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R@de Estimation:
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component modes that are
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consistent with the model and

Mode Reconfiguration: \

Select a least cost set of
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modes that entail the current
goal, and are consistent

State estimates _k
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arg max R(Y)
s.t. P(X,Y) entails G(X,Y)
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Constraint Satisfaction Problem

CSP = <X, D,,C>
= variables X with domain Dy
= Constraint C(X): Dy — {True,False}

Find X in Dy s.t. C(X) is True
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Optimal CSP

OCSP= <Y, g, CSP>
= Decision variables Y with domain Dy
= Utility function g(Y): Dy —> R
= CSP is over variables <X,Y>

Find Leading arg max g(Y)
Y eD,

s.t. 3 X € Dy s.t. C(X)Y) is True

=» Frequently we encode C in propositional state logic

=> g() is a multi-attribute utility function that is

preferentially independent.
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CSP Frequently In
Propositional Logic

(mode(E1) = ok implies
(thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

/N
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Multi Attribute Utility Functions

a(Y) = G(91(y4), 92(¥2), - - )

where
G(u, U, ...u,) =G(u,G(u, ... u,))
G(uy) = G(uy, lg)

Example: Diagnosis
gi(y;=mode;) = P(y; = mode;)
G(uq,uU,) = Uy X U,

g =1
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Mutual Preferential Independence

Assignment O, Is preferred over 62
if 9(04) < g(0,)

For any set of decision variables ,
our preference between two assignments to

Is Independent of the assignment to the
remaining variables
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Mutual Preferential Independence

Example: Diagnosis
= If M1 = G is more likely than M1 = U,

= Then,
M1 =G, }

*|s preferred to
M1 = U, ]
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Reconfiguration via arg max Rt(Y)

Conflict Learni ng s.t. P(X,Y) entails G(X,Y)
s.t. ¥(X,Y) 1s consistent

Goal: Achieve Thrust |

o ESE «:><>«
T e
.' .'. H—.IH—u .I.:. .:.IQ.‘

A conflict is an assignment to a subset of the control variables

that entails the negation of the goal.
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Approximate PCCA Belief State Update

%I ns Model Camera Model

0
(thrust = (power _in off .

zero) AND ¢
(povf/er in : standby -Az,fero) O. —001%, .Q

= cmd
a||ed (shutter =
(thrust = andby closed)  tumoff{ [ turnol
P4 AT standby-fire smd || cpd  0.01
(power_in = cmd 001 % (power _in =

nofifnatt = nomina) AN O@) 2

full) AND Flrlng (shutter =
(power _in = Nnen

*Assigns a value to each variable *A set of concurrent transitions, one per
(e.g.,3,000 vars). automata (e.g., 80).

*Consistent with all state *Previous & Next states consistent with

constraints (e.g., 12,000). source & target of transitions
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Belief State Propagation

= Propagation Equation
propagates the system dynamics
P(sz-—l_l

|O<O,t>7 M<O’t>) —

1 J—
2 <P(3§'+ |st, P (st|o<0t>, <0t 1>)>

= Update Equation
updates prior distribution with observations

<0,t+1> |, <0, >\ __
—l_ 7:“ )_

P (st <0, t> <O,t>) -P(0t+1|3§-+1)

o

J

t+1 t+1
S tiegt PO |o<0¢>,u<0at>>P<ot+1|sz-+ )
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Best-First Belief State Enumeration

* Enumerate next state priors in best first order
 Evaluate likelithood of partial states using
optimistic estimate of unassigned variables.

1) ¢
Z ( (tJr ‘5“#) (s ‘ t <0f> H<Ot 1>)>
stest

=Y 1] (P(IZJrl—v\aza—vu))P( 108> <01y

_ U,‘SC% _ U:Nt) P(85‘0<0,t>’u<0,t—1>)

cost so far, g optimistic estimate of the cost to go, h
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A*

N\

Increasing A

Cost (/

Infeasible

Vet Feasible
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A* Search: Search Tree

Problem: State Space Search Problem

= 0O Initial State

= Expand(node) Children of Search Node = next states

= Goal-Test(node) True if search node at a goal-state

h Admissible Heuristic -Optimistic cost to go

Search Node: Node in the search tree
= State State the search is at
= Parent Parent in search tree
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A* Search: State of Search

Problem: State Space Search Problem

= 0 Initial State

= Expand(node) Children of Search Node = adjacent states

= Goal-Test(node) True if search node at a goal-state

= Nodes Search Nodes to be expanded

= Expanded Search Nodes already expanded

= |nitialize Search starts at ©, with no expanded nodes
d(state) Cost to state

h(state) Admissible Heuristic-Optimistic cost to go

Search Node: Node in the search tree

= State State the search is at

= Parent Parent in search tree

Nodes[Problem]:

= Enqueue(node, f) Adds node to those to be expanded

= Remove-Best(f) Removes best cost queued node according to f

2/22/2005 copyright Brian Williams, 2002 17



A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(X) <« g[problem](x) + h(x)
loop do Expand

best first

node < Remove-Best(Nodes[problem], f)

new-nodes <« Expand(node, problem)
for each new-node in new-nodes

then Nodes[problem] < Enqueue(Nodes[problem], new-node,

f)

end
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A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(X) <« g[problem](x) + h(x)
loop do Terminates
if Nodes[problem] is empty then return failure when . . .
node < Remove-Best(Nodes[problem], f)

new-nodes <« Expand(node, problem)
for each new-node in new-nodes

then Nodes[problem] <~ Enqueue(Nodes[problem], new-node,
f)
if Goal-Test[problem] applied to State(node) succeeds
then return node

end
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A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.

f(X) <« g[problem](x) + h(x) Dynami C
loop do :
if Nodes[problem] is empty then return failure Programmmg
node < Remove-Best(Nodes[probleml], f) Principle . ..

state < State(node)
remove any n from Nodes|[problem] such that State(n) = state
Expanded|[problem] < Expanded[problem] u {state}
new-nodes <« Expand(node, problem)
for each new-node in new-nodes

unless State(new-node) is in Expanded[problem]

then Nodes[problem] <~ Enqueue(Nodes[problem], new-node, f)

if Goal-Test[problem] applied to State(node) succeeds

then return node

end
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Conflict-directed A*

N\

Increasing
Cost
O O O
Infeasible
@) @) @)
© ©1° Feasible
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Conflict-directed A*
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Conflict-directed A*
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Conflict-directed A*

N\

Increasing
s o |l o o Conflict 1
Infeasible
e | o Conflict 2
© °1° Feasible
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Conflict-directed A*

N\

Increasing
s o |l o o Conflict 1
Infeasible
O @ O Conflict 2
© @ o Feasible
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Conflict-directed A*

N\

Increasing
s o | ol o Conflict 1
Infeasible
O | @ Conflict 2
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Conflict-directed A*

N

Increasing
s Y [eof o Conflict 1
Infeasible
©| © Conflict 2
© Feasible

€ J01JU0)
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Solving Optimal CSPs
Through Generate and Test

Leading Candidates

Conflict-directed A*
Based on Cost

Incremental Sat

No
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Conflict-directed A*

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.

Conflicts[OCSP] < {} Conflict-guided
OCSP « Initialize-Best-Kernels(OCSP) Expansion
Solutions[OCSP] « {}

loop do

> decision-state < Next-Best-State-Resolving-Conflicts(OCSP)

) new-conflicts <~ Extract-Conflicts(CSP[OCSP], decision-state)
— Conflicts[OCSP]

<« Eliminate-Redundant-Conflicts(ConflictsfOCSP] U new-conflicts)
end
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Conflict-directed A*

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.
Conflicts|OCSP] « {}
OCSP <« Initialize-Best-Kernels(OCSP)
Solutions[OCSP] « {}
loop do
decision-state < Next-Best-State-Resolving-Conflicts(OCSP)
) if no decision-state returned or
Terminate?(OCSP)
then return Solutions[OCSP]
) if Consistent?(CSP[OCSP ], decision-state)
then add decision-state to Solutions[OCSP]
new-conflicts <— Extract-Conflicts(CSP[OCSP], decision-state)
Conflicts[OCSP]
<« Eliminate-Redundant-Conflicts(ConflictsfOCSP] U new-conflicts)
end
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Conflict-directed A*

* Feasible subregions described by kernel assignments.

\ = Approach: Use conflicts to search for kernel
assignment containing the best cost candidate.

Increasing
s Y [eof o Conflict 1
Infeasible
o1 © Conflict 2

Feasible
Kernel 3

€ J01JU0)
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Mapping Conflicts to Kernels

| X
|

_I— [
E

¥

W NN W

S 12

W wWw NN W

Y
Z

.

Contflict C;: A set of decision variable assignments that are
inconsistent with the constraints.

Constituent Kernel: An assignment A that resolves a conflict C..
A entails [1 — C,

Kernel: A minimal set of decision variable assignments
that resolves all known conflicts C.

A entails [] = C,forall C; in C
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Mapping conflict to constituent kernels
Conflict:  {M1=G, M2=G, A1=G}

—(M1=G A M2=G A A1=G)
i B
M1=U v M2=U v M3=U

i B
Constituent Kernels: {(M1=U, M2=U, A1=U}
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Composing Constituents
Kernels of Every Conflict

6 Y
: I 12\ 1 X
—_— , .’I.Ol 10

Constituent Kernel: An assignment A that resolves a conflict C..
A entails [] — C,

T ¥

L
g

S 12

W MNDDDND W

I P F
SHE"H
W W N DN W

Y
Z

Kernel: A minimal set of decision variable assignments
that resolves all known conflicts C.
A entails [] - C, forall C, in C

= Constituent kernels map to kernels by minimal set covering
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Extracting a kernel's best state

= Select best utility value for unassigned variables (\Why?)

IM2=U)})

B
M1=7? A M2=U A M3=? A A1=? A A2="

. B
M1=G A M2=U A M3=G A A1=G A A2=G
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Next Best State
Resolving Conflicts

function Next-Best-State-Resolving-Caonflicts(OCSP)
mm) | best-kernel < Next-Best-Kernel(OCSP)
It best-kernel = tailure
then return failure
mm)  clse return kernel-Best-State[problem](best-kernel)
end

function Kernel-Best-State(kernel)
unassigned « all variables not assigned in kernel
return kernel C {Best-Assignment(v) | v € unassigned}
End

function Terminate?(OCSP)
return True iff Solutions[OCSP] is non-empty

Algorithm for only finding the first solution, multiple later.
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Example: Diagnosis

gu

Assume Independent Failures:

" Pg(mi)>> Pumi

- I:)single e I:)double

" Pumz) > Pumit) = Pumsy > Puany > Puag)

2/22/2005 copyright Brian Williams, 2002
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First lteration

gu

= Conflicts / Constituent Kernels
" Nnone

= Best Kernel:
= {}
= Best Candidate:

= ?

2/22/2005 copyright Brian Williams, 2002
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Extracting the kernel's best state

= Select best value for unassigned variables

{}

B
M1=? A M2=? A M3=? A A1=7? A A2="

. B
M1=G A M2=G A M3=G A A1=G A A2=G
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
3 /12
2 “{O/I
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
3 /12
2 S

= Extract Conflict and Constituent Kernels:

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
/12
‘\];O/’

= Extract Conflict and Constituent Kernels:

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
3 /12
2 S
2 Y
—-<-
3

3

= Extract Conflict and Constituent Kernels:
7 [M1=G A M2=G A A1=(G]

. B
M1=U v M2=U v A1=U

2/22/2005 copyright Brian Williams, 2002
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Second lteration

o PG ) >> Pu(mi) 3
. Psmgle = P e 2
" Puymz) > Pumy >

Pums) > Puan > Punz) 3

= Conflicts ® Constituent Kernels
= M1=U v M2=U v A1=U
= Best Kernel:
= M2=U (why?)
= Best Candidate:
= M1=G A M2=U A M3=G A A1=G A A2=G
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= Test: M1=G A M2=U A M3=G A A1=G A A2=G

g

o
I
\

g
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= Test: M1=G A M2=U A M3=G A A1=G A A2=G
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= Test: M1=G A M2=U A M3=G A A1=G A A2=G
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= Test: M1=G A M2=U A M3=G A A1=G A A2=G
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Test: M1=G A V2= A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=G A M2=U A M3=G A A1=G A A2=G

3

Extract Conflict:
— [M1=G A M3=G A A1=G A A2=(]

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=G A M2=U A M3=G A A1=G A A2=G

3

3

= Extract Conflict:
— [M1=G A M3=G A A1=G A A2=(]

. B
M1=U v M3=U v A1=U v A2=U

2/22/2005 copyright Brian Williams, 2002
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Second lteration

" Pgmi>> Pumi ¢
. Psmgle > P gouble 2
" Puymz) > Pumy > 2

Pyms) > Puat) > Puaz) 3

&

= Conflicts = Constituent Kernels

M1=U v M2=U v A1=U
M1=U v M3=U v A1=U v A2=U

= Best Kernel:

M1=U

= Best Candidate:

2/22/2005

M1=U AM2=G A M3=G A A1=G A A2=G
copyright Brian Williams, 2002
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= Test: M1=U A M2=G A M3=G A A1=G A A2=G

2/22/2005

3
2
2
3

3

A

g
S

Up:u

copyright Brian Williams, 2002
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= Test: M1=U A M2=G A M3=G A A1=G A A2=G

3 A—

Ly
,

Up:u
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= Test: M1=U A M2=G A M3=G A A1=G A A2=G

3 A—

2 6
, o -
- .
3

Upw
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= Test: M1=U A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=U A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002
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= Test: M1=U A M2=G A M3=G A A1=G A A2=G

4
3 A— P
o 10
, B :B_E
) & Y .
D
3 :E—G
| 6 12
i ;I

3

Consistent!

2/22/2005 copyright Brian Williams, 2002

63



Outline

e Optimal CSPs
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= Conflict-directed A*
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Generating The Best Kernel of The Known Conflicts

! 8

Al=U, M1=U , M2=U

Al1=U, A2=U,
Al=l) M3=U" Mi1=U, M3=U
A2=U\MI1=U
Al=U M1=U M1=U A A2=U M2=U A M3=U

Insight:
» Kernels found by minimal set covering
* Minimal set covering is an instance of breadth first search.
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Expanding a Node to
Resolve a Conflict

M2=U v M1=U v A1=U
Al=U

To Expand a Node:
= Select an unresolved Conflict.

= Each child adds a constituent kernel.

= Prune child if state is
= |nconsistent, or

= subsumed by a known kernel  (or another node’s state).
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Generating The Best Kernel of The Known Conflicts

! 8

Al=U, M1=U , M2=U

Al1=U, A2=U,
Al=l) M3=U" Mi1=U, M3=U
A2=U\MI1=U
Al=U M1=U M1=U A A2=U M2=U A M3=U

Insight:
» Kernels found by minimal set covering
* Minimal set covering is an instance of breadth first search.
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Generating The Best Kernel of The Known Conflicts

4

Al=U, M1=U , M2=U

Al1=U, A2=U,
M1=U, M3=U

O,
M1=U

Insight:

 Kernels found by minimal set covering

* Minimal set covering is an instance of breadth first search.
=» To find the best kernel, expand tree in best first order.
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Admissible h(a): Cost of best state
extending partial assignment a

f= g + h

AM1I=? A M3=? A A1=7? A A2="7
i B

X Pyi=g X Pys=g X Pa1=g X Pao=g

= Select best value of unassigned variables
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Admissible Heuristic h

= Letg =<G,qg;,Y> describe a multi-attribute utility fn

= Assume the preference for one attribute x; is independent of another x,
= Called Mutual Preferential Independence:

Forallu, v eY
If g,(u) = g(v) then for all w

G(g;(u),g,(w)) 2 G(g;(v),gk(w))

An Admissible h:

= Given a partial assignment, to X c Y
= h selects the best value of each unassigned variable Z=X-Y

h(Y) = G({9,_maxl Zi€Z, max  g,(vy))})

= A candidate always exists satisfying h(Y).
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Terminate when
all conflicts resolved

Function Goal-Test-Kernel (node, problem)
returns True IFF node is a complete decision state.
if forall K in Constituent-Kernels(Conflicts[problem]),
State[node] contains a kernel in K
then return True
else return False

2/22/2005 copyright Brian Williams, 2002
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Next Best Kernel of Known Conflicts

Function Next-Best-Kernel (OCSP)
returns the next best cost kernel of Conflicts|OCSP].

f(x) < G[OCSP] (g[OCSP](x), h[OCSP](x)) An instance
loop do
if Nodes[OCSP] is empty then return failure of A*

node < Remove-Best(Nodes[OCSHF], f)
add State[node] to Visited[OCSP]
new-nodes <« Expand-Conflict(node, OCSP)
for each new-node € new-nodes
unless 3 n € Nodes[OCSP] such that State[new-node] = State[n]
OR State[new-node] € Visited[problem]
then Nodes[OCSP] < Enqueue(Nodes[OCSP], new-node, f)
if Goal-Test-Kernel[OCSP] applied to State[node] succeeds
Best-Kernels[OCSP]
< Add-To-Minimal-Sets(Best-Kernels[OCSP], best-kernel)
if best-kernel € Best-Kernels[OCSP]
then return State[node]
end
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Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*
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= Extending to Multiple Solutions

= Performance Comparison
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Expand Only Best Child & Sibling

M2=U v M1=U v Al1=U

>

= Traditionally all children expanded.

Al=U

= But only need to expand the child with the best candidate,

if it can be identified apriori (how?).

= This child is the one with the best estimated cost f = g+h.

2/22/2005
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Expand Only Best Child & Sibling

U

O
M2=U v M1=U v A1=U

M2=U

>

= Traditionally all children expanded.

= But only need to expand the child with the best candidate,
if it can be identified apriori (how?).

= This child is the one with the best estimated cost f = g+h.
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When Do We Expand The Childs
Next Best Sibling?

M2=U v M1=U v Al1=U

MI1=U v M3=U v
Al=U v A2=U

Ml=

= When a best child has a subtree or leaf pruned,
it may have lost its best candidate.

= One of the child’s siblings might now have the best candidate.
= Expand child’s next best sibling:
= when child expanded in order to resolve another conflict.
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Expand Node to Resolve Conflict

function Expand-Conflict(node, OCSP)
return Expand-Conflict-Best-Child(node, OCSP) U
Expand-Next-Best-Sibling (node, OCSP)

function Expand-Conflict-Best-Child(node, OCSP)
if for all K in Constituent-Kernels(F'[OCSP])
State[node] contains a kernel € K
then return {}
else return Expand-Constituent-Kernel(node, OCSP)

Y

function Expand-Constituent-Kernel(node, OCSP)
K, < =smallest uncovered set € Constituent-Kernels(I'[OCSP])
C «{yi=v;l{y;=v;}inK,, Yy, =v;is consistent with State[node]}
Sort C such that for all / from 1 to |C]| - 1,
Better-Kernel?(C[i],C[i+7], OCSP) is True
Child-Assignments[node] « C
Y, =V; < C[1], which is the best kernel in K, consistent with State[node]
return {Make-Node({y, = v;}, node)}
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Expand Node to Resolve Conflict

function Expand-Next-Best-Sibling(node, OCSP)
if Root?[node]
then return {}
else {y, = v;} < Assignment[node]
{Yi = vigt < next best assignment in consistent
child-assignments[Parent[node]] after {y; = v;}
if no next assignment {y, = v, }

or Parent[node] already has a child with {y, = v,}
then return {}
else return {Make-Node({y, = v}, Parent[node])}
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Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison
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Multiple Solutions: Systematically Exploring Kernels

Constituent Kernels

4

Al=U, M1=U , M2=U

Al1=U, A2=U,
M3=U" Mi1=U, M3=U

Al=U MI1=U MI1=U A A2=U M2=U A M3=U

A AA A
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Child Expansion For
Finding Multiple Solutions
{}o

— (M2=G A M1=G A A1=G) M2= M1ulm.

A2=G

If Unresolved Conflicts: If All Conflicts Resolved:

= Select unresolved = Select unassigned
conflict. variable y;.

= Each child adds a = Each child adds an
constituent kernel. assignment from D..
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Intelligent Expansion Below a Kernel

Select Unassigned Variable

M2=G v M2=U

>

Order assignments by
decreasing utility

Expand best child

Continue expanding
best descendents

When leaf visited,
expand all next
best ancestors.  (why?)
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Putting It Together:
Expansion Of Any Search Node

U

M2=U v M1=U v Al1=U

MI1=U v M3=U v

Al=U v A2=U _
M1= M2=G M2=U
: : M3=(Z&.M3U
When a best child loses any candidate,
expand child’s next best sibling: &AI
. . INE¢! =U
= |f child has unresolved conflicts,
expand sibling when child expands its next conflict. A2=U
= |f child resolves all conflicts: ha=l °

expand sibling when child expands a leaf.
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Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison
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Performance;
With and Without Conflicts

Problem Constraint-based | Conflict-directed A* Mean CD-CB Ratio
Parameters A* (no conflicts)
Dom | Dec Clau | Clau | Nodes Queue Nodes Queue | Conflicts Nodes Queue
Size | vars | -ses | -se Expande | Size Expand | Size Ce Expanded Size
Ingth | d
5| 10| 10 ) 683 | 1,230 3.3| 6.3 1.2 4.5% 5.6%
5| 10| 30 5| 2,360 | 3,490 81| 17.9 3.2 | 2.4% 3.5%
5| 10| 50 5| 4270 6,260 12.0| 41.3 26| 083% | 1.1%
10| 10| 10 6| 3,790 | 13,400 5.7 16.0 16| 2.0% 1.0%
10| 10| 30 6| 1,430 5,130 9.7 94.4 42| 4.6% 5.8%
10| 10| 50 6 929 | 4,060 6.0 27.3 2.3| 3.5% 3.9%
5| 20| 10 ) 109 149 4.2 7.2 1.6]|13.0% |13.0%
5| 20| 30 ) 333 434 64| 9.2 2.2 | 6.0% 5.4%
5| 20| 50 ) 149 197 54| 7.2 2.0112.0% |11.0%
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Conflict-directed A*

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Test Hypothesis

2. If inconsistent, learn reason for inconsistency
(a Conflict).

3. Use conflicts to leap over similarly infeasible options
to next best hypothesis.
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Presentation Notes

= Change Example to Boolean Polycell

= Introduce CDA* before Sherlock-style Mode
Estimation.

= Describe Kernels and Conflicts in terms of
set/subset lattice.

= More Intuitive and focused introduction to A*
= Add systematicity in each development

= Add pseudo code for multiple solns and CBA*
= Show full search trees for each

= Highlight Important features of performance
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