
Incremental
Path Planning

Continuous Planning and Dynamic A*

Prof. Brian Williams
(help from Ihsiang Shu)

16.412/6.834 Cognitive Robotics
March 16 th, 2004

Outline

� Optimal Path Planning in
Partially Known Environments.

� Continuous Optimal Path Planning
�Dynamic A*
�Incremental A* (LRTA*) [Appendix]

[

1. Generate global path plan from initial map.

2. Repeat until goal reached or failure:
� Execute next step in current global path plan
� Update map based on sensors.
� If map changed generate new global path

from map.

Compute Optimal Path

FCAS

KHDB

GLIE

ONMJ

Zellinsky, 92]

Begin Executing Optimal Path

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

�

� Uses sensors to detect discrepancies along way.

Obstacle Encountered!

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

�

�

Robot moves along backpointers towards goal. At state A, robot discovers edge from D to H is blocked (cost 5,000 units).
Update map and reinvoke planner.

1

Continue Path Execution

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

� A’s previous path is still optimal.
� Continue moving robot along back pointers.

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

�

�

Second Obstacle, Replan!

At C robot discovers blocked edges from C to F and H (cost 5,000 units).
Update map and reinvoke planner.

h = 5

Path Execution Achieves Goal

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

� Follow back pointers to goal.
� No further discrepancies detected; goal achieved!

Outline

� Optimal Path Planning in
Partially Known Environments.

� Continuous Optimal Path Planning
�Dynamic A*
�Incremental A* (LRTA*) [Appendix]

What is Continuous
Optimal Path Planning?
� Supports search as a repetitive online process.
� Exploits similarities between a series of

searches to solve much faster than
solving each search starting from scratch.

� Reuses the identical parts of the previous search
tree, while updating differences.

� Solutions guaranteed to be optimal.
� On the first search, behaves like traditional

algorithms.
�

� Incremental A* A* behaves exactly like A*.

[
1. Generate global path plan from initial map.

2. Repeat until Goal reached, or failure.
� Execute next step of current global path plan.
� Update map based on sensor information.
�

� 1 to 3 orders of magnitude speedupD* behaves exactly like Dijkstra’s .

Dynamic A* (aka D*)
Stenz, 94]

Incrementally update global path plan from map
changes .

relative to a non-incremental path planner.

2

Map and Path Concepts
�

Cost to move from Y to X.

� :

� :
True optimal path cost to Goal from X.

� :
Estimate of optimal path cost to goal from X.

� from X to Y.
Y is the first state on path from X to G.

D* Search Concepts
� :

�NEW : has no estimate h.
�OPEN : estimate needs to be propagated.
�CLOSED : estimate propagated.

� OPEN list :
States with estimates to be propagated to other states.
�States on list tagged OPEN
�Sorted by key function k (defined below).

c(X,Y) :

c(X,Y) is undefined if move disallowed.
Neighbors(X)
Any Y such that c(X,Y) or c(Y,X) is defined.

o(G,X)

h(G,X)

b(X) = Y : backpointer

State tag t(X)

D* Fundamental Search Concepts
�

Minimum of
�

�
was placed on the OPEN list.

� Lowered state
�Propagate decrease to descendants and other nodes.

� Raised state
�

�Try to find alternate shorter paths.

Running D* First Time on Graph

Initially
� Mark G Open and Queue it
� Mark all other states New
�

� If X is marked Closed, then
�)
�

k(G,X) : key function

h(G,X) before modification, and
all values assumed by h(G,X) since X

: k(G,X) = current h(G,X),

: k(G,X) < current h(G,X),
Propagate increase to dscendants and other nodes.

Run Process_States on queue until path found or empty.

When edge cost c(X,Y) changes

Update h(X
Mark X open and queue with key h(X).

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ
NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

States initially tagged NEW (no cost determined yet).

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ
NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

OPEN

NEW

NEW

OPEN List

� Add Goal node to the OPEN list.
� Process OPEN list until the robot’s current state is CLOSED.

8:
9: for each neighbor Y of X:
10:
11:)
12:)
13:

h = 0

(0,G) 1

if kold = h(X) then

if t(Y) = NEW or
(b(Y) = X and h(Y ? h(X) + c(X,Y)) or
(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

3

� Remove from Open list , state X with lowest k
�

�

�

�

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ
NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

OPEN

NEW

NEW

OPEN List

� Add new neighbors of G onto the OPEN list
�

8:
9: for each neighbor Y of X:
10: if or
11:)
12:)
13:

h = 0

Process_State: New or Lowered State

If X is a new/lowered state, its path cost is optimal!
Then propagate to each neighbor Y

If Y is New, give it an initial path cost and propagate.
If Y is a descendant of X, propagate any change.
Else, if X can lower Y’s path cost,
Then do so and propagate.

(0,G) 1

Create backpointers to G.

if kold = h(X) then

t(Y) = NEW
(b(Y) = X and h(Y ? h(X) + c(X,Y)) or
(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 1

h = 1

h = 0

h = 1

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

OPEN

NEW

NEW

OPEN

CLOSED

OPEN

NEW

OPEN List

� Add new neighbors of G onto the OPEN list
�

8:
9: for each neighbor Y of X:
10: if or
11:)
12:)
13:

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 2

h = 1

h = 2

h = 1

h = 0

h = 1

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

OPEN

OPEN

NEW

OPEN

CLOSED

CLOSED

OPEN

3

OPEN List

� Add new neighbors of K on to the OPEN list
�

8:
9: for each neighbor Y of X:
10: if or
11:)
12:)
13:

(1,K) (1,L) (1,O) 2
(0,G) 1

Create backpointers to G.

if kold = h(X) then

t(Y) = NEW
(b(Y) = X and h(Y ? h(X) + c(X,Y)) or
(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

(1,K) (1,L) (1,O) 2
(1,L) (1,O) (2,F) (2,H)

(0,G) 1

Create backpointers .

if kold = h(X) then

t(Y) = NEW
(b(Y) = X and h(Y ? h(X) + c(X,Y)) or
(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 2

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

NEW

NEW

NEW

NEW

NEW

OPEN

NEW

NEW

OPEN

CLOSED

OPEN

NEW

CLOSED

CLOSED

CLOSED

OPEN

4

OPEN List

� Add new neighbors of L, then O on to the OPEN list
�

8:
9: for each neighbor Y of X:
10: if or
11:)
12:)
13:

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 2

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

NEW

NEW

NEW

NEW

NEW

OPEN

NEW

NEW

OPEN

CLOSED

OPEN

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

4

5

OPEN List

� Continue until current state S is closed.

(1,L) (1,O) (2,F) (2,H) 3
(1,K) (1,L) (1,O) 2

(2,F) (2,H) (2,I) (2,N)

(0,G) 1

Create backpointers .

if kold = h(X) then

t(Y) = NEW
(b(Y) = X and h(Y ? h(X) + c(X,Y)) or
(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

(2,F) (2,H) (2,I) (2,N)
(1,L) (1,O) (2,F) (2,H) 3
(1,K) (1,L) (1,O) 2

(2,H) (2,I) (2,N) (3,C)

(0,G) 1

4

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 3

h = 2

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

NEW

NEW

NEW

NEW

NEW

OPEN

OPEN

NEW

OPEN

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

4

5
6

OPEN List

� Continue until current state S is closed.

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 3

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

NEW

OPEN

NEW

NEW

OPEN

CLOSED

OPEN

NEW

OPEN

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

4

5

7

OPEN List

� Continue until current state S is closed.

(2,F) (2,H) (2,I) (2,N)

(2,H) (2,I) (2,N) (3,C)

(1,L) (1,O) (2,F) (2,H) 3
(1,K) (1,L) (1,O) 2

(2,I) (2,N) (3,C) (3,D)

(0,G) 1

(2,F) (2,H) (2,I) (2,N)

(2,H) (2,I) (2,N) (3,C)
(2,I) (2,N) (3,C) (3,D) 6

(1,L) (1,O) (2,F) (2,H) 3
(1,K) (1,L) (1,O) 2

(2,N) (3,C) (3,D) (3,E) (3,M)

(0,G) 1

Use D* to Compute Initial Path

GLIE

ONMJ

h = 3 h = 2

h = 3

h = 1

h = 2

h = 0

h = 1

NEW

OPEN

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED 4 (2,F) (2,H) (2,I) (2,N)
(1,L) (1,O) (2,F) (2,H) 3
(1,K) (1,L) (1,O) 2
(0,G) 1
OPEN List

Continue until current state S is closed.

FCAS

KHDB
h = 3

h = 3

h = 2

h = 2

h = 1

NEW

NEW

OPEN

NEW

CLOSED

OPEN

CLOSED

CLOSED

5 (2,H) (2,I) (2,N) (3,C)
(2,I) (2,N) (3,C) (3,D) 6
(2,N) (3,C) (3,D) (3,E) (3,M) 7
(3,C) (3,D) (3,E) (3,M) 8

�

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 3

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

NEW

OPEN

NEW

NEW

OPEN

CLOSED

OPEN

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

5

9

OPEN List

� Continue until current state S is closed.

(2,F) (2,H) (2,I) (2,N)

(2,H) (2,I) (2,N) (3,C)
(2,I) (2,N) (3,C) (3,D) 6
(2,N) (3,C) (3,D) (3,E) (3,M) 7
(3,C) (3,D) (3,E) (3,M) 8

(1,L) (1,O) (2,F) (2,H) 3
(1,K) (1,L) (1,O) 2

(3,D) (3,E) (3,M) (4,A)

(0,G) 1

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 4

h = 3

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

NEW

OPEN

OPEN

NEW

OPEN

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

5
(2,I) (2,N) (3,C) (3,D)6
(2,N) (3,C) (3,D) (3,E) (3,M)7
(3,C) (3,D) (3,E) (3,M)8

(3,D) (3,E) (3,M) (4,A)9

(1,L) (1,O) (2,F) (2,H)3
(1,K) (1,L) (1,O)2

10

(0,G)1
OPEN List

� Continue until current state S is closed..

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

OPEN

CLOSED

OPEN

NEW

OPEN

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

13
12
11

14

(3,E) (3,M) (4,A) (4,B)10
OPEN List

� Continue until current state S is closed.

(2,F) (2,H) (2,I) (2,N)

(2,H) (2,I) (2,N) (3,C)

(3,E) (3,M) (4,A) (4,B)

(3,M) (4,A) (4,B) (4,J)

5

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

OPEN

CLOSED

OPEN

NEW

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

(3,M) (4,A) (4,B)12
13

(3,M) (4,A) (4,B) (4,J)11

14

(3,E) (3,M) (4,A) (4,B)10
OPEN List

� Continue until current state S is closed.

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

OPEN

CLOSED

OPEN

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

14

13
(3,M) (4,A) (4,B)12
(3,M) (4,A) (4,B) (4,J)11

15

(3,E) (3,M) (4,A) (4,B)10
OPEN List

� Continue until current state S is closed.

(4,B) (4,J) (5,S)

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

OPEN

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

(3,M) (4,A) (4,B)12
(4,B) (4,J) (5,S)13

(4,J) (5,S)14

(3,M) (4,A) (4,B) (4,J)11

15

(3,E) (3,M) (4,A) (4,B)10
OPEN List

� Continue until current state S is closed.

Use D* to Compute Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

(3,M) (4,A) (4,B)12
(4,B) (4,J) (5,S)13

(4,J) (5,S)14

(3,M) (4,A) (4,B) (4,J)11

(5,S)15

(3,E) (3,M) (4,A) (4,B)10
OPEN List

� Continue until current state S is closed.

D* Completed Initial Path

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

(4,B) (4,J) (5,S)13

(4,J) (5,S)14
(5,S)15

(3,M) (4,A) (4,B)12
(3,M) (4,A) (4,B) (4,J)11

NULL16

(3,E) (3,M) (4,A) (4,B)10
OPEN List

� Done: Current state S is closed, and Open list is empty.

Begin Executing Optimal Path

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 2

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

�

� Uses sensors to detect discrepancies along way.
Robot moves along backpointers towards goal

6

Obstacle Encountered!

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

�

�

Running D* After Edge Cost Change

� If X is marked Closed, then
�

�

�

�until path to current state is shown optimal,
�or queue Open List is empty.

At state A, robot discovers edge D to H is blocked off (cost 5,000 units).
Update map and reinvoke D*

When edge cost c(X,Y) changes

Update h(X)
Mark X open and queue, key is new h(X).

Run Process_State on queue

D* Update From First Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

3
2

4

OPEN List

Function: Modify)
1:
2:

3:

� Assign cost of 5,000 for D to H
� Propagate changes starting at H

D* Update From First Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 5002

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

3
4

OPEN List

� Raise cost of H’s descendant D, and propagate.

8:
9: for each neighbor Y of X:
10:
11: ())) or
12:)
13:

(2,H) 1

-Cost(X,Y,eval
c(X,Y) = eval
if t(X) = CLOSED
then Insert(X,h(X))

return Get-Kmin()

(3,D) 2
(2,H) 1

if kold = h(X) then

if t(Y) = NEW or
b(Y) = X and h(Y ? h(X) + c(X,Y

(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

Raised State

�

� Y.
� h(Y) = [

� Propagate X’s cost to each neighbor Y
� If Y is New, Then give it an initial path cost and propagate.
�

� If X can lower Y’s path cost,
�

� If Y can lower X’s path cost, and Y is suboptimal,
�

�Postponement avoids creating cycles.

h = 5002

D* Update From First Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

3
4

OPEN List

� D may not be optimal, check neighbors for better path.
�

4:
5: for each neighbor Y of X:
6:)
7:

OPEN

Process_State:

If X is a raise state its cost might be suboptimal.
Try reducing cost of X using an optimal neighbor

h(X) before it was raised]

If Y is a descendant of X, Then propagate ANY change .

Postpone: Queue X to propagate when optimal (reach current h(X))

Postpone: Queue Y to propagate when optimal (reach current h(Y)).

(3,D) 2
(2,H) 1

Transitioning to I is better, and I’s path is optimal, so update D.

if kold < h(X) then

if h(Y = kold and h(X) > h(Y) + C(Y,X) then
b(X) = Y; h(X) = h(Y) + c(Y,X);

7

D* Update From First Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

1
OPEN List

� All neighbors of D have consistent h-values.
� No further propagation needed.

Continue Path Execution

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

1
OPEN List

� A’s path optimal.
�

NULL 3
(3,D) 2

NULL 3
(3,D) 2

Continue moving robot along backpointers.

Second Obstacle!

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

3
2

4

OPEN List

�

�

Function: Modify)
1:
2:

3:

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 5002

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

3
4

OPEN List

� Processing F raises descendant C’s cost, and propagates.
� Processing H does nothing.

8:
9: for each neighbor Y of X:
10:
11: ())) or
12:)
13:

(2,F) (2,H) 1

At C robot discovers blocked edges C to F and H (cost 5,000 units).
Update map and reinvoke D* until H(current position optimal).

-Cost(X,Y,eval
c(X,Y) = eval
if t(X) = CLOSED
then Insert(X,h(X))

return Get-Kmin()

(3,C) 2
(2,F) (2,H) 1

if kold = h(X) then

if t(Y) = NEW or
b(Y) = X and h(Y ? h(X) + c(X,Y

(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

h = 4

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

Closed

CLOSED

CLOSED

CLOSED

Open

CLOSED

CLOSED

CLOSED

CLOSED

3
4

OPEN List

� C may be suboptimal, check neighbors; � Better path through A!
� However, A may be suboptimal, and updating would create a loop!

h = 5002h = 5

4:
5: for each neighbor Y of X:
6:)
7:

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

OPEN List

� Don’t change C’s path to A (yet).
� Instead, propagate increase to A.

h = 5002

15: for each neighbor Y of X:
16:
17:
then
18:

h = 5003

(3,C) 2
(2,F) (2,H) 1

if kold < h(X) then

if h(Y = kold and h(X) > h(Y) + C(Y,X) then
b(X) = Y; h(X) = h(Y) + c(Y,X);

(4,A) 3
(3,C) 2
(2,F) (2,H) 1

if t(Y) = NEW or
(b(Y) = X and h(Y) ? h(X) + c(X,Y))

b(Y) = X; Insert(Y,h(X) + c(X,Y))

8

Raised State

�

� Y.
� h(Y) = [

� propagate X’s cost to each neighbor Y
� If Y is New, Then give it an initial path cost and propagate.
�

� If X can lower Y’s path cost,
�

�
� Postpone:

�Postponement avoids creating cycles.

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 5003

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

OPEN List

� A may not be optimal, check neighbors for better path.
�

4:
5: for each neighbor Y of X:
6:)
7:

h = 5002

Process_State:

If X is a raise state its cost might be suboptimal.
Try reducing cost of X using an optimal neighbor

h(X) before it was raised]

If Y is a descendant of X, Then propagate ANY change .

Postpone: Queue X to propagate when optimal (reach current h(X))
If Y can lower X’s path cost, and Y is suboptimal,

Queue Y to propagate when optimal (reach current h(Y)).

(4,A) 3
(3,C) 2
(2,F) (2,H) 1

Transitioning to D is better, and D’s path is optimal, so update A.

if kold < h(X) then

if h(Y = kold and h(X) > h(Y) + C(Y,X) then
b(X) = Y; h(X) = h(Y) + c(Y,X);

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

4

OPEN List

� A may not be optimal, check neighbors for better path.
�

4:
5: for each neighbor Y of X:
6:)
7:

h = 5002

� Remove from Open list , state X with lowest k
�

�

�

�

(4,A) 3
(3,C) 2
(2,F) (2,H) 1

Transitioning to D is better, and D’s path is optimal, so update A.

if kold < h(X) then

if h(Y = kold and h(X) > h(Y) + C(Y,X) then
b(X) = Y; h(X) = h(Y) + c(Y,X);

Process_State: New or Lowered State

If X is a new/lowered state its path cost is optimal,
Then propagate to each neighbor Y

If Y is New, give it an initial path cost and propagate.
If Y is a descendant of X, propagate any change.
Else, if X can lower Y’s path cost,
Then do so and propagate.

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

OPEN List

� A can improve neighbor C, so queue C.

for each neighbor Y of X:
17:)
18:
19: else
20:)) then
21:

h = 5

D* Update From Second Obstacle

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

OPEN

CLOSED

CLOSED

CLOSED

CLOSED

5

OPEN List

� C lowered to optimal; no neighbors affected.
�

h = 4 h = 5

8:
9: for each neighbor Y of X:
10:
11:)
12:)
13:

(4,A) 3
(3,C) 2

(5,C) 4

(2,F) (2,H) 1

if (b(Y) = X and h(Y ? h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

if b(Y ? X and h(Y) > h(X) + c(X,Y
Insert(X,h(X))

(5,C) 4
(4,A) 3
(3,C) 2
(2,F) (2,H) 1

Current state reached, so Process_State terminates.

if kold = h(X) then

if t(Y) = NEW or
(b(Y) = X and h(Y ? h(X) + c(X,Y)) or
(b(Y ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

9

h = 5

Complete Path Execution

FCAS

KHDB

GLIE

ONMJ

h = 5

h = 4

h = 3

h = 4

h = 4

h = 3

h = 2

h = 3

h = 2

h = 1

h = 1

h = 2

h = 1

h = 0

h = 1

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

CLOSED

� Follow back pointers to Goal.
� No further discrepancies detected; goal achieved!

D* Pseudo Code
Function: Process
1: X = Min
2: if X=NULL then return
3: -
4:
5: for each neighbor Y of X:
6:
7:
8:
9: for each neighbor Y of X:
10:
11:
12:
13:
14: else
15: for each neighbor Y of X:
16:
17:
18:
19: else
20:
21:
22: else
23:
24:
25:
26: return Get-

Function: Modify-
1:
2:

3: return Get-

new)
1:

hnew
2:

hnew)
3: else

new)
4: new;
5:

-State()
-State()

-1
kold = Get Kmin(); Delete(X)
if kold < h(X) then

if h(Y) = kold and h(X) > h(Y) + C(Y,X) then
b(X) = Y; h(X) = h(Y) + c(Y,X);

if kold = h(X) then

if t(Y) = NEW or
(b(Y) = X and h(Y) ? h(X) + c(X,Y)) or
(b(Y) ? X and h(Y) > h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

if t(Y) = NEW or
(b(Y) = X and h(Y) ? h(X) + c(X,Y)) then
b(Y) = X; Insert(Y,h(X) + c(X,Y))

if b(Y) ? X and h(X) > h(X) + c(X,Y) then
Insert(X,h(X))

if b(Y) ? X and h(X) > h(Y) + c(Y,X) and
t(Y) = CLOSED and h(Y) > kold then
Insert(Y,h(Y))
Kmin()

Cost(X,Y,eval)
c(X,Y) = eval
if t(X) = CLOSED

then Insert(X,h(X))
Kmin()

Function: Insert(X, h
if t(X) = NEW
then k(x) =

else if t(X) = OPEN
then k(X) = min(k(X),

k(X) = min(h(X), h
h(X) = h
t(X) = OPEN

Recap: Dynamic A*Recap: Continuous Optimal Planning

1.	 Generate global path plan from initial map.

2.	 Repeat until Goal reached, or failure.
�	 Execute next step of current global path plan.
�	 Update map based on sensor information.
�	 Incrementally update global path plan from map changes.

�	 1 to 3 orders of magnitude speedup
relative to a non-incremental path planner.

� Supports search as a repetitive online process.
� Exploits similarities between a series of searches to

solve much faster than from scratch.
� Reuses the identical parts of the previous search

tree, while updating differences.
� Solutions guaranteed to be optimal.

� On the first search, behaves like traditional Dijkstra.

10

