B Incremental
Path Planning

Continuous Planning and Dynamic A*

Prof. Brian Williams

(help from Ihsiang Shu)
16.412/6.834 Cognitive Robotics
March 16, 2004

Outline

m Optimal Path Planning in
Partially Known Environments.

m Continuous Optimal Path Planning
ODynamic A*
Olncremental A* (LRTA*) [Appendix]

T
[Zellinsky, 92]

1. Generate global path plan from initial map.

2. Repeat until goal reached or failure:
O Execute next step in current global path plan
O Update map based on sensors.

O If map changed generate new global path
from map.

Compute Optimal Path

J M N o

E I L G

T

Begin Executing Optimal Path

= Robot moves along backpointers towards goal.
= Uses sensors to detect discrepancies along way.

Obstacle Encountered!

h=4 | h=3 [h=1 | h=1
J M
h:s{L h:z& h:1ﬂ h 0El

m At state A, robot discovers edge from D to H is blocked (cost 5,000 units).
m Update map and reinvoke planner.

Continue Path Execution

4 h=3 h=1 h=1

= A’s previous path is still optimal.
= Continue moving robot along back pointers.

Second Obstacle, Replan!

h=4 | h=3 [h=1 | h=1
J
mees) el e

m At C robot discovers blocked edges from C to F and H (cost 5,000 units).
m Update map and reinvoke planner.

Path Execution Achieves Goal

I
=
1
w
>
[
-
=
[l
[

= Follow back pointers to goal.
= No further discrepancies detected; goal achieved!

Outline

m Optimal Path Planning in
Partially Known Environments.

m Continuous Optimal Path Planning
ODynamic A*
Olncremental A* (LRTA*) [Appendix]

T
What is Continuous
Optimal Path Planning?

m Supports search as a repetitive online process.

= Exploits similarities between a series of
searches to solve much faster than
solving each search starting from scratch.

= Reuses the identical parts of the previous search
tree, while updating differences.

= Solutions guaranteed to be optimal.

= On the first search, behaves like traditional
algorithms.
O D* behaves exactly like Dijkstra’s .
O Incremental A* A* behaves exactly like A*.

Dynamic A* (aka D*)
[Stenz, 94]

1. Generate global path plan from initial map.

2. Repeat until Goal reached, or failure.
O Execute next step of current global path plan.
O Update map based on sensor information.

O Incrementally update global path plan frommap
changes.

> 1to 3 orders of magnitude speedup
relative to a non-incremental path planner.

" JANEENET

Map and Path Concepts

= c(X,)Y):

Cost to move from Y to X.

c(X,Y) is undefined if move disallowed.
= Neighbors(X) :

Any Y such that c(X,Y) or c(Y,X) is defined.
= 0(G,X) :

True optimal path cost to Goal from X.
= h(G,X) :

Estimate of optimal path cost to goal from X.
m b(X) =Y : backpointer from Xto Y.

Y is the first state on path from X to G.

D* Search Concepts

= State tag t(X) :
ONEW : has no estimate h.
OOPEN: estimate needs to be propagated.
OCLOSED : estimate propagated.

= OPEN list:
States with estimates to be propagated to other states.
O States on list tagged OPEN
O Sorted by key function k (defined below).

" JANEENET

D* Fundamental Search Concepts
m K(G,X) : key function
Minimum of

o h(G,X) before madification, and

Dall values assumed by h(G,X) since X
was placed on the OPEN list.

= Lowered state : k(G,X) = current h(G,X),

0O Propagate decrease to descendants and other nodes.

= Raised state : k(G,X) < current h(G,X),
O Propagate increase to dscendants and other nodes.
O Try to find alternate shorter paths.

Running D* First Time on Graph

Initially

» Mark G Open and Queue it

m Mark all other states New

m Run Process_States on queue until path found or empty.

When edge cost c(X,Y) changes
m |If X is marked Closed, then
O Update h(X)
O Mark X open and queue with key h(X).

" JANEENET

Use D* to Compute Initial Path

J
New [onew | onew | nEw
E | L G
new | new [onew | new

NEW NEW NEW NEW

[5)

NEW NEW NEW NEW

States initially tagged NEW (no cost determined yet).

Use D* to Compute Initial Path

M N o OPEN List
NEW NEW NEW NEW 1/(0.6)
h=0
NEW NEW NEW OPEN

8: if kold = hX) then
9: for each neighbor Y of X:

10: ift(Y) = NEW
NEW NEW NEW NEW o ((1\:((\)() =X angrh(Y) 2h(X) +c(X,Y)) or
12 (b(Y)? X and hY) > h(X) +c(X,Y)) then
s A c E 13 b(Y) = X; Insert(Y:n(X) +c(X,Y))

NEW NEW NEW NEW

m Add Goal node to the OPEN list.
= Process OPEN list until the robot’s current state is CLOSED.

" JAEEEENET

Process_State: New or Lowered State

= Remove from Open list , state X with lowest k

m |f X is a new/lowered state, its path cost is optimal!
Then propagate to each neighbor Y
olf Y is New, give it aninitial path costand propagate.
olf Y is a descendant of X, propagate any change.

O Else, if X can lower Y's path cost,
Then do so and propagate.

Use D* to Compute Initial Path

OPEN List

1{(0,6)

M N O
NEW NEW NEW NEW
h=0
NEW NEW NEW OPEN
NEW NEW NEW NEW
=)
S*- A C F
NEW NEW NEW NEW

8: if kold = hX) then
9: for each neighbor Y of X:
10: if t(Y) = NEW or

18 (b(Y)=Xand h(Y) ?h(X) +c(X,Y)) or
12 (b(Y)? X and hY) > h(X) +c(X,Y)) then
13 b(Y) = X; Insert(Y,h(X) + C(X.Y))

m Add new neighbors of G onto the OPEN list
= Create backpointers to G.

" JAEEEENET

Use D* to Compute Initial Path

M N h=1 OPEN List
NEW NEW NEW OPEN 1 (O'G)
ooy 2l @b o)
LD G
NEW NEW OPEN CLOSED
h=1 8: if kold = hX) then
9: for each neighbor Y of X
10: ift(Y) = NEW
NEW NEW REW OPEN 1 ((g(z():Xanzrh(‘()’?h(x)*rc(X‘Y))ur
12: (b(Y)? X and hY) > h(X) +c(X.Y)) then
0 13: b(Y) = X; I t(Y,h(X) + c(XY'
s A c = (Y) = X;Insert(Y,n(x) + c(X.Y)
NEW NEW NEW NEW

= Add new neighbors of G onto the OPEN list
= Create backpointers to G.

Use D* to Compute Initial Path

h=1
M N
NEW NEW NEW OPEN 5
h=1 h=0
G
NEW NEW OPEN CLOSED
h=2 h= l‘l’:r
NEW NEW OPEN CLOSED
- h=2
S A C F
NEW NEW NEW OPEN

OPEN List

[uN

0,6)

N

(LK) (1,L) (1,0)

w

(1,L) (1,0) (2,F) (2,H)

8: if kold = hX) then
9: for each neighbor Y of X:
10: ift(Y) = NEW or
18 (b(Y)=Xand h(Y) ?h(X) +c(X,Y) or
12 (b(Y)? X and iY) > h(X) +c(X,Y)) then
13 b(Y) = X; Insert(Y,h(X) + C(X.Y))

m Add new neighbors of K on to the OPEN list
m Create backpointers.

" JAEEEENET

Use D* to Compute Initial Path

h=2 h=1

M N
El

NEW NEW

OPEN List

0,6)

(1K) (LL) (1,0)
(1LL) (1.0) (2.F) .H)
(2F) (2H) (2.) 2N)

h=2 h:l‘5 h=0

(o]
o
OE
WIN |-

| 2 L E|3
NEW | open |cLosep [cLosen

~

h=2 h=1 8: if kold = hX) then
9: for each neighbor Y of X
10: i t(Y) = NEW or
NEw | nNew | open |closep | 10 TUOSNRW o e et v)or
h=2 12 (b(Y)? Xand hY) > h(X) +c(X.Y) then
o 13 b(Y) = X Insert(Y,h(x) + c(XY)
S~ A C F
NEW NEW NEW OPEN

= Add new neighbors of L, then O on to the OPEN list
= Create backpointers.

Use D* to Compute Initial Path

h=2
M N

NEW NEW El
h=2

OPEN CLOSE!
00

h=1
O

NEW OPEN

0 L Elb G
CLOSED | CLOSED

h=0

h=2 h=
H K
NEW NEW OPEN CLOSED
- h=3 h=
S A C F
NEW NEW OPEN CLOSED

al
Al

= Continue until current state S is closed.

OPEN List

0,6)

(LK) (1,L) (1,0)

(1,L) (1,0) (2,F) (2,H)

(2,F) 2,H) (2,)) (2,N)

QB |WIN|-

(2,H) (2.) 2.N) (3.C)

" JAEEEENET

Use D* to Compute Initial Path

h=2 h=1 OPEN List
NEW NMV OPEN CLOOSE (O'G)
— BB [5[a0 a0 a0

(1,L) (1,0) (2,F) (2,H)

S | his
NEW OPEN CLOSED | CLOSED

(2,F) (2,H) (2,]) (2,N)

(2,H) 2)) (2.N) (3.C)

olo|[s|lw|n|e

(2,)) (2,N) (3,C) (3,D)

h=3 J? h=2 h= 1ﬂ
B D H K
NEW OPEN CLOSED | CLOSED
h=3 1l

h=2
0
S* A C + F
NEW NEW OPEN CLOSED

= Continue until current state S is closed.

Use D* to Compute Initial Path

h=3 | h=2 | h=1 OPEN List

N‘E]W OMN OF";‘N CL[QE 11(0.6)

S 20K G o)
(=1 |:|3 L |:|3 G 3| (1.L) (1,0) (2,F) (2,H)

OPEN CLOSED | CLOSED CLOSED‘D 4 (21':) (Z,H) (2’|) (2,N)

B h53 J# h|:_|2 hlzl 5| (2,H) 2.) @.N) 3,C)

NEW OPEN CLOSED | CLOSED 6 (Z’I) (Z'N) (S’C) (3vD)

h=3 h=2 7[2N) 3.C) (3.D) (3.E) B.M)

S A | C + E

NEW NEW OPEN CLOSED

= Continue until current state S is closed.

" JAEEEENET

Use D* to Compute Initial Path

h=3 | h=2 = OPEN List

NE]W OPEN CLO’éIE CLOOSE 1](0,6)
R e e) [EWYENRY)

= |:|3 L |:|3 G 3[(L) (1,0) 2,F) (2,H)
OPEN CLOSED | CLOSED CLOSEDﬂ 4 (Z,F) (Z,H) (2,') (Z,N)
B “63 J?'T_f “}21 5[2,H) 2. @.N) 3,0)
NEw | OPEN |cLOSED | cLosep 6[(21) @2N) B.C) B.D)

h=3 | h=2 7](2N) (3,C) (3.D) (3,E) B.M)

S9 A C + F 8[(3,C) (3,.D) BE) (3,M)
NEW NEW OPEN CLOSED

= Continue until current state S is closed.

Use D* to Compute Initial Path

h’\=/|3 h'=\12 5 OPEN List
NEW OPEN CLOSEI CLOSE 11(0,6)
h=3 | h= 2& h= 1h h=0 2[(1K) (L) (1,0
E = | |:|3 L |:|3 G 3| (LL) (1,0) 2,F) (2,H)
OPEN CLOSED | CLOSED CLOSED 4 (Z,F) (Z,H) (2’|) (2,N)
B hD3 5/ (2,H) @) 2N) (3,0)
NEW OPEN CLOSED CLOSED 6 (Z!I) (2'N) (S!C) (3vD)

-2 7] (2.N) (3,C) (3,D) (3,E) (3.M)
S A éﬁ éﬁ 8](3.0) (3D) (3E) BM)
NEW PEN CLOSED | CLOSED 9 (S,D) (3,E) (3,M) (4,A)

= Continue until current state S is closed.

" JAEEEENET

Use D* to Compute Initial Path

h=3 | h=2 = OPEN List
N\E]W OPEN CLO’;IE CLCOSE 1 (O'G)
Tﬂﬁl}ﬁhh—ﬁl 2 | (@K @D (1,0)
3 [(1,L) (1,0) (2,F) (2,H)
OEN ErCLOLEDEﬁ:LO%EDEﬁCLC%EDﬂ 7 2P @n) @) @N)
h|:34 J:, “63 'T_'Z “}21 5 |[(2H) @) @N) GBC)
opeN | cLosep [crosep | closen | |6 (2D (2N) (3,C) B.D)
[hee [nes [real] [7_]@N GO ED) BE) GM
S~ A + C + F 8 [(B.C)B.D)(BE) BM
NEW OPEN CLOSED | CLOSED 9 (S,D) (3'E) (S,M) (4,A)
= Continue until current state S is closed.. 10 | B.E) BM) (4.A) (4.B)

Use D* to Compute Initial Path

4 [h=3 | h=2 OPEN List

= h=1
J o |

o

(3,E) (3,M) (4,A) (4,B)

N
OPEN OPEN CLOSEU CLO! Eh
h=3 : h=2 : h=1 h=0 1

[N

(3,M) (4,A) (4,B) (4,9)

E | L G 12
CLOSED | CLOSED | CLOSED | CLOSED 13

h:4J$h:3 h=2 h:lﬂ 14
B D H K
OPEN CLOSED | CLOSED | CLOSED

. h=4 h=3 h= Zﬂ
S*- A C F
NEW OPEN CLOSED | CLOSED

= Continue until current state S is closed.

" JAEEEENET

Use D* to Compute Initial Path

h=4 h=3 h=2 h=1

OF\']EN M N O
CLOSEt CLOSEE CLOSEi

h=3 ' h=2 h=1 h=0

il
CLOSED | CLOSED | CLOSED | CLOSED
h=a :h h=3 h=2 hzlil
B D H K
OPEN CLOSED | CLOSED | CLOSED

h=4 h=3 h= Zﬂ
S A C F
NEW OPEN | CLOSED | CLOSED

(3]

= Continue until current state S is closed.

OPEN List

10

(3,E) (38,M) (4,A) (4,B)

11

(3.M) (4,A) (4,B) (4.9)

12

(3,M) (4,A) (4,B)

13

14

Use D* to Compute Initial Path

h=4 h=3 h=2

J M N C
O EN CLOSE! E CLOSE t CLOSE
h =3 h=2 h=1 h=0

o8 M Y X
CLOSED | CLOSED | CLOSED CLOSED

OPEN +CLOSED%ILOSED%CLOSED
OPEN %CLOSED%:LOSED%CLOSED

= Continue until current state S is closed.

OPEN List

10

(3,E) (3,M) (4,A) (4,B)

11

(3,M) (4,A) (4,B) (4,9)

12

(3.M) (4,A) (4,B)

13

(4,B) (4,9) (5,S)

14

15

oI

Use D*to Compute

Initial Path

h=4 h=3 h=2

J M N
O EN CLOSEI ﬂ CLOSE U CLOSE
h =3 h=2 h=1 h=0
bl it
CLOSED | CLOSED | CLOSED CLOSED

CLOSED+CLOSED%’)LOSED%CLOSED
OPEN %CLOSED%CLOSED%CLOSED

= Continue until current state S is closed.

OPEN List

10

(3,E) (3,M) (4,A) (4,B)

11

(3.M) (4,A) (4,B) (4.9)

12

(3,M) (4,A) (4,B)

13

(4,B) (4,J) (5,S)

14

(4,9 (5.5)

15

Use D* to Compute

Initial Path

h=4 h=3 h=2

J M N C
CLOSE CLOSE! n CLOSE U CLOSE
h 3 h=2 h=1 h=0
ol tdh
CLOSED | CLOSED | CLOSED CLOSED

CLOSED+CLOSED%?LOSED%CLOSED
OPEN %CLOSED%:LOSED%CLOSED

= Continue until current state S is closed.

OPEN List

10

(3,E) (3,M) (4,A) (4,B)

11

(3,M) (4,A) (4,B) (4,9)

12

(3.M) (4,A) (4,B)

13

(4,B) (4,9) (5.5)

14

(4,9) (5,5)

15

(5.5)

oI

D* Completed Initial Path

h=4 h=3 h=2
J M N
CLOSED_ | cLOSE! ﬂ CLOSE U CLOSE
h=3 h=2 h=1 h=0
bl it
CLOSED | CLOSED | CLOSED CLOSED

CLOSED+CLOSED%’)LOSED%CLOSED
CLOSED%CLOSED%CLOSED%CLOSED

OPEN List

Begin Executing Optimal Path

10

(3,E) (3,M) (4,A) (4,B)

11

(3.M) (4,A) (4,B) (4.9)

12

(3,M) (4,A) (4,B)

13

(4,B) (4,J) (5,S)

h=4 h=3 h=2 h=1

J

M N
CLOSEi CLOSE! n CLOSED CL
n=3>] h=2>] h=1

o
@

E
0

=
I

14

(4,9 (5.5)

15

(5,5)

16

NULL

hé4cthf:hh;r:grEl'

CLOSED | CLOSED | CLOSED | CLOSED

= Done: Current state S is closed, and Open list is empty.

h=5 h=4 h=3 h=2

S 2 F

o= I
CLOSED ’CLOSED CLOSED | CLOSED

= Robot moves along backpointers towards goal

m Uses sensors to detect discrepancies along way.

Obstacle Encountered!

h=4 h=3 h=1 h=1

J M N
CLOSED_| cLOSE! t CLOSEI E CLOSE%
e e L ey

h=0

E '=|3 | L
CLOSED | CLOSED | CLOSED

CLOSED+CLOSED

h= 4/\
CLOSED CLOSED CLOSED

= At state A, robot discovers edge D to H is blocked off (cost 5,00 units).
= Update map and reinvoke D*

CLOSED

Running D* After Edge Cost Change

When edge cost c(X,Y) changes
m If X is marked Closed, then
OUpdate h(X)
OMark X open and queue, key is new h(X).
m Run Process_State on queue
Ountil path to current state is shown optimal,
Oor queue Open List is empty.

D* Update From First Obstacle

h=4 h=3 h=1 OPEN List

h=1
o @H)

J M N
CLOSED_ | cLOSE! n CLOSEU CLOSEh
h=3 4 h=2>] h=1

h=0

Blw|N |-

E '=|3 | L
CLOSED | CLOSED | CLOSED

Funcuon Modm/-Cosl(x Y,eval)
CLOSED 1 o(XY
2 if(x) = CLOSED
h=2 then Insert(X h(X))
3: return Get-Kmin()

CLOSED+CLOSED

h= 4/\
CLOSED CLOSED CLOSED

= Assign cost of 5,000 for D to H
= Propagate changes starting at H

CLOSED

D* Update From First Obstacle

h=4 | h=3 | h=1 | h=1 OPEN List
J | M| NI O |len
CLOSE CLOSE% CLOSEiJ CLOSE% i
h=3 h=2 h=1 h=0 2|3.D)
3
CLOSED | CLOSED | CLOSED | CLOSED 4
h= 5002 h=1
K 8: if kold = hX) then
CLOSED opEN CLOSED 9: for each neighbor Y of X:
10 ift(Y) = NEW or
h=2 11 (b(Y) =X and h(Y) ? h(X) + ¢(X,Y)) or

120 (b(Y)? X and RY) > h(X) +c(X,Y)) then
13: b(Y) = X; Insert(Y,h(X) + c(X.Y))
CLOSED

CLOSEE%CLOSED CLOSED

m Raise cost of H's descendant D, and propagate.

Process_State: Raised State

m If X is araise state its cost might be suboptimal.
m Try reducing cost of X using an optimal neighbor Y.
O h(Y) = [h(X) before it was raised]
m Propagate X’s cost to each neighbor Y
O If Y is New, Then give it an initial path cost and propagate.
O If Y is adescendant of X, Then propagate ANY change.
O If X can lower Y’s path cost,
= Postpone: Queue X to propagate when optimal (reach current h(X))
O If Y can lower X's path cost, and Y is suboptimal,

= Postpone: Queue Y to propagate when optimal (reach current h(Y)).

- Postponement avoids creating cycles.

D* Update From First Obstacle

h=4 | h=3 | h=1 | h=1 OPEN List
J M N O)
CLOSE CLOSEI n CLOSE! U CLOSEh il
h 3 h=2] h=1 h=0 2|3.D)
E | L G 3
cLosep | cLosep | cLosep [cLosen | [
h tx 50! h=1
K 4: if kold < hX) then
5: for each neighbor Y of X:
C'-OSED OPEN CLOSED 6 if h(Y)= ku\d and h(X) > hY) + C(Y.X) then
he 7 b(X)'= Y; h(X)= h(Y) +c(¥,X);
E
CLOSED CLOSED CLOSED | CLOSED

= D may not be optimal, check neighbors for better path.
= Transitioning to | is better, and I's path is optimal, so update D.

' JAEEENET
D* Update From First Obstacle

Continue Path Execution

h=4 | h=3 | h=1 | h=1 OPEN List
CLC‘)]SED M N O 1
CLOSEI E CLOSEI t CLOSEI i
h:3{L h=2 h=1 h=0 2|3.D)
E | L G 3| NULL
CLOSED | CLOSED_| CLOSED | CLOSED 4
h=4 J$ h=3 ho1
B D K
CLOSED | CLOSED CLOSED
h=5 h= 49 h=2
F
CLOSEDI:ﬁCLOSED CLOSED | CLOSED

= A's path optimal.
= Continue moving robot along backpointers.

h=4 | h=3 | h=1 | h=1 OPEN List
CLC;]SED M i N i 9 3 1
CLOSEI CLOSEI CLOSE!
h:S& h=2>] h=1 h=0 2| (3.D)
E | L G 3[NULL
CLOSED | CLOSED_[CLOSED | CLOSED 4
h=4 h=3 h=1
B D K
CLOSED | CLOSED CLOSED
h=5 h=4 =) h=2
S A F
CLOSED ["CLOSED | CLOSED | CLOSED
= All neighbors of D have consistent hvalues.
= No further propagation needed.
" JAEEENE
Second Obstacle!
h=4 | h=3 | h=1 | h=1 OPEN List
e @F @H)

J M N
CLOSED_ | cLOSE! n CLOSEU CLOSEh
h=3 4 h=2>] h=1

h=0

E '=|3 | L
CLOSED | CLOSED_ | CLOSED

Function: Modify-Cost(X,Y,eval)
1: ¢(X,Y) =eva
2: if X) = CLOSED
then Insert(X,h(X))
3: return Get-Kmin()

AR CH

=)
CLOSED ["CLOSED | CLOSED

= At C robot discovers blocked edges C to F and H (cost 5,000 units).
= Update map and reinvoke D* until H(current position optimal).

D* Update From Second Obstacle

h=4 | h=3 | h=1 | h=1 OPEN List
cdssi Mi Ni ey [HleD e
h=3] h=2] h=-1 h=0 2|(3.C)
E | L G 3
CLOSED | CLOSED_| CLOSED | CLOSED 4
h=4 h=3 h=1
D 8: if kold = hX) then
9: for each neighbor Y of X:
10: i K(Y) = NEW or
) B2 (07X ey) 0 e
. an > +c(X, then
S A CH 13 b(Y) = X Insert(Y.n(x) + c(x.Y)
CLOSED |"CLOSED OPEN

m Processing F raises descendant C's cost, and propagates.
m Processing H does nothing.

D* Update From Second Obstacle

h 34 h'\=/|3 h ’=\I1 h(:)l OPEN List
11 @R 2H)
CLOSED CLOSEi CLOSEh CLOSE%
h:3: h=2 h=1 h=0 2|30
E '=|? | L 8
CLOSED | CLOSED, { CLOSED 4

4: if kold < hX) then

5: for each neighbor Y of X:

6: if h(Y) = koldand h(X) > h(Y) + C(Y.X) then
7: b(X) = Y; h(X) = h(Y) + c(Y.X)

= C may be suboptimal, check neighbors; = Better path through A!
= However, A may be suboptimal, and updating would create a loop!

D* Update From Second Obstacle

4 h=3 h=1

3 M N '51 OPEN List
i 1/ (2F) (2H)
CLOSE! CLOSEI n CLOSE! U CLOSEI h
h=3 h=2 h=1 h=0 2 (3'C)
E | L G 31(4.A)
CLOSED | CLOSED_| CLOSED | CLOSED 4

15: for each neighbor Y of X:
16: if t(Y) = NEW or
17: (b(Y) = X andh(Y) 2 h(X) +c(X.Y))

18 b(Y) = X; Insert(Y,h(X) +c(X,Y))

= Don't change C's path to A (yet).
m Instead, propagate increase to A.

Process_State: Raised State

m |f X is araise state its cost might be suboptimal.
m Try reducing cost of X using an optimal neighbor Y.
O h(Y) = [h(X) before it was raised]
m propagate X's cost to each neighbor Y
O If Y is New, Then give it an initial path cost and propagate.
O If Y is adescendant of X, Then propagate ANY change.
O If X can lower Y's path cost,
= Postpone: Queue X to propagate when optimal (reach current h(X))
O If Y can lower X's path cost,and Y is suboptimal,
= Postpone: Queue Y to propagate when optimal (reach current h(Y).
= Postponement avoids creating cycles.

D* Update From Second Obstacle

h=4 | h=3 | h=1 | h=1 OPEN List
oL Mi Ni CMQEi 1@ @
h:3{L h=2] h=1 h=0 2|30

E '=|3 | L G 3|(4A)
CLOSED | CLOSED_| CLOSED | CLOSED 4

h:4IJ$h:3 ' h:lﬂ
B D K

CLOSED | CLOSED
h=5

4: if kold < h(X) then

5: for each neighbor Y of X:

6: if h(Y) = kold and h(X) > h(Y) + C(Y,X) then
7: b(X) = Y: h(X) = h(Y)+ c(Y.X);

= A may not be optimal, check neighbors for better path.
m Transitioning to D is better, and D's path is optimal, so update A

D* Update From Second Obstacle

h 34 h'\=/|3 h ’=\I1 h(:)l OPEN List
11 @R 2H)
CLOSED CLOSEi CLOSEh CLOSEBJ
h:3{'L h=2>] h=1 h=0 2|(3.0)
E | L 3| (4.A)
CLOSED | CLOSED_ | CLOSED 4

4: if kold < hX) then

5: for each neighbor Y of X:

6: if h(Y) = koldand h(X) > h(Y) + C(Y.X) then
70 b(X) = Y; h(X) =h(Y)+c(Y,X);

h=4Ulh 5002,
T &
OPEN CLOSED

= A may not be optimal, check neighbors for better path.
= Transitioning to D is better, and D’s path is optimal, so update A

Process_State: New or Lowered State

= Remove from Open list , state X with lowest k

m |f X is a new/lowered state its path cost is optimal,
Then propagate to each neighbor Y
olf Y is New, give it aninitial path costand propagate.
olf Y is adescendant of X, propagate any change.

O Else, if X can lower Y's path cost,
Thendo so and propagate.

D* Update From Second Obstacle

h=4 h=3 h=1 h=1 OPEN List
adder '\"3 Ni o] [enen
h:3{'L h=2>] h=1 h=0 2|39
E | L 3[(4.A)
cLOSED | cLosep | cLosep 4 (5.0)
h=4 h=3
for each neighbor Y of X:
CLOSED | cLosED CLOSED | e) 2 hx) + e) then
peya] 18: b(Y) = X; Inseri(Y,n(X) +c(X.Y))
(=) 19: else
S 4 A 200 if b(Y)? Xand h(Y) > h(X) +¢(X.Y) then
CLOSED ['CLOSED | OPEN 21: Insert(X,h(X))

= A can improve neighbor C, so queue C.

"
*
D* Update From Second Obstacle
h ‘=]4 h'\=/|3 h '=\ll ho=1 OPEN List
i 11 2F) 2H)
CLOSEI CLOSEI n CLOSE U CLOSEh
h=3 h=2 h=1 h=0 21B0)
E | L G 3[(4.A)
CLOSED | CLOSED, | CLOSED | CLOSED
) 4[5.0)
h=4 h=3 h=1 5
CLOSED | CLOSED 8: if kold = hX) then
l 9: for each neighbor Y of X:
h=4 10: ift(Y) = NEW or
A 11: (b(Y) =X and h(Y) ?h(X) +c(X,Y)) or
) o 12: (b(Y)? X and hY) > h(X) +c(X,Y)) then
CLOSED ['CLOSED¥] OPEN 13 b(Y) = X; Insert(Yh(X) +¢(X.Y))

= C lowered to optimal; no neighbors affected.
m Current state reached, so Process_State terminates.

T

Complete Path Execution

h=4 | h=3 [h=1 | h=1

J O
CLOSED_| cLOSE! CLOSEE CLOSE%

e L e

reval
S A
CLOSED ["CLOSED |CLOSED

= Follow back pointers to Goal.
= No further discrepancies detected; goal achieved!

LAY -
D* Pseudo Code

Function: Process- State()
X = MnState()
2. if X=NULL then return -1 2 if t(X) = QLCSED
3: kold = Get -Knin(); Delete(X) then Insert(X h(X)
4: if kold < h(X then 3 return Get -Knin()
5. for each neighbor Y of X
6:
7
8
9

Functi on: Nbdi fy-Cost (X, Y, eval)
11 c(X V) =eval

it h(Y) =kold and h(X >h(Y) + QY,X) then
b(X) = Y. h(X) =h(Y) + c(¥,%;

if kold = h(X then

for each neighbor Y of X:

Function: Insert(X, hyg)
100 it t(Y) = NWor 1ift(X) = NW

11: (b(Y) =Xand h(Y) ? h(X) + c(XY)) or then K(x) = My

12 (b(Y) ? Xand h(Y) >h(X) + c(XY)) then 2. elseif t() = OPEN
13 b(Y) = X Insert(Y,h(X) + ¢(X V) then k(X) = mn(k(X), My
14: else 3. else

15: for each nei ghbor Y of X k(X = min(h(X), hpe)
16 if t(Y) = NEWor 40 h(X = hpes

17 (b(Y =Xand h(Y 2 h(X) + c(X.Y)) then 5. (X = OPEN

18: b(Y) = X Insert(Y,h(X) + c(X)

19: else

20 it b(Y ? Xand h(X >h(X) + c(XY) then

21 Insert (X h(%)

22: el se

23 if b(Y ? Xand h(¥ >h(Y) + c(Y,X) and

24: t(¥) = CLOSED and h(Y) > kol d then

25

Insert (Y, h(Y)
26: return Get -Kni n()

| Recap: Continuous Optimal Planning

1. Generate global path plan from initial map.

2. Repeat until Goal reached, or failure.

a Execute next step of current global path plan.
a Update map based on sensor information.

a Incrementally update global path plan from map changes.

> 1to 3 orders of magnitude speedup
relative to a non-incremental path planner.

| Recap: Dynamic A*

» Supports search as a repetitive online process.

Exploits similarities between a series of searches to
solve much faster than from scratch.

= Reuses the identical parts of the previous search
tree, while updating differences.

= Solutions guaranteed to be optimal.
= On the first search, behaves like traditional Dijkstra.

10

