Model-based Programming:
From Embedded Systems
To Robotic Space Explorers

Brian C. Williams
CSAIL
Massachusetts Institute of Technology

Fallures Highlight The
Challenge of Robustness

e Clementine

 Mars Climate Orbiter
 Mars Orbiter

 Mars Polar Lander

courtesy of JPL

Complexity Is In Coordinating Subsystems

Large collections of devices must work in concert to achieve goals
 Devices indirectly observed and controlled.
* Must manage large levels of redundancy.
* Need quick, robust response to anomalies throughout life.

Mars Polar Lander Failure

Leading Diagnosis:
 Legs deployed during descent.

* Noise spike on leg sensors
latched by software monitors.

 Laser altimeter registers 50ft.

 Begins polling leg monitors to
determine touch down.

 Latched noise spike read as
touchdown.

« Engine shutdown at ~50ft.

Fault Aware Systems: j’
Create embedded languages h Programmers are overwhelmed
That reason and coordinate by the bookkeeping of reasoning
on the fly from models about unlikely hidden states

Mission Design Begins
With A Storyboard

engine to standby

planetary approach

———
-
-
-
-

switch to

Inertial nav rotate to entry-orient

--F g & hold attitude
S e=

separate
lander

Mission Storyboards
Specify Evolving States

engine to standby

~———
-
-
-
-

planetary approach

switch to

inertial nav rotate to entry-orient

. & & hold attitude

. separate

& lander
i

Mission Storyboards
Specify Evolving States

engine to standby

planetary approach

———
-

switch to
Inertial nav rotate to entry-orient
- & hold attitude
TS~
-

separate
lander

%

Mission Storyboards
Specify Evolving States

engine to standby
= planetary approach switch to

S inertial nav rotate to entry-orient
-------- & hold attitude

Wy separate
,«ﬁ lander
<

Mission Storyboards
Specify Evolving States

engine to standby

= planetary approach switch to
= : : _
ST e Inertial nav rotate to entry-orient
R R & hold attitude

separate
lander

Mission Storyboards
Specify Evolving States

engine to standby

= planetary approach switch to
= : : _
ST e Inertial nav rotate to entry-orient
"~~T & hold attitude
T

. separate
,ﬁ lander
v

Mission Storyboards
Specify Evolving States

engine to standby

= planetary approach switch to
B 1 1 :
S Inertial nav rotate to entry-orient
R R & hold attitude

separate
lander

Mission Storyboards
Specify Evolving States

engine to standby

= planetary approach switch to
N O : : _
ST e Inertial nav rotate to entry-orient
R R & hold attitude

separate
lander

Specify Evolving States

engine to standby

= planetary approach switch to
B 1 1 :
S Inertial nav rotate to entry-orient
R R & hold attitude

separate
lander

Storyboards Elaborated
With Failure Scenarios

gine to standby

= planetary approach switch to
= : : _
ST e Inertial nav rotate to entry-orient
T - & hold attitude

separate
lander

lander
stage

Storyboards Elaborated
With Failure Scenarios

gine to standby

= planetary approach switch to
= : : _
ST e Inertial nav rotate to entry-orient
T - & hold attitude

separate
lander

Like Storyboards, Model-based Programs
Specify The Evolution of Abstract States

Embedded programs evolve actions
by interacting with plant sensors

and actuators:

 Read sensors

e Set actuators

Embedded Program

Obs

Cntrl

Plant

Model-based programs evolve
abstract states through direct
Interaction:

 Read abstract state

» Write abstract state

Model-based
Embedded Program

4

S
Model-based Executive
Obs | v _Cntrl
S
Plant

Model-based executive maps
between state and sensors/actuators.

Descent Example

Turn camera off and engine on

EngineA EngineB l EngineA EngineB

I .

Science Camera Science Camera

Model-based Programs

Control program specifies
state trajectories:

« fires one of two engines
* sets both engines to ‘standby’

e prior to firing engine, camera must be
turned off to avoid plume contamination

* in case of primary engine failure, fire
backup engine instead

Plant Model describes
behavior of each component:

— Nominal and Off nominal
— gualitative constraints
— likelihoods and costs

Orbitlnsert()::

(do-watching ((EngineA = Thrusting) OR
(EngineB = Thrusting))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Thrusting)))

(when-donext ((EngineA = Failed) AND
(EngineB = Standby) AND
(Camera = Off))

(EngineB = Thrusting))))

Plant Model

component modes...

described by finite domain constraints on variables...

deterministic and probabilistic transitions

cost/reward
Engine Model Camera Model
Ov
(thrust = zero) AND _
(power_in = zero) | Off (DO(\;VELEIQE ZCTLZLQ)ND off oV Ov
(thrust = Zero) A_ND Failed
(power_in = nominal) | 2 kv wrnoft-| | turnon.
Standby cmd
standby- 0v
(thrust = full) AND cmd 0.01
(power_in = nominal) (power_in = nominal) AND 0 20 v
2 kv (shutter = open) n

Firing

one per component ... operating concurrently

State-based Execution: The model-based program sets the
state to thrusting, and the deductive controller

Oxidizer tank Fuel tank

i% *Q* T T
= mp X EX EX
B e £
Deduces that Plans actions

thrust is off, and to open
Deduces that a valve
failed - stuck closed

e engine is healthy six valves
£ 5 3 ™, i3
XYY £ &

¥ X ¥ X ¥ X ¥ X perormines that valves £ X ¥

on the backup engine
will achieve thrust, and

plans needed actions.

RM

OrbitInsert()::
(do-watching ((EngineA = Firing) OR . .
oy 0 Titan Model-based Executive
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND
(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

State estimates

State goals

Stuck
closed

inflow iff outflow Plant

Observations Commands

-

