Winning Increases Chunk Use 
(Reinforcement Theory) 

• People Tend to Reduce Complexity via 
Familiar Chunks 

3 Assumptions 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 

• Getting Chunks 

• Applying Chunks 
ab 

• Evolutionary Algorithms 

– Psychological Background 
– Structure of IAM 

– Valid Chunks 
– Acquiring Chunks 

– Results/Application to min-max 
– Flexibility in Other Domains 
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Structure of IAM 

Noise 
Filter 

Move 
Predictor Prediction 

Text 
Chunks 

Visual 
Chunks 

Text 
Processor 

Current 
Board 

Prior 
Adversary 

Games 

Visual 
Chunk 

Collector 

Internal 
Chess 
Model 

Partial 
Chunk 
Finder 

Heuristic 
Move 

Selection 
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Valid Visual Chunks 

• Proximity 
• Similarity 
• Continuation 
• Symmetry 

(reduces stored chunks by about 60%) 

- 4x4 grid, adjacent vertically or horizontally 

- same color (exception – pawn structure) 

- pieces defending each other included 

– symmetrical chunks stored as one    
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Visual Chunk Collector 

• 
• After Adversary Move, Search for Valid 

Chunks 

• If Neighbor in Pattern, Convolve 
Recursively 

4 8 16 

2 X 32 

1 128 64 

General 

4 8 16 

2 X 32 

0 128 0 

Pawn 

0 8 0 

2 X 32 

0 128 0 

Rook, Knight 

Internal Board Model – Matrix of Values, X 

– Convolution on Adversary Pieces 
– Store Values in 8x8 Matrix, Y 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Y: 

0 8 0 

2 X 32 

0 128 0 

Rook, Knight 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Y: 

0 8 0 

2 X 32 

0 128 0 

Rook, Knight 

46




Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Y: 

0 8 0 

2 X 32 

0 128 0 

Rook, Knight 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Y: 

0 8 0 

2 X 32 

0 128 0 

Rook, Knight 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 128 0 0 

0 0 0 128 0 0 

0 0 0 0 0 0 

Y: 

0 8 0 

2 X 32 

0 128 0 

Rook, Knight 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 128 0 0 

0 0 0 128 0 0 

0 0 0 0 0 0 

Y: 

4 8 16 

2 X 32 

0 128 0 

Pawn 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 136 0 0 

0 0 0 196 32 0 

0 0 0 128 0 0 

Y: 

4 8 16 

2 X 32 

0 128 0 

Pawn 
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Convolution Example 

X: 

0 0 0 0 0 0 

0 0 0 140 0 0 

0 0 0 202 208 50 

0 0 0 130 158 0 

Y: 
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Chunk Noise Filter 

• Need to Avoid Random Chunks 

big tactical effect 

• Requires Chunk Appears in 2+ games 

• If so, Store as a Known Chunk 

– chess noise tolerant – small changes have a 

– 28/272 patterns repeated twice (Botvinnik, 
Hauge-Moscow Tournament) 

– store color, time in game, if won or lost game 
– frequency of occurrences, etc 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 

• Getting Chunks 
• Applying Chunks 

ab 

• Evolutionary Algorithms 

– Psychological Background 
– Structure of IAM 

– Finding Possible Chunks 
– Evaluating likelihood of move 

– Results/Application to min-max 
– Flexibility in Other Domains 
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Structure of IAM 

Noise 
Filter 

Move 
Predictor Prediction 

Text 
Chunks 

Visual 
Chunks 

Text 
Processor 

Current 
Board 

Prior 
Adversary 

Games 

Visual 
Chunk 

Collector 

Internal 
Chess 
Model 

Partial 
Chunk 
Finder 

Heuristic 
Move 

Selection 
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Guiding Assumption: 

• If a Partial Chunk is 1 move from 
Completion, the Opponent is likely to 
make that move 

• Uses Pattern Recognition 

• Uses Rule Based Heuristics 

– Find Partial Chunks to get Likely Moves 

– Evaluate Belief in Each Likely Move 
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Finding Partial Chunks 

• For Each Adversary Piece 
• For Each Chunk that Fits on the Board 

State of the Board, (not Including Wildcards) 
• Check if any Move can Complete the Chunk 

• Return All Completing Moves to the Move 
Selection Module 

– If One Difference Between Chunk and the 
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Example


Prediction 
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Heuristic Move Selection 

• Rule Based Heuristic Algorithm 
• Gives a Measure of Belief in Each Move 
• Initial Belief = Frequency of Chunk 
• Each Heuristic Adds/Subtracts 
• Examples: 

• Favor Large Patterns 
• Favor Major Pieces 
• Favor Temporal Similarity 
• Eliminate Move if Adversary just dissolved this 

pattern 
• Favor Winning Patterns 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 

• Getting Chunks 
• Applying Chunks 

ab 

• Evolutionary Algorithms 

– Psychological Background 
– Structure of IAM 

– Results/Application to min-max 
– Flexibility in Other Domains 
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Results 
Belief In Prediction 

Number < 25% 25-30% 30-40% 40-50% >50% 
Games 

12 
(16.1%) 

5/31 

(44.4%) 

4/9 

(50%) 

3/6 

(60%) 

3/5 

(75%) 

3/4 

22 
(12.7%) 

6/47 

(42.8%) 

3/7 

(50%) 

3/6 

(75%) 

3/4 

(100%) 

3/3 

80 
(16.6%) 

6/36 

(50%) 

3/6 

(100%) 

3/3 

(100%) 

3/3 

(100%) 

3/3 
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ab 

• Used to Prune Search Tree 

• 

Results -- Min-Max 

– Develop Tree Along More Likely Moves 

Average Ply Increase – 12.5% 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 

• Getting Chunks 
• Applying Chunks 

ab 

• Evolutionary Algorithms 

– Psychological Background 
– Structure of IAM 

– Results/Application to min-max 
– Flexibility in Other Domains 
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Flexibility in Other Domains 

• Applicable to Other Domains 

• Requires a Reworking of Visual Chunk 
Convolution Templates 

– Requires Competition, Adversary 

– Military, Corporate, and Game Tactics 
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Cognitive Game Theory 
• Alpha/Beta Search 
• Adversary Modeling 
• Evolutionary Algorithms 

for chess evolution 

– Intro to Evolutionary Methodology 
– Small Example – Kendall/Whitwell 
– Evochess – Massively distributed computation 
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Evolutionary/Genetic Programs 

• Create smarter agents through mutation and crossover 
Mutation: “Random” change Crossover: Swapping of 
to a set of program statements statements between players 

• Applications in innumerable fields: 
– Optimization of Manufacturing Processes 
– Optimization of Logic Board Design 
– Machine Learning for Path Planning/Scientific Autonomy 
– CHESS!!! ☺ 

Starting from randomly created and very weak programs, 
evolutionary algorithms seek to create stronger or smarter programs by 
mimicking the principles of natural selection and of general biology.  Weak 
programs are forced to compete with one another at a specified task.  The 
losers are destroyed while the winners are retained. In place of the losers, 
modified copies of the winners are also created. These copies are created 
from the originals either through mutations (a random change or changes in 
the program’s statements or structure) or through crossover (a transfer of 
information between two “strong” programs with the objective of discovering an 
even better combination of information). 

Such programming techniques have been used frequently in 
fields such as manufacturing, circuit-board design, and of course, chess.  For 
more information on other applications of genetic programming and 
evolutionary algorithms, feel free to consult: 

Kojima, et. al. An Evolutionary Algorithm Extended by Ecological Analogy to 
the Game of Go. Proceedings 15 Intl. Joint Conf. on AI, 1997. 

Koza.  Genetic Programming. Encyclopedia of Computer Science and 
Technology. 1997. 

Zbigniew.  Evolutionary Algorithms for Engineering Applications. 1997. 

66 



Evolutionary Paradigm 

• Start with random population of chess 
players: 

Let us walk through a simple, abstracted example to illustrate 
concretely the methodology we will be using. 

In the slide above, there are six randomly created blobs. Some 
blobs are already smarter chess players than the others simply by random 
luck. (For example the blob in the lower right corner doesn’t even have eyes, 
so probably will not be as good at chess as the others!) 

These six blobs may represent entire chess-playing programs 
(as in the case of the EvoChess project) or merely a certain portion of such a 
program (as in the Kendall/Whitwell evaluation function example we’ll see in a 
moment). 
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Evolutionary Paradigm 

•	 Population plays games against each 
other: 

We take this original population and allow it to compete. For 
example, we could have each blob play a best of 3 chess match against every 
other blob. Or (as is illustrated above) we could perform pairwise comparisons 
between the various blobs. Each pair of blobs could play a best of 3 match 
and the results would be recorded. 
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Evolutionary Paradigm 

•	 Losers are killed and removed from 
population: 

Those blobs who lost two of three games would then be culled 
from the population (as demonstrated by the blood splats above). The 
assumption here being that these weaker blobs represent areas of the space 
which are no longer productive to explore. The stronger blobs, on the other 
hand, represent areas of the space which may yield even stronger players if 
we continue to explore players similar to them. 
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Evolutionary Paradigm 

•	 Winners mate and have (possibly 
mutated) offspring: 

Pure 
mutation 

To maintain the population size and also to ensure that we are 
not only exploiting the space, but also exploring it, we use the biological 
models of mutations and crossovers to create new chess players starting from 
the features of the strongest blobs remaining in the population. 

The slide above demonstrates that sometimes these newly-
created blobs can move closer to the optimal chess player (as denoted by the 
pictures of myself and Professor Brian Williams) and that sometimes the 
newly-created blobs can be de-evolved versions of the former player, moving 
farther from the desired intelligent agent and becoming something much 
worse. 
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Evolutionary Paradigm 

• New Population Competes: 

The new population, which at worst contains algorithms of the 
same strength as the previous generation and at best contains algorithms of 
better strength, is again allowed to compete. In the example above, it is 
discovered that Professor Williams is a more capable chess player than either 
myself, Bill Gates, or the three remaining blobs. Who knew? 
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Evolutionary Paradigm 

•	 Eventually the population converges, 
mutations become reduced, and the whole 
population converges: 

As time goes by, mutations are allowed to become less and less 
severe or frequent. This drives the population to converge. When the 
differences between the population’s performance become slight or when 
some other relevant stopping criteria has been met, the best player within the 
population is declared the “most evolved” player. This evolved player is 
usually much stronger than the original weak blobs that were started with, and 
yet minimal domain-specific knowledge has been required of the programmer.  
Using this technique, a programmer could easily develop a chess program that 
not only had greater computational search resources available to it, but could 
also conceptually understand the game better than the programmer himself.  
Such a result is extremely intriguing and useful in many real-world 
applications. 

In the case above, we see that eventually our population of blobs 
has converged to become the great Gary Kasparov. Now THAT’S a powerful 
algorithm. 
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Cognitive Game Theory 

• Alpha/Beta Search 
• Adversary Modeling 
• Evolutionary Algorithms 

for chess evolution 

– Intro to Evolutionary Methodology 
– Small Example – Kendall/Whitwell 
– Evochess – Massively distributed computation 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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Evolution Example 

• Kendall/Whitwell 
– Evolve an Evaluation Function for Chess 

Through Mutation and Self-Competition 

In this paper, the authors present a method by which an 
evaluation function for chess can be created. (Evaluation functions are 
covered earlier in the talk by Jeremie Pouly, but in brief are a method by which 
a computer chess player can discern how “good” or “bad” he is doing given a 
certain chessboard configuration.) These evaluation functions are generally 
the hardest part of a chess program for a programmer to create because they 
require the incorporation of expert knowledge which may be unavailable or 
very painstaking to obtain. Because of its domain-independent learning 
capability, evolutionary algorithms are perfectly suited to the task of evaluation 
function creation. 

Kendall and Whitwell defined their evaluation function as a 
weighted sum of the difference in the numbers of each piece along with a 
seventh value representing the number of available moves for a given player.  
The authors chose to incorporate as much domain-knowledge as they had in 
order to limit the scope of their algorithm, but this in general would not be 
necessary. They could have started from an even more general function with 
zero chess knowledge, though the convergence to a suitable player might 
have been extremely time-consuming.    
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Mutation 
• Explore the space 

s

• 
• s
• 

• 0 and 2 : if function won both games (as white and black) 
– Leave function alone and replace losing function with mutant of 

winner 
• .2 and 1 : if function won one game and drew the other 

– Mutate winner by .2 and replace losing function with mutant of 
winner 

• .5 and .5 : if both games were a draw 
– Mutate both functions in place 

w(y) = w(y) + (RAND[-.5,5] X (y) X winloss_factor) 

w(y) is an evaluation function’s weight for piece y. 
(y) is the standard deviation of weight y in population. 

winloss_factor = 

Given this general evaluation function, the authors created a 
random population of chess players (all of which were simple alpha-beta 3-ply 
searchers) and started the evolutionary process by performing competitions.  
After each competition the loser was completely erased from memory.  In its 
place, a copy of the winner was placed with slight mutations. 

The slide above shows the equation for performing mutations. 
Basically it consists of adding or subtracting a random value to the weights for  
a certain piece. This value is scaled depending on the outcome of the 
competition preceeding the mutation.  If the winning algorithm won both 
games, one copy is left unchanged while the other is mutated by a large factor.  
This ensures that while we hold onto the currently strongest players in the 
population, we also continue to broadly search the space for better options.  If 
the winning algorithm won one game and tied the other game, one copy is 
changed slightly and the second copy is changed by a moderate factor, again 
in the hopes of further improvement. In the case where the match was a draw, 
both algorithms are changed by a moderate factor and replaced in the 
population. The final scaling factor in the mutations, and the innovative portion 
of Kendall and Whitwell’s work, is the standard deviation of the population.  
This provides an intrinsic method by which to reduce the severity of mutations 
as the population begins to converge. Previous methods had used an 
extrinsic relationship (such as a function which exponentially decreased with 
time) that required hand-tuning in order to obtain the proper mutation level at 
different stages in the evolution. 
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Results 
Standard Chess Weights 

Evolved Player 

• The evolved player approximately 
finds the standard chess weightings 

• The Table below shows how much 
better the evolved player rates on an 
objective scale. 

Unevolved Player 

This algorithm is shown to be quite capable of creating a useful 
chess evaluation function. On the left, the first table represents standard 
weightings discovered by human experts through countless years of play.  The 
second table represents the initial randomized weights of the population used 
by Kendall and Whitwell, and the bottom table represents the weights evolved 
using the evolutionary algorithm discussed above. It is seen that these 
weights closely resemble the standard chess weightings. (The authors did not 
conduct a study to determine if the evolved weights actually performed better 
than the standard human weights. This is, however, not really the point of the 
evolution. We would hope to apply evolution to situations in which human 
domain knowledge is unavailable, not improve upon existing knowledge.)  

To the right a table depicts the level of the unevolved chess 
player based on the United States Chess Federation’s rating scale.  It is seen 
that the player with random weights performed a full five classes worse than 
the evolved player. The evolved player reaches a level bordering on expert.  

This vivdly demonstrates that evolutionary algorithms are a 
powerful and viable method for creating artificial intelligence. (After all, it is 
likely that evolution created human intelligence, why shouldn’t it be able to do 
the same for computers!) 
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Cognitive Game Theory 

• Alpha/Beta Search 
• Adversary Modeling 
• Evolutionary Algorithms 

for chess evolution 

– Intro to Evolutionary Methodology 
– Small Example – Kendall/Whitwell 
– Evochess – Massively distributed computation 

We return to the outline to note that the next section of this talk 
will now focus on a still small, but more detailed and less abstract example of 
how evolutionary algorithms may be applied to create chess players.  This 
example can be found in the paper: 

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess 
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress 
on Evolutionary Computation. 
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algorithms 

What is EvoChess? 

A distributed project to evolve better chess-playing 

The final portion of this talk focuses on the EvoChess project 
developed by Gross, Albrecht, Kantschik, and Banzhaf.  This project marked 
the first massively distributed evolution of a chess-playing program and is still 
arguably one of the most ambitious evolution projects ever undertaken.  Like 
familiar SETI programs, EvoChess allowed internet users from around the 
world to download a chess-evolving client onto their PC and maintain a local 
population of evolving chess players which could be accessed by a central 
server which performed the necessary interactions between different users’ 
populations. 
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Basic Architecture 
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User’s Computer 

• 

• 
(population) is created 
locally. 

• 
calculated and sent to the 
server 

• Server acts as a chess 
“dating service” 

“q
oo

py
” 

User downloads “qoopy” 

Random “deme” 

Deme’s Fitness is 

The general operation of the EvoChess algorithm is shown 
above. An internet user first downloaded the necessary distributed 
architecture known as “qoopy” onto his home computer.  This program created 
a small population of chess-playing individuals on the local machine.  These 
programs were allowed to compete against a number of standardized chess-
playing algorithms and their fitness was calculated relative to these standard 
programs. Information about this population, specifically the genotype of its 
strongest player, were then sent back automatically to the main EvoChess 
server. This server then acted as a “dating service,” sending the best 
genotypes back out to weaker populations as “mating” partners. In this way, 
information was transferred from population to population and on average, the 
entire EvoChess population began to grow smarter.       
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Basic Individual 

• 
algorithm 
– Limited to search an average of 100,000 nodes 

• The algorithm contains three modules which 
may be targeted for evolution 
– Depth module: Returns remaining search depth for a 

given node 
– Move Ordering module: Arranges moves in a best 

first manner to aid ab pruning 
– Evaluation module: Evaluation of given position 

An individual is again an alpha-beta search 

The basic chess-playing individual used in the EvoChess project 
was a very ambitious one. It consisted of a basic alpha-beta search algorithm.  
However, instead of being depth-limited, the algorithm was merely limited to 
search an average of 100,000 nodes per move. 

Three main portions of the player could feel the effects of 
evolution. The depth module rated different branches of the search as 
“interesting” or “fruitless” and chose whether to spend nodes on further 
searching or abandon a particular alpha-beta branch.  The move-ordering 
module selected the order in which the various possible moves available to a 
player at a given time were explored. An intelligent ordering of moves can 
greatly decrease the size of an alpha-beta tree by allowing earlier pruning.  
Finally, like in the Kendall and Whitwell example, an evaluation module was 
needed which could determine how “good” or “bad” a certain board 
configuration appeared to a player. EvoChess’s evaluation function, however, 
contained over twenty different parameters of interest, making it a great deal 
more complicated than the early authors’ function. 
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Depth Module 

Functions Allowed 

• Only a few basic functions 
were allowed in the depth 
module 

• Module consisted of random 
combinations of these with 
variables 

• From gibberish to chess 
player! 

One of the most interesting and ambitious portions of the player 
was the depth-module.  This module relied on genetic programming 
techniques. It originally began as a random arrangement of functions and 
literals from a finite set (the functions available are depicted in the table 
above.) The initial depth modules of first generation players were therefore 
usually just complete gibberish. While most authors usually attempt to speed 
convergence by applying domain knowledge to limit the scope of a program, 
EvoChess used an absolute minimum of information in its original random 
depth modules. 

This ambitious move was successful because of the vast amount 
of resources available to the project. The chances of creating an even semi-
viable depth module given only 100 population members would be vanishingly 
small, but when over 1,000,000 internet users downloaded EvoChess and 
created small populations of their own, the probability became appreciable.  
Indeed, the final evolved players at the end of the project had evolved a very 
complicated, intricate depth module that was efficient and powerful. 
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Evaluation Function Parameters 

Much more complicated function than Kendall/Whitwell 

This slide shows the various parameters included in the 
EvoChess evaluation function.  I show it for two reasons. First of all, given the 
complexity of this function and the rest of the chess-players it still astounds me 
that EvoChess was able to achieve a converged evolved solution of such 
prowess starting from initially random players. Secondly, for those who are 
interested, this is a fairly comprehensive list of the most important evaluation 
function parameters for creating algorithms that play chess. The inclusion of 
certain parameters is often disputed of course as well as their relative 
weightings. It is notable that these disputes can easily be settled through the 
use of evolutionary algorithms. 
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Some Results 

Number of nodes searched by evolved individuals is 
~100 times less than simple ab algorithm and ~10 

times less than the optimized f-negascout algorithm. 

Once the EvoChess population had significantly evolved, it 
yielded exciting results. The graph above shows that a simple alpha-beta 
algorithm searches about 100 times more nodes than the EvoChess evolved 
individual, and even the state-of-the-art f-negascout algorithm searched 10 
times more nodes. And yet the EvoChess individual can consistently defeat 
the f-negascout algorithm playing at a depth of 5-ply.  (Since the EvoChess 
algorithm was limited to only 100,000 nodes, it would be expected to lose to an 
f-negascout that was allowed to search more than 1,000,000 nodes or more.  
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• First and largest massively distributed 
chess evolution 

• 
game 

• Ambitious project 

gibberish 

EvoChess Firsts 

Qoopy architecture can be used for any 

– Depth Module starts completely from 

– Number of terms in evaluation function and 
move-ordering enormous 

This slide recaps some of the major points I highlighted about 
EvoChess and why it was an innovative, significant project.  First of all, it was 
the first internet-distributed chess evolution program of its kind.  Its ambitious 
nature makes it a difficult stunt to top. A second benefit of this project was the 
development of the qoopy architecture.  With only minor recoding, this 
architecture can easily be used to model the internet-evolution of other 
problems beside chess. Along with other board games that the authors of 
EvoChess have proposed, I would put forth the possibility of evolving things 
like future Mars mission parameters through such a distributed framework.  If 
each user could help evolve a mission trajectory or mission architecture, 
perhaps an interesting optimum not yet thought of by humans could be 
reached. Finally, I re-emphasize that EvoChess was a very ambititous 
evolution project. Starting the depth modules from completely random 
gibberish was a daring move that aptly demonstrated the awesome power of 
genetic programs and must serve to silence many skeptics. 
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Sources 
• 

– 

• Section 2: Inductive Adversary Modeler: 
– 

– 
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 

• Section 3: Evolutionary Algorithms 
– Kojima, et. al. An Evolutionary Algorithm Extended by Ecological Analogy to the 

Game of Go. Proceedings 15 Intl. Joint Conf. on AI, 1997. 
– Genetic Programming. Encyclopedia of Computer Science and 

Technology. 1997. 
– Evolutionary Algorithms for Engineering Applications . 1997. 

Section 1: Alpha Beta Mini-Max: 

S. Walczak (1992) Pattern-Based Tactical Planning. International Journal of 
Pattern Recognition and Artificial Intelligence 6 (5), 955-988. 
S. Walczak (2003) Knowledge-Based Search in Competitive Domains IEEE 

3, 734 – 743 

Koza.  

Zbigniew.  
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