Optimal CSPs and
Conflict-directed A*

.....

Brian C. Williams
16.412J/6.834J
February 22nd 2005

courtesy of JPL Brian C. Williams, copyright 2000

R@de Estimation:

Select a most likely set of
component modes that are

observations

arg min P (Y| Obs)

s.t. ¥(X,Y) A O(m’) 1s consistent

.

consistent with the model and

Mode Reconfiguration: \

Select a least cost set of
commandable component
modes that entail the current
goal, and are consistent

State estimates _k

lons

arg max R(Y)
s.t. P(X,Y) entails G(X,Y)

_

Iian:E,1

s.t. ¥(X,Y) 1s consistent

e 4

Outline

e Optimal CSPs

o Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

Constraint Satisfaction Problem

CSP = <X, D,,C>
= variables X with domain Dy
= Constraint C(X): Dy — {True,False}

Find X in Dy s.t. C(X) is True

2/22/2005 copyright Brian Williams, 2002 4

Optimal CSP

OCSP= <Y, g, CSP>
= Decision variables Y with domain Dy
= Utility function g(Y): Dy —> R
= CSP is over variables <X,Y>

Find Leading arg max g(Y)
Y eD,

s.t. 3 X € Dy s.t. C(X)Y) is True

=» Frequently we encode C in propositional state logic

=> g() is a multi-attribute utility function that is

preferentially independent.
2/22/2005 copyright Brian Williams, 2002 5

CSP Frequently In
Propositional Logic

(mode(E1) = ok implies
(thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

/N

2/22/2005 copyright Brian Williams, 2002 6

Multi Attribute Utility Functions

a(Y) = G(91(y4), 92(¥2), - -)

where
G(u, U, ...u,) =G(u,G(u, ... u,))
G(uy) = G(uy, lg)

Example: Diagnosis
gi(y;=mode;) = P(y; = mode;)
G(uq,uU,) = Uy X U,

g =1

2/22/2005 copyright Brian Williams, 2002

Mutual Preferential Independence

Assignment O, Is preferred over 62
if 9(04) < g(0,)

For any set of decision variables ,
our preference between two assignments to

Is Independent of the assignment to the
remaining variables

2/22/2005 copyright Brian Williams, 2002 8

Mutual Preferential Independence

Example: Diagnosis
= If M1 = G is more likely than M1 = U,

= Then,
M1 =G, }

*|s preferred to
M1 = U,]

2/22/2005 copyright Brian Williams, 2002 9

Reconfiguration via arg max Rt(Y)

Conflict Learni ng s.t. P(X,Y) entails G(X,Y)
s.t. ¥(X,Y) 1s consistent

Goal: Achieve Thrust |

o ESE «:><>«
T e
.' .'. H—.IH—u .I.:. .:.IQ.‘

A conflict is an assignment to a subset of the control variables

that entails the negation of the goal.
2/22/2005 copyright Brian Williams, 2002 10

Approximate PCCA Belief State Update

%I ns Model Camera Model

0
(thrust = (power _in off .

zero) AND ¢
(povf/er in : standby -Az,fero) O. —001%, .Q

= cmd
a||ed (shutter =
(thrust = andby closed) tumoff{ [turnol
P4 AT standby-fire smd || cpd 0.01
(power_in = cmd 001 % (power _in =

nofifnatt = nomina) AN O@) 2

full) AND Flrlng (shutter =
(power _in = Nnen

*Assigns a value to each variable *A set of concurrent transitions, one per
(e.g.,3,000 vars). automata (e.g., 80).

*Consistent with all state *Previous & Next states consistent with

constraints (e.g., 12,000). source & target of transitions
2/22/2005 copyright Brian Williams, 2002 11

Belief State Propagation

= Propagation Equation
propagates the system dynamics
P(sz-—l_l

|O<O,t>7 M<O’t>) —

1 J—
2 <P(3§'+ |st, P (st|o<0t>, <0t 1>)>

= Update Equation
updates prior distribution with observations

<0,t+1> |, <0, >\ __
—l_ 7:“)_

P (st <0, t> <O,t>) -P(0t+1|3§-+1)

o

J

t+1 t+1
S tiegt PO |o<0¢>,u<0at>>P<ot+1|sz-+)

2/22/2005 copyright Brian Williams, 2002

12

Best-First Belief State Enumeration

* Enumerate next state priors in best first order
 Evaluate likelithood of partial states using
optimistic estimate of unassigned variables.

1) ¢
Z ((tJr ‘5“#) (s ‘ t <0f> H<Ot 1>)>
stest

=Y 1] (P(IZJrl—v\aza—vu))P(108> <01y

_ U,‘SC% _ U:Nt) P(85‘0<0,t>’u<0,t—1>)

cost so far, g optimistic estimate of the cost to go, h

2/22/2005 copyright Brian Williams, 2002 13

Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

14

A*

N\

Increasing A

Cost (/

Infeasible

Vet Feasible

2/22/2005 copyright Brian Williams, 2002 ()

A* Search: Search Tree

Problem: State Space Search Problem

= 0O Initial State

= Expand(node) Children of Search Node = next states

= Goal-Test(node) True if search node at a goal-state

h Admissible Heuristic -Optimistic cost to go

Search Node: Node in the search tree
= State State the search is at
= Parent Parent in search tree

2/22/2005 copyright Brian Williams, 2002 16

A* Search: State of Search

Problem: State Space Search Problem

= 0 Initial State

= Expand(node) Children of Search Node = adjacent states

= Goal-Test(node) True if search node at a goal-state

= Nodes Search Nodes to be expanded

= Expanded Search Nodes already expanded

= |nitialize Search starts at ©, with no expanded nodes
d(state) Cost to state

h(state) Admissible Heuristic-Optimistic cost to go

Search Node: Node in the search tree

= State State the search is at

= Parent Parent in search tree

Nodes[Problem]:

= Enqueue(node, f) Adds node to those to be expanded

= Remove-Best(f) Removes best cost queued node according to f

2/22/2005 copyright Brian Williams, 2002 17

A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(X) <« g[problem](x) + h(x)
loop do Expand

best first

node < Remove-Best(Nodes[problem], f)

new-nodes <« Expand(node, problem)
for each new-node in new-nodes

then Nodes[problem] < Enqueue(Nodes[problem], new-node,

f)

end
2/22/2005 copyright Brian Williams, 2002 18

A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(X) <« g[problem](x) + h(x)
loop do Terminates
if Nodes[problem] is empty then return failure when . . .
node < Remove-Best(Nodes[problem], f)

new-nodes <« Expand(node, problem)
for each new-node in new-nodes

then Nodes[problem] <~ Enqueue(Nodes[problem], new-node,
f)
if Goal-Test[problem] applied to State(node) succeeds
then return node

end
2/22/2005 copyright Brian Williams, 2002 19

A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.

f(X) <« g[problem](x) + h(x) Dynami C
loop do :
if Nodes[problem] is empty then return failure Programmmg
node < Remove-Best(Nodes[probleml], f) Principle . ..

state < State(node)
remove any n from Nodes|[problem] such that State(n) = state
Expanded|[problem] < Expanded[problem] u {state}
new-nodes <« Expand(node, problem)
for each new-node in new-nodes

unless State(new-node) is in Expanded[problem]

then Nodes[problem] <~ Enqueue(Nodes[problem], new-node, f)

if Goal-Test[problem] applied to State(node) succeeds

then return node

end

2/22/2005 copyright Brian Williams, 2002 20

Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

21

Conflict-directed A*

N\

Increasing
Cost
O O O
Infeasible
@) @) @)
© ©1° Feasible

2/22/2005 copyright Brian Williams, 2002 22

Conflict-directed A*

N\

Increasing
o ® @ O Contflict 1
Infeasible
o @ @
°© 9\ ° Feasible

2/22/2005 copyright Brian Williams, 2002 23

Conflict-directed A*

N\

Increasing
s) @ O Contflict 1
Infeasible
O © O
°© °1° Feasible

2/22/2005 copyright Brian Williams, 2002 24

Conflict-directed A*

N\

Increasing
s o |l o o Conflict 1
Infeasible
e | o Conflict 2
© °1° Feasible

2/22/2005 copyright Brian Williams, 2002

25

Conflict-directed A*

N\

Increasing
s o |l o o Conflict 1
Infeasible
O @ O Conflict 2
© @ o Feasible

2/22/2005 copyright Brian Williams, 2002

26

Conflict-directed A*

N\

Increasing
s o | ol o Conflict 1
Infeasible
O | @ Conflict 2
© ®1 © Feasible
®)
o
=
—
Q
(')

2/22/2005 copyright Brian Williams, 2002

27

Conflict-directed A*

N

Increasing
s Y [eof o Conflict 1
Infeasible
©| © Conflict 2
© Feasible

€ J01JU0)

2/22/2005 copyright Brian Williams, 2002

28

Solving Optimal CSPs
Through Generate and Test

Leading Candidates

Conflict-directed A*
Based on Cost

Incremental Sat

No

2/22/2005 copyright Brian Williams, 2002 29

Conflict-directed A*

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.

Conflicts[OCSP] < {} Conflict-guided
OCSP « Initialize-Best-Kernels(OCSP) Expansion
Solutions[OCSP] « {}

loop do

> decision-state < Next-Best-State-Resolving-Conflicts(OCSP)

) new-conflicts <~ Extract-Conflicts(CSP[OCSP], decision-state)
— Conflicts[OCSP]

<« Eliminate-Redundant-Conflicts(ConflictsfOCSP] U new-conflicts)
end

2/22/2005 copyright Brian Williams, 2002 30

Conflict-directed A*

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.
Conflicts|OCSP] « {}
OCSP <« Initialize-Best-Kernels(OCSP)
Solutions[OCSP] « {}
loop do
decision-state < Next-Best-State-Resolving-Conflicts(OCSP)
) if no decision-state returned or
Terminate?(OCSP)
then return Solutions[OCSP]
) if Consistent?(CSP[OCSP], decision-state)
then add decision-state to Solutions[OCSP]
new-conflicts <— Extract-Conflicts(CSP[OCSP], decision-state)
Conflicts[OCSP]
<« Eliminate-Redundant-Conflicts(ConflictsfOCSP] U new-conflicts)
end

2/22/2005 copyright Brian Williams, 2002 31

Conflict-directed A*

* Feasible subregions described by kernel assignments.

\ = Approach: Use conflicts to search for kernel
assignment containing the best cost candidate.

Increasing
s Y [eof o Conflict 1
Infeasible
o1 © Conflict 2

Feasible
Kernel 3

€ J01JU0)

2/22/2005 copyright Brian Williams, 2002 32

Mapping Conflicts to Kernels

| X
|

_I— [
E

¥

W NN W

S 12

W wWw NN W

Y
Z

.

Contflict C;: A set of decision variable assignments that are
inconsistent with the constraints.

Constituent Kernel: An assignment A that resolves a conflict C..
A entails [1 — C,

Kernel: A minimal set of decision variable assignments
that resolves all known conflicts C.

A entails [] = C,forall C; in C
2/22/2005 copyright Brian Williams, 2002 33

Mapping conflict to constituent kernels
Conflict: {M1=G, M2=G, A1=G}

—(M1=G A M2=G A A1=G)
i B
M1=U v M2=U v M3=U

i B
Constituent Kernels: {(M1=U, M2=U, A1=U}

2/22/2005 copyright Brian Williams, 2002 34

Composing Constituents
Kernels of Every Conflict

6 Y
: I 12\ 1 X
—_— , .’I.Ol 10

Constituent Kernel: An assignment A that resolves a conflict C..
A entails [] — C,

T ¥

L
g

S 12

W MNDDDND W

I P F
SHE"H
W W N DN W

Y
Z

Kernel: A minimal set of decision variable assignments
that resolves all known conflicts C.
A entails [] - C, forall C, in C

= Constituent kernels map to kernels by minimal set covering
2/22/2005 copyright Brian Williams, 2002 35

Extracting a kernel's best state

= Select best utility value for unassigned variables (\Why?)

IM2=U)})

B
M1=7? A M2=U A M3=? A A1=? A A2="

. B
M1=G A M2=U A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002 36

Next Best State
Resolving Conflicts

function Next-Best-State-Resolving-Caonflicts(OCSP)
mm) | best-kernel < Next-Best-Kernel(OCSP)
It best-kernel = tailure
then return failure
mm) clse return kernel-Best-State[problem](best-kernel)
end

function Kernel-Best-State(kernel)
unassigned « all variables not assigned in kernel
return kernel C {Best-Assignment(v) | v € unassigned}
End

function Terminate?(OCSP)
return True iff Solutions[OCSP] is non-empty

Algorithm for only finding the first solution, multiple later.

2/22/2005 copyright Brian Williams, 2002 37

Example: Diagnosis

gu

Assume Independent Failures:

" Pg(mi)>> Pumi

- I:)single e I:)double

" Pumz) > Pumit) = Pumsy > Puany > Puag)

2/22/2005 copyright Brian Williams, 2002

38

First lteration

gu

= Conflicts / Constituent Kernels
" Nnone

= Best Kernel:
= {}
= Best Candidate:

= ?

2/22/2005 copyright Brian Williams, 2002

39

Extracting the kernel's best state

= Select best value for unassigned variables

{}

B
M1=? A M2=? A M3=? A A1=7? A A2="

. B
M1=G A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002 40

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

41

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

42

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

43

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

44

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
3 /12
2 “{O/I

2/22/2005 copyright Brian Williams, 2002

45

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
3 /12
2 S

= Extract Conflict and Constituent Kernels:

2/22/2005 copyright Brian Williams, 2002

46

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
/12
‘\];O/’

= Extract Conflict and Constituent Kernels:

2/22/2005 copyright Brian Williams, 2002

47

= Test: M1=G A M2=G A M3=G A A1=G A A2=G

-\
3 /12
2 S
2 Y
—-<-
3

3

= Extract Conflict and Constituent Kernels:
7 [M1=G A M2=G A A1=(G]

. B
M1=U v M2=U v A1=U

2/22/2005 copyright Brian Williams, 2002

48

Second lteration

o PG) >> Pu(mi) 3
. Psmgle = P e 2
" Puymz) > Pumy >

Pums) > Puan > Punz) 3

= Conflicts ® Constituent Kernels
= M1=U v M2=U v A1=U
= Best Kernel:
= M2=U (why?)
= Best Candidate:
= M1=G A M2=U A M3=G A A1=G A A2=G
2/22/2005 copyright Brian Williams, 2002

= Test: M1=G A M2=U A M3=G A A1=G A A2=G

g

o
I
\

g

2/22/2005 copyright Brian Williams, 2002

50

= Test: M1=G A M2=U A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

51

= Test: M1=G A M2=U A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

52

= Test: M1=G A M2=U A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

53

Test: M1=G A V2= A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

54

= Test: M1=G A M2=U A M3=G A A1=G A A2=G

3

Extract Conflict:
— [M1=G A M3=G A A1=G A A2=(]

2/22/2005 copyright Brian Williams, 2002

)

= Test: M1=G A M2=U A M3=G A A1=G A A2=G

3

3

= Extract Conflict:
— [M1=G A M3=G A A1=G A A2=(]

. B
M1=U v M3=U v A1=U v A2=U

2/22/2005 copyright Brian Williams, 2002

56

Second lteration

" Pgmi>> Pumi ¢
. Psmgle > P gouble 2
" Puymz) > Pumy > 2

Pyms) > Puat) > Puaz) 3

&

= Conflicts = Constituent Kernels

M1=U v M2=U v A1=U
M1=U v M3=U v A1=U v A2=U

= Best Kernel:

M1=U

= Best Candidate:

2/22/2005

M1=U AM2=G A M3=G A A1=G A A2=G
copyright Brian Williams, 2002

57

= Test: M1=U A M2=G A M3=G A A1=G A A2=G

2/22/2005

3
2
2
3

3

A

g
S

Up:u

copyright Brian Williams, 2002

58

= Test: M1=U A M2=G A M3=G A A1=G A A2=G

3 A—

Ly
,

Up:u

2/22/2005 copyright Brian Williams, 2002

= Test: M1=U A M2=G A M3=G A A1=G A A2=G

3 A—

2 6
, o -
- .
3

Upw

2/22/2005 copyright Brian Williams, 2002

= Test: M1=U A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

61

= Test: M1=U A M2=G A M3=G A A1=G A A2=G

2/22/2005 copyright Brian Williams, 2002

62

= Test: M1=U A M2=G A M3=G A A1=G A A2=G

4
3 A— P
o 10
, B :B_E
) & Y .
D
3 :E—G
| 6 12
i ;I

3

Consistent!

2/22/2005 copyright Brian Williams, 2002

63

Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= Intelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

64

Generating The Best Kernel of The Known Conflicts

! 8

Al=U, M1=U , M2=U

Al1=U, A2=U,
Al=l) M3=U" Mi1=U, M3=U
A2=U\MI1=U
Al=U M1=U M1=U A A2=U M2=U A M3=U

Insight:
» Kernels found by minimal set covering
* Minimal set covering is an instance of breadth first search.

2/22/2005 copyright Brian Williams, 2002 65

Expanding a Node to
Resolve a Conflict

M2=U v M1=U v A1=U
Al=U

To Expand a Node:
= Select an unresolved Conflict.

= Each child adds a constituent kernel.

= Prune child if state is
= |nconsistent, or

= subsumed by a known kernel (or another node’s state).
2/22/2005 copyright Brian Williams, 2002 66

Generating The Best Kernel of The Known Conflicts

! 8

Al=U, M1=U , M2=U

Al1=U, A2=U,
Al=l) M3=U" Mi1=U, M3=U
A2=U\MI1=U
Al=U M1=U M1=U A A2=U M2=U A M3=U

Insight:
» Kernels found by minimal set covering
* Minimal set covering is an instance of breadth first search.

2/22/2005 copyright Brian Williams, 2002 67

Generating The Best Kernel of The Known Conflicts

4

Al=U, M1=U , M2=U

Al1=U, A2=U,
M1=U, M3=U

O,
M1=U

Insight:

 Kernels found by minimal set covering

* Minimal set covering is an instance of breadth first search.
=» To find the best kernel, expand tree in best first order.

2/22/2005 copyright Brian Williams, 2002 68

Admissible h(a): Cost of best state
extending partial assignment a

f= g + h

AM1I=? A M3=? A A1=7? A A2="7
i B

X Pyi=g X Pys=g X Pa1=g X Pao=g

= Select best value of unassigned variables

2/22/2005 copyright Brian Williams, 2002 69

Admissible Heuristic h

= Letg =<G,qg;,Y> describe a multi-attribute utility fn

= Assume the preference for one attribute x; is independent of another x,
= Called Mutual Preferential Independence:

Forallu, v eY
If g,(u) = g(v) then for all w

G(g;(u),g,(w)) 2 G(g;(v),gk(w))

An Admissible h:

= Given a partial assignment, to X c Y
= h selects the best value of each unassigned variable Z=X-Y

h(Y) = G({9,_maxl Zi€Z, max g,(vy))})

= A candidate always exists satisfying h(Y).

2/22/2005 copyright Brian Williams, 2002 70

Terminate when
all conflicts resolved

Function Goal-Test-Kernel (node, problem)
returns True IFF node is a complete decision state.
if forall K in Constituent-Kernels(Conflicts[problem]),
State[node] contains a kernel in K
then return True
else return False

2/22/2005 copyright Brian Williams, 2002

71

Next Best Kernel of Known Conflicts

Function Next-Best-Kernel (OCSP)
returns the next best cost kernel of Conflicts|OCSP].

f(x) < G[OCSP] (g[OCSP](x), h[OCSP](x)) An instance
loop do
if Nodes[OCSP] is empty then return failure of A*

node < Remove-Best(Nodes[OCSHF], f)
add State[node] to Visited[OCSP]
new-nodes <« Expand-Conflict(node, OCSP)
for each new-node € new-nodes
unless 3 n € Nodes[OCSP] such that State[new-node] = State[n]
OR State[new-node] € Visited[problem]
then Nodes[OCSP] < Enqueue(Nodes[OCSP], new-node, f)
if Goal-Test-Kernel[OCSP] applied to State[node] succeeds
Best-Kernels[OCSP]
< Add-To-Minimal-Sets(Best-Kernels[OCSP], best-kernel)
if best-kernel € Best-Kernels[OCSP]
then return State[node]
end

2/22/2005 copyright Brian Williams, 2002 72

Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= Intelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

73

Expand Only Best Child & Sibling

M2=U v M1=U v Al1=U

>

= Traditionally all children expanded.

Al=U

= But only need to expand the child with the best candidate,

if it can be identified apriori (how?).

= This child is the one with the best estimated cost f = g+h.

2/22/2005

copyright Brian Williams, 2002

74

Expand Only Best Child & Sibling

U

O
M2=U v M1=U v A1=U

M2=U

>

= Traditionally all children expanded.

= But only need to expand the child with the best candidate,
if it can be identified apriori (how?).

= This child is the one with the best estimated cost f = g+h.

2/22/2005 copyright Brian Williams, 2002 75

When Do We Expand The Childs
Next Best Sibling?

M2=U v M1=U v Al1=U

MI1=U v M3=U v
Al=U v A2=U

Ml=

= When a best child has a subtree or leaf pruned,
it may have lost its best candidate.

= One of the child’s siblings might now have the best candidate.
= Expand child’s next best sibling:
= when child expanded in order to resolve another conflict.

2/22/2005 copyright Brian Williams, 2002 76

Expand Node to Resolve Conflict

function Expand-Conflict(node, OCSP)
return Expand-Conflict-Best-Child(node, OCSP) U
Expand-Next-Best-Sibling (node, OCSP)

function Expand-Conflict-Best-Child(node, OCSP)
if for all K in Constituent-Kernels(F'[OCSP])
State[node] contains a kernel € K
then return {}
else return Expand-Constituent-Kernel(node, OCSP)

Y

function Expand-Constituent-Kernel(node, OCSP)
K, < =smallest uncovered set € Constituent-Kernels(I'[OCSP])
C «{yi=v;l{y;=v;}inK,, Yy, =v;is consistent with State[node]}
Sort C such that for all / from 1 to |C]| - 1,
Better-Kernel?(C[i],C[i+7], OCSP) is True
Child-Assignments[node] « C
Y, =V; < C[1], which is the best kernel in K, consistent with State[node]
return {Make-Node({y, = v;}, node)}

2/22/2005 copyright Brian Williams, 2002 77

Expand Node to Resolve Conflict

function Expand-Next-Best-Sibling(node, OCSP)
if Root?[node]
then return {}
else {y, = v;} < Assignment[node]
{Yi = vigt < next best assignment in consistent
child-assignments[Parent[node]] after {y; = v;}
if no next assignment {y, = v, }

or Parent[node] already has a child with {y, = v,}
then return {}
else return {Make-Node({y, = v}, Parent[node])}

2/22/2005 copyright Brian Williams, 2002 78

Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

79

Multiple Solutions: Systematically Exploring Kernels

Constituent Kernels

4

Al=U, M1=U , M2=U

Al1=U, A2=U,
M3=U" Mi1=U, M3=U

Al=U MI1=U MI1=U A A2=U M2=U A M3=U

A AA A

2/22/2005 copyright Brian Williams, 2002 80

Child Expansion For
Finding Multiple Solutions
{}o

— (M2=G A M1=G A A1=G) M2= M1ulm.

A2=G

If Unresolved Conflicts: If All Conflicts Resolved:

= Select unresolved = Select unassigned
conflict. variable y;.

= Each child adds a = Each child adds an
constituent kernel. assignment from D..

2/22/2005 copyright Brian Williams, 2002 81

Intelligent Expansion Below a Kernel

Select Unassigned Variable

M2=G v M2=U

>

Order assignments by
decreasing utility

Expand best child

Continue expanding
best descendents

When leaf visited,
expand all next
best ancestors. (why?)

2/22/2005 copyright Brian Williams, 2002 82

Putting It Together:
Expansion Of Any Search Node

U

M2=U v M1=U v Al1=U

MI1=U v M3=U v

Al=U v A2=U _
M1= M2=G M2=U
: : M3=(Z&.M3U
When a best child loses any candidate,
expand child’s next best sibling: &AI
. . INE¢! =U
= |f child has unresolved conflicts,
expand sibling when child expands its next conflict. A2=U
= |f child resolves all conflicts: ha=l °

expand sibling when child expands a leaf.

2/22/2005 copyright Brian Williams, 2002 83

Outline

e Optimal CSPs

= Application to Model-based Execution
= Review of A*

= Conflict-directed A*

= Generating the Best Kernel

= |ntelligent Tree Expansion

= Extending to Multiple Solutions

= Performance Comparison

2/22/2005 copyright Brian Williams, 2002

84

Performance;
With and Without Conflicts

Problem Constraint-based | Conflict-directed A* Mean CD-CB Ratio
Parameters A* (no conflicts)
Dom | Dec Clau | Clau | Nodes Queue Nodes Queue | Conflicts Nodes Queue
Size | vars | -ses | -se Expande | Size Expand | Size Ce Expanded Size
Ingth | d
5| 10| 10) 683 | 1,230 3.3| 6.3 1.2 4.5% 5.6%
5| 10| 30 5| 2,360 | 3,490 81| 17.9 3.2 | 2.4% 3.5%
5| 10| 50 5| 4270 6,260 12.0| 41.3 26| 083% | 1.1%
10| 10| 10 6| 3,790 | 13,400 5.7 16.0 16| 2.0% 1.0%
10| 10| 30 6| 1,430 5,130 9.7 94.4 42| 4.6% 5.8%
10| 10| 50 6 929 | 4,060 6.0 27.3 2.3| 3.5% 3.9%
5| 20| 10) 109 149 4.2 7.2 1.6]|13.0% |13.0%
5| 20| 30) 333 434 64| 9.2 2.2 | 6.0% 5.4%
5| 20| 50) 149 197 54| 7.2 2.0112.0% |11.0%
2/22/2005 copyright Brian Williams, 2002 85

Conflict-directed A*

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Test Hypothesis

2. If inconsistent, learn reason for inconsistency
(a Conflict).

3. Use conflicts to leap over similarly infeasible options
to next best hypothesis.

2/22/2005 copyright Brian Williams, 2002 86

Presentation Notes

= Change Example to Boolean Polycell

= Introduce CDA* before Sherlock-style Mode
Estimation.

= Describe Kernels and Conflicts in terms of
set/subset lattice.

= More Intuitive and focused introduction to A*
= Add systematicity in each development

= Add pseudo code for multiple solns and CBA*
= Show full search trees for each

= Highlight Important features of performance

2/22/2005 copyright Brian Williams, 2002 87

