
Model-based Programming:
From Embedded Systems

To Robotic Space Explorers

Brian C. Williams
CSAIL

Massachusetts Institute of Technology

Failures Highlight The
Challenge of Robustness

• Clementine
• Mars Climate Orbiter
• Mars Orbiter
• Mars Polar Lander

courtesy of JPL

Complexity Is In Coordinating Subsystems

Large collections of devices must work in concert to achieve goals
• Devices indirectly observed and controlled.
• Must manage large levels of redundancy.
• Need quick, robust response to anomalies throughout life.

Mars Polar Lander Failure

Programmers are overwhelmed
by the bookkeeping of reasoning

about unlikely hidden states

Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors
latched by software monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to
determine touch down.

• Latched noise spike read as
touchdown.

• Engine shutdown at ~50ft.

Fault Aware Systems:
Create embedded languages
That reason and coordinate

on the fly from models

Mission Design Begins
With A Storyboard

engine to standby
planetary approach switch to

inertial nav rotate to entry-orient
& hold attitude

separate
lander

Mission Storyboards
Specify Evolving States

Descent engine to “standby”:

offheating
30-60 sec
standby

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Mission Storyboards
Specify Evolving States

engine to standby

Spacecraft approach:
• 270 mins delay
• relative position wrt Mars not

observable
• based on ground computations

of cruise trajectory

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Mission Storyboards
Specify Evolving States

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Switch navigation mode:
“Earth-relative” = Star Tracker + IMU

Switch navigation mode:

“Inertial” = IMU only

Mission Storyboards
Specify Evolving States

engine to standby

Rotate spacecraft:
• command ACS to entry orientation

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Mission Storyboards
Specify Evolving States

engine to standby

Rotate spacecraft:
• once entry orientation achieved,

ACS holds attitude

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

engine to standby

Separate lander from cruise stage:

planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

cruise
stage

lander
stagepyro

latches

Mission Storyboards
Specify Evolving States

Mission Storyboards
Specify Evolving States

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• when entry orientation achieved,

fire primary pyro latch
cruise
stage

lander
stagepyro

latches

Mission Storyboards
Specify Evolving States

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• when entry orientation achieved,

fire primary pyro latch

lander
stage

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• in case of failure of primary latch,

fire backup pyro latch
cruise
stage

lander
stage

Storyboards Elaborated
With Failure Scenarios

engine to standby
planetary approach

separate
lander

switch to
inertial nav rotate to entry-orient

& hold attitude

Separate lander from cruise stage:
• in case of failure of primary latch,

fire backup pyro latch
cruise
stage

lander
stage

Storyboards Elaborated
With Failure Scenarios

Like Storyboards, Model-based Programs
Specify The Evolution of Abstract States

Embedded programs evolve actions
by interacting with plant sensors
and actuators:

• Read sensors

• Set actuators

Embedded Program

S
Plant

Obs Cntrl

Model-based programs evolve
abstract states through direct
interaction:

• Read abstract state

• Write abstract state

Model-based
Embedded Program

S
Plant

Model-based executive maps
between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Descent Example

EngineA EngineB

Science Camera

Turn camera off and engine on

EngineA EngineB

Science Camera

Model-based Programs

Control program specifies
state trajectories:

• fires one of two engines

• sets both engines to ‘standby’

• prior to firing engine, camera must be
turned off to avoid plume contamination

• in case of primary engine failure, fire
backup engine instead

OrbitInsert()::

(do-watching ((EngineA = Thrusting) OR
(EngineB = Thrusting))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Thrusting)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Thrusting))))

Plant Model describes
behavior of each component:
– Nominal and Off nominal
– qualitative constraints
– likelihoods and costs

Plant Model

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

FiringFiring

component modes…

(thrust = full) AND
(power_in = nominal)

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

described by finite domain constraints on variables…

deterministic and probabilistic transitions

offoff--
cmdcmd

standbystandby--
cmdcmd

0.010.01

0.010.01
standbystandby--

cmdcmd
firefire--
cmdcmd

cost/reward

0 v

0 v

2 kv

2 kv

one per component … operating concurrently

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff--
cmdcmd

turnonturnon--
cmdcmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

0 v

20 v

0.010.01

0.010.01

0 v

State-based Execution: The model-based program sets the
state to thrusting, and the deductive controller

Determines that valves
on the backup engine

will achieve thrust, and
plans needed actions.

Deduces that a valve
failed - stuck closed

Plans actions
to open

six valves

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy

Control Sequencer

Deductive Controller

System Model

CommandsObservations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Generates target goal states
conditioned on state estimates

Mode
Estimation

Mode
Reconfiguration

Tracks
likely

plant states

Tracks least
cost goal states

Executes concurrently
Preempts
Queries (hidden) states
Asserts (hidden) state

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow iff outflow

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

