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Review
• Localization

– Tracking, Global Localization, Kidnapping Problem.

• Kalman Filter
– Quadratic
– Linear (unless EKF)

• SLAM
– Loop closing
– Scaling:

• Partition space into overlapping regions, use rerouting algorithm.

• Not Talked About
– Features
– Exploration 2



Outline

• Topological Maps
• HMM
• SIFT
• Vision Based Localization
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Topological Maps

Idea:
Build a qualitative map where the nodes are 
similar sensor signatures and transitions between 
nodes are control actions.
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Advantages of Topological maps

• Can solve the Global Location Problem.
• Can solve the Kidnapping Problem.
• Human-like maps
• Supports Metric Localization
• Can represent as a Hidden Markov Model 

(HMM)

5



Hidden Markov Models (HMM)
Scenario

– You have your domain represented as set of state 
variables.

– The states define what following state are reachable 
from any given state.

– State transitions involve action.
– Actions are observable, states are not.
– You want to be able to make sense of a sequence of 

actions
Examples

Part-of-speech tagging, natural language parsing, speech 
recognition, scene analysis, Location/Path estimation.
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Overview of HMM

What a Hidden Markov Model is
Algorithm for finding the most likely state sequence.
Algorithm for finding the probability of an action 

sequence (sum over all allowable state paths).
Algorithm for training a HMM.
Only works for problems whose state structure can be 

characterized as FSM in which a single action at a time 
is used to transition between states.

Very popular because algorithms are linear on the length 
of the action sequence.
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Hidden Markov Models
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A finite state machine with probabilities on the arcs.
<s1,S,W,E> where S={s1,s2,s3,s4,s5,s6,s7,s8}; W={“Roger”, …}; E={<transition> …}
Transition <s2,s3,”had”,0.3> 
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S1: Mary had a little Lamb and a big dog.
S2: Roger ordered a lamb curry and a hot dog. 
S3: John cooked a hot dog curry.

P(S3)=0.3*0.3*0.5*0.5*0.3*0.5=0.003375
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Finding the most likely path

)|(maxarg)( 1,1,1
,1

−= tts
wsPt

t

σ
Viterbi Algorithm: For an action sequence of length t-1 finds:

in linear time.

a b

“0” 0.3

“1” 0.1

“0” 0.2

“1” 0.1

“0” 0.2

“1” 0.5“0” 0.4

“1” 0.2 Viterbi Algorithm:
For each state extend the   
most probable state sequence 
that ends in that state.

States ε 1 11 111 1110

Sequence a aa aaa aaaa abbba

Probability 1.0 0.2 0.04 0.008 0.005

Sequence b ab abb abbb abbbb

Probability 0.0 0.1 0.05 0.025 0.005
b

a“1110”

9



Action Sequence Probabilities 
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HMM forward probabilities
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1 2 3 4 5

ε 1 1 1 0

αa(t) 1.0 0.2 0.05 0.017 0.0148

αb(t) 0.0 0.1 0.07 0.04 0.0131

P(w1,t) 1.0 0.3 0.12 0.057 0.0279

t

0.2*0.1=0.02
+

0.1*0.5=0.05

a b

“0” 0.3

“1” 0.1

“0” 0.2

“1” 0.1

“0” 0.2

“1” 0.5“0” 0.4

“1” 0.2

“1110”



HMM Training 
(Baum-Welch Algorithm)

Given a training sequence, adjusts the HMM state transition 
probabilities to make the action sequence as likely as possible.

a

“0” “1”

“2”

Training Sequence: 01010210

a 8

“0” 4 “1” 3

“2” 1

a

“0” 0.5 “1” 0.375

“2” 0.125
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With Hidden States
Intuitively…

a

“0”

“0”
c

b
0.7

0.3

When counting transitions
Prorate transitions by 
their Probability.

1. Guess a set of transition probabilities.

2. (while (improving) 

(propagate-training-sequences))

“improving” is calculated by comparing
the cross-entropy after each iteration. 
When the cross-entropy decreases by less
than ε in an iteration we are done.

Cross entropy is:
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? But you don’t know the
transition probabilities!
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Scale Invariant Feature Transform

David Lowe ‘Distinctive Image Features from 
Scale-Invariant Keypoints’ IJCV 2004.

Stages:
– Scale Space (Witkin ‘83) Extrema Extraction
– Keypoint Pruning and Localization
– Orientation Assignment
– Keypoint Descriptor
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Scale space in SIFT
Motivation: 

– Objects can be recognized at many levels of detail 
– Large distances correspond to low l.o.d. 
– Different kinds of information are available at each level

Idea: Extract information content from an image at each l.o.d. 
Detail reduction done by Gaussian blurring:
– I(x, y) is input image. L(x, y, σ) is rep. at scale σ.
– G(x, y, σ) is 2D Gaussian with variance σ 2 

– L(x, y, σ) = G(x, y, σ) * I(x, y) 
– D(x, y, σ) = L(x, y, k σ) − L(x, y, σ)
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Features of SIFT

Invariant to:
Scale
Planar Rotation
Contrast
Illumination
Large numbers of features
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Difference of Gaussians
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Scale Space

• Compute local extrema of D
• Each (x, y, σ) is a feature.
• (x, y) scale and planar rotation invariant.
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Pruning for Stability

• Remove feature candidates that
– Low Contrast
– Unstable Edge Responses
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Orientation Assignment

For each feature (x, y, σ): 
– Find fixed-pixel-area patch in L(x, y, σ) around (x, y) 
– Compute gradient histogram; call this bi

– For bi within 80% of max, make feature (x, y, σ, bi)
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Vision Based SLAM
Readings:

Se, S., D. Lowe and J. Little, ‘Mobile Robot 
Localization and Mapping with Uncertainty 
using Scale-Invariant Visual Landmarks’, The 
International Journal of Robotics Research, 
Volume 21 Issue 08. 
Kosecka, J. Zhou, L. Barber, P. Duric, Z. 
‘Qualitative Image Based Localization in 
Indoor Environments’ CVPR 2003.
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Predictive Vision-Based SLAM
1. Compute SIFT features from current location.
2. Use Stereo to locate features in 3D.
3. Move
4. Predict new location based on odometry and 

Kalman Filter.
5. Predict location of SIFT features based upon motion 

of robot.
6. Find SIFT features and find 3D position of each.
7. Compute position estimate from each matched 

feature.
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Vision Based Localization

• Acquire video sequence during the exploration of 
new environment.

• Build environment model in terms of locations 
and spatial relationships between them.

• Topological localization by means of location 
recognition.

• Metric localization by computing relative pose of 
current view and representation of most likely 
location.
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Same Location?
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Global Topology, Local Geometry
Issues:
1. Representation of individual locations
2. Learning the representative location features
3. Learning neighborhood relationships between 

locations.
4. Each view represented by a set of SIFT features.
5. Locations correspond to sub-sequences across 

which features can be matched successfully.
6. Spatial relationships between locations are 

captured by a location graph.
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Image Matching

10 – 500 features 
per view

• For each feature find the discriminative nearest neighbor feature.
• Image Distance (Score) - # of successfully matched features.
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Partitioning the Video Sequence

• Transitions determined 
during exploration.

• Location sub-sequence 
across which features can 
be matched successfully.

• Location Representation: 
set of representative views 
and their associated 
features.
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Location Recognition

• Given a single view what is the location 
this view came from ?

Recognition – voting scheme
For each representative view selected in 
the exploration stage

1. Compute the number of matched features.
2. Location with maximum number of 

matches is the most likely location.
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Markov Localization in the 
topological Model

Exploiting the spatial relationships between the 
locations

• S – discrete set of states L x {N, W, S, E} locations and
orientations
• A – discrete set of actions (N, W, S, E)
• T(S, A, S’) – transition function , Discrete Markov Model

31



Markov Localization
P(Lt=li|o1:t)         ∝ P(ot|Lt=li) P(Lt=li|o1:t-1)
Location posterior                 Observation likelihood
P(location|observations)        P(image|location)

Observation Likelihood P(ot|Lt=li) =    C(i)

P(image|location) ΣjC(j)

P(Lt=li|o1:t-1) = Σ A(i,j)P(Lt-1=lj|o1:t-1)
Location transition probability matrix
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HMM Recognition

• Improved recognition rate from 82% to 96% in 
experimental tests
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Metric Localization within Location
1. Given closest representative view of the location
2. Establish exact correspondences between keypoints
3. Probabilistic matching combining (epipolar) geometry, 

keypoint descriptors and intrinsic scale

Compute relative pose with respect to the reference view
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Wrap up

• What we have covered:
– Supporting Methods

• Kalman Filter
• HMM
• SIFT

– Localization and Mapping
• Basic SLAM
• Large Scale SLAM (Leonard)
• Topological Maps
• Vision Based Localization/SLAM
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