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Challenges of Autonomy in the Real
World

Wide range of sensors
Noisy sensors
World dynamics
Adaptability
Incomplete information

Robustness under
uncertainty
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Predicted Health Care Needs

@ By 2008, need 450,000 additional nurses:

@ Monitoring and walking assistance
30 % of adults 65 years and older have fallen this year

Cost of preventable falls: Alexander 2001
$32 Billion USlyear
@ Intelligent reminding

Cost of medication non-compliance:
$1 Billion US/year Dunbar-Jacobs 2000

Spoken Dialogue Management

@ Wewant...
@ Natural dialogue...
@ With untrained (and untrainable) users...
@ |nan uncontrolled environment...
@ Across many unrelated domains
@ Cost of errors...
@ Medication is not taken, or taken incorrectly
@ Robot behaves inappropriately
@ User becomes frustrated, robot isignored, and becomes
useless

@ How to generate such a policy?




Perception and Control

Probabilistic I
Perception Control

World state

Probabilistic Methods for Dialogue
M anagement

@ Markov Decision Processes moddl action
uncertainty

@ (Levinet. al, 1998, Goddeau& Pineau, 2000)
@ Many techniques for learning optimal palicies,
especially reinforcement learning
@ (Singh et al. 1999, Litman et al. 2000, Walker 2000)

Markov Decision Processes

@ A Markov Decision Process is given formally by the following:
aset of states S={s;, s, ... S}

aset of actions A={ay, &, ..., 8}

aset of transition probabilitiesT(s;, a §) = p(s |a §)

aset of rewards R: SxA? A

adiscount factor g [0, 1]

aninitial statesyl S

@ Bellman's equation (Bellman, 1957) computes the expected

reward for each state recursively,

N
J(s;) = max (H(’s,,aj + ':er(sJ S, a) -J(jsj))

J=1

&6 e O e

@ and determines the policy that maximises the expected,
discounted reward

The POMDP in Dialogue Management

@ State: Represents desire of user
eg.want _tv, want_neds

@ This state is unobservable to the dialogue system

@ Observations: Utterances from speech recogniser
e.g. .| want to take my pills now.

@ The system must infer the user's state from the possibly noisy or
ambiguous observations

@ Where do the emission probabilities come from?

# At planning time, from a prior model
@ Atruntime, from the speech recognition engine

The MDP in Dialogue Management

@ State: Represents desire of user
eg.want _tv, want_meds

@ Assume utterances from speech recogniser give
state
e.g. | want to take my pills now.

@ Actions are: robot motion, speech acts
@ Reward: maximised for satisfying user task

Markov Decision Processes

@ Model the world as different states the system can bein
e.g. current state of completion of a form

@ Each action moves to some new state with probability p(i; j)
@ Observation from user determines posterior state




Markov Decision Processes Markov Decision Processes

@ Optimal policy maximizes expected future (discounted) reward @ Since we can compute a policy that maximises
@ Policy found using value iteration the expected reward...

@ thenif we have ...
@ areasonable reward function
@ areasonable transition model
2 Do we get behaviour that satisfies the user?

Fully Observable State Representation Fully Observable State Representation

[READY]

@ Advantage: No state identification/tracking problems
@ Disadvantage: What if the observation is noisy or false?

Perception and Control Tak Outline

Robots in the real world
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Probabilistic Robust
Perception argmax P(x) X .
Model ] [ Control @ Partially Observable Markov Decision
Processes

World state
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Solving large POMDPs
Deployed POMDPs

L]




Control Models

@ Markov Decision Proc&ses
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@ Partially Observable Markov Decision Processes
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POMDPs

Actions Sondik, 1971
Beliefs
Observations
Observable O(zls) 4
Hidden q
Sates esesian

Rewards R,

Navigation asa POMDP

Controller chooses actions based
on probability distributions

Action, observation

The POMDP in Dia ogue Management

@ State: Representsdesire of user
eg.want _tv, want_neds
@ Thisstateisunobservable to the dialogue system
@ Observations: Utterances from speech recogniser
e.g. .| want to take my pills now.
@ The system must infer the user's state from the possibly
noisy or ambiguous observations
@ Where do the emission probabilities come from?
@ At planning time, from a prior model
@ At run time, from the speech recognition engine
@ Actionsare still robot motion, speech acts

@ Reward: maximised for satisfying user task

The POMDP in Dia ogue Management
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The POMDP in Dia ogue Management

want _ABC

want _CBS
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Probability still distributed
among multiple states




The POMDP in Dialogue Management
_—

want _ABC

He wants the
schedule for
NBC!

want

Q
o,

Probability mass still distributed among multiple
states, but mostly centered on the true state now

The POMDP in Dialogue Management

want _ABC

want _NBC

Datelineis
onNBC

right now.

want _CBS

request _done

Probability mass shifts to anew state as aresult of
the action.

POMDP Advantages

@ Models information gathering

@ Computes trade-off between:

@ Getting reward
@ Being uncertain

Am | here, or over there?

1 1

@ MDP makes decisions based on uncertain foreknowledge
@ POMDP makes decisions based on uncertain knowledge

A Simple POMDP

—_ p(9)
Stateis hidden —
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POMDP Policies
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Scaling POMDPs
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|l hour, Zhang & Zhang 2001|

The Real World

@ Maps with 20,000 states
@ 600 state dialogues

Structure in POMDPs

1

Factored models

¢ Boutilier & Poole, 1996
@ Guestrin, Koller & Parr, 2001

-]

Information Bottleneck models
@ Poupart & Boutilier, 2002

Hierarchica POMDPs

¢ Pineau & Thrun, 2000
# Mahadevan & Theocharous 2002

1
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Many others

Belief Space Structure

-

The controller may be globally
uncertain...

but not usually.

Belief Compression

@ |If uncertainty has few degrees of freedom,
belief space should have few dimensions

Each mode has few
degrees of freedom

-
M

Control Models

@ Previous models

@ Compressed POMDPs

Probabilistic —
Perception Lowdimensional Ptx) f—t Control

Model

World state




The Augmented MDP

@ Represent beliefs using

b= <argmax b(s);H (b)>

H(b)=-& p(s)log; P(s)

@ Discretise into 2-dimensional belief space MDP

Model Parameters

@ Reward function
p(9

Back-project to high

dimensional belief S

= Compute expected reward from belief:

R(b)=E,(R(S) =& P(IR(

Model Parameters

@ Use forward model

DeStnuiaitiicprovess

Augmented MDP

1. Discretize state-entropy space
2. Compute reward function and transition

function

3. Solve belief state MDP

Nursebot Domain

Medication scheduling
Time and place tracking
Appointment scheduling
Simple outside knowledge
e.g. weather

Simple entertainment

e.g. TV schedules

1 ¢ @ ¢ @

1

Spohinx speech recognition, Festival speech
synthesis

MDP Graph

Want CBS Info




An Example Dialogue

Observation True State Belief Entrop Action Reward
hello request begun 0.406 say hello 100
what is like start meds 2.735 ask repeat -100
what time is it for will the want time 0.490 say time 100
was on abc want tv 1.176 ask which station 1
was on abc want abc 0.886 say abc 100
what is on nbc want nbc 1.375 confirm channel nbc -1
es. want nbc 0.062 say nbc 100

go to the that pretty good what send robot 0.864 ask robot where E
that ello be send robot bed 1.839 confi t place -1
he om send robot bex 0.194 00

an
goit eight ahello

send robot

1.110

n
ask robot where
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User Data -- Reward Accumulation

© Revard per Action
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Number of Dialogs

POMDP Diaogue Manager Performance

User Data -- Time to Satisfy Request
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POMDPs for Navigation

@ Conventional
trajectories may not
be robust to
localization error

Estimated robot position |@
True robot position |@
Goal position |O

Nursebot Pearl

Assisting Nursing
Home Residents

Talk Outline

@ Robots in the real world
o Partially Observable Markov Decision Processes

@ Solving large POMDPs

@ Deployed POMDPs

Belief Compression

@ Belief space is a low-dimensional sub-manifold

'\

Full Belief Space

Dimensionality Reduction

@ Principal Components Analysis

Bases: U Weights ~

Characteristic
Beliefs

Original Beliefs

Data: B




Principal Components Analysis

@ Given belief Be 7, we want Be W, min.

9 Collection of
beliefs drawn
from 200 state
problem

Fribahility af being in stote
| ' i ¥ ]

Principal Components Analysis

@ Given belief Be R, we want Be B, man,

@ m=9 gives this g -
representation | ¥ { P |
for one sample § ' ! \
- = = £ I\
distribution % | (1 I

Principal Components Analysis
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Many real world POMDP distributions are
characterized by large regions of low probability,

L

Principal Components Analysis
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@ PCA loss function:

LbU.B) =I!9—UE||2

Principal Components Analysis

=

=A==
@ PCA data likelihood:
—log P(b;Ub)y=log N(b:Ub)

Data are not normally distributed

Principal Components Analysis

@ Minimizing PCA loss function:
Lb.U by =|p-ub]|
@ Lquivalent to minimizing:

—log P(h;0)=~log N (5 O)

@ Equivalent to minimizing:

TISEE=tITY S B, (b | g(6))

Collirs, Dusgupta & Schuapiee, 20000




Principal Components Analysis

\
= -
@ PCA data likelihood:

—log P(b; Uby=— log Poisson(b; Ub)

Use a Poisson likelihood model

Calling, Duvgupia & Schapive, M0

Different Error Functions

Gaussian Poisson
o = —
o 1\
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Solving for Bases and Parameters
T I

@ Bregman Divergence for Poisson error model:

B,(b| Ub)=e"™ —bolb

Solving for Bases and Parameters
S

@ Bregman Divergence for Poisson error model:
B, (b|Ub)y=e""" —boUb

B, (b| Ub) _ 0
U AU
=€1Uﬁ X _})g?'

OB, (b| Ub)y 9
db b
=Ur€{u?: ~UTh

F(Ub)—boUb

F(Ub)=boUb

Solving for Bases and Parameters

@ Loss function for Poisson error model:

—log(x;e* yec &t —xA
argmin—log(b; Ub )= arg min &%) —b o Ub
@ Equivalent Lo minimising:

argmin | D2 (b—exp(Ub)) |

, ]:f;'orf i.';:hr:[:[ | Example EPCA

<

Frobabilite af being in state




Example Reduction

Hevvestruclion

Finding Dimensionality

KL Divergence between Sampled Beliefs and Reconstructions

@ E-PCA will indicate
appropriate number of

bases, depending on

beliefs encountered

E-PCA ——

Planning

E-PCA

i
S,

QOriginal POMDP Low-dimensional

belief space

Planning

E-PCA Discretize

= L =
S,
S5

QOriginal POMDP

Low-dimensional Discrete belief

belief space space MDP

Model Parameters

@ Reward function
p(s)
Back-project to high

dimensional belief S

R(b) - o
R()=E,(R(s) =& PIRE)

LCompute expected reward from belief:

Model Parameters

@ Transition function

12



Model Parameters

®

@ Use forward model

DeStariaitiicprocess

Model Parameters

@ Use forward model

T(b. a b) 1 p(@s)b;(sla)
if b(s) = b(saz2)

otherwise

E-PCA POMDPs

1. Collect sample beliefs
2. Find low-dimensional belief representation
3. Discretize

4. Compute reward function and transition
function

5. Solve belief state MDP

Robot Navigation Example

Initial Distribution

True robot position
Goal positionjo

Robot Navigation Example

True robot position
Goal positionjo

People Finding asa POMDP

@ Factored state space

@ 2 dimensions: fully-observable robot position
@ 6 dimensions: distribution over person positions

Regular grid gives™ 10 states

13



Variable Resolution Discretization

@ Variable Resolution Dynamic Programming (1991)
@ Parti-game (Moore, 1993)

2 Variable Resolution Discretization (Munos & Moore,
2000)

@ POMDP Grid-based Approximations (Hauskrecht,
2001)

@ |mproved POMDP Grid-based Approximations (Zhou &
Hansen, 2001)

Variable Resolution

Parti-Game Utile Distinction Trees

# |nstance-based
# Nearest-neighbour state
representation

Instance-based
Stochastic

Reward statistics splitting
riterion

# Deterministic
Suffix tree representation

Combine the two approaches:
“Stochastic Parti-Game”

Variable Resolution

@ Non-regular grid using samples

@ Compute model parameters using nearest-neighbour

Refining the Grid

@ Sample beliefs according to policy
@ Construct new model
@ Keep new beief if V({B,) > V()

The Optimal Policy

Original distribution

Reconstruction using
EPCA and 6 bases

Robot position ®
True person position ¢

Policy Comparison

Average timeto find person

250

200

150

100

) ﬂ— ] hﬂ‘

0

TrueMDP Closest Densest Maximum E-PCA Var.Res.
Likelihood E-PCA

Time

E-PCA: 72 states
Var. Res. E-PCA: 260 states
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Summary

@ POMDPs for robotic control improve system
performance

@ POMDPs can scaleto real problems
@ Belief spaces are structured

@ Compress to low-dimensional statistics
@ Find controller for low-dimensional space

L]

L]

-]

L]

Open Problems

Better integration and modelling of people
Better spatial and temporal models
Integrating learning into control models

Integrating control into learning models
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