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Create Languages that are: 

• Commanded with desired state 

Desiderata: Robust Task-level Execution 

Model-based 

• Suspicious 
•Monitor intentions and plans 

• Self-Adaptive 
• Exploits and generates contingencies 

• Anticipatory 
• Predicts, plans and verifies into future 

•State Aware 

• Fault Aware 
•Reasons about and responds to failure 

Outline 

•	 Safe Procedural Execution 
•	 Model-Predictive Dispatch 
• Model-based Reactive Planning 

Robust Task Execution: RAPS [Firby PhD] 

•	 RAPS Monitors Success Against Spec 

(define-rap  (move-to thing place) 
(succeed (LOCATION thing place)) 
(method 

(context (and (LOCATION thing loc)

(not (= loc UNKNOWN))))


(task-net 
(t0 (goto loc) ((TRUCK -LOCATION loc) for t1)) 
(t1 (pickup thing)((TRUCK -HOLDING thing) for t2) 
((TRUCK -HOLDING thing) for t3)) 
(t2 (goto place) ((TRUCK-LOCATION place) for t3)) 
(t3 (putdown thing)))) 

(method

(context (LOCATION thing UNKNOWN))

(task-net


(t0 (goto WAREHOUSE))))) 

Robust Task Execution: RAPS [Firby PhD] 

•	 RAPS Exploits contingencies by performing
functionally redundant method selection 

(define-rap (move -to thing place) 
(succeed (LOCATION thing place)) 
(method 

(context(and (LOCATION thing loc)

(not (= loc UNKNOWN))))


(task-net 
(t0 (goto loc) ((TRUCK -LOCATION loc) for t1)) 
(t1 (pickup thing)((TRUCK -HOLDING thing) for t2) 
((TRUCK -HOLDING thing) for t3)) 
(t2 (goto place) ((TRUCK-LOCATION place) for t3)) 
(t3 (putdown thing)))) 

(method

(context (LOCATION thing UNKNOWN))

(task-net


(t0 (goto WAREHOUSE))))) 
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Deductive  ControllerMode
Estimation

Mode
Reconfiguration

• RAPS Exploits contingencies by performing functionally 
redundant method selection 

– Methods are chosen based on the current situation. 
– If a method fails, another is tried instead. 
– Tasks do not complete until satisfied. 
– Methods can include monitoring subtasks to deal with 

contingencies and opportunities. 

�Methods selected reactively 
�Model -predictive dispatch 

�Goals explicitly observable and controllable 
�Model -based execution 

Robust Task Execution: RAPS [Firby PhD] 

Control Sequencer 

Environment Model 

CommandsObservations 

Control Program 

Kirk Model-based ExecutiveRMPL Model-based Program 

location goalslocation estimates 

Selects consistent 
threads of activity 

from redundant methods 

Tracks 
location 

Finds least 
cost paths 

� Executes concurrently 
� Preempts 
� non -deterministic choice 
� A[l,u ] timing 
� A at l location 
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Executive 
• pre-plans activities 
• pre-plans paths 
• dynamically schedules [Tsmardinos et al.] Plant 

Schedules and Dispatches 
Activities Dynamically 

Outline 

• Safe Procedural Execution 
• Model-Predictive Dispatch 

– Model-based Programming 
– Temporal Plan Networks (TPN) 
– Activity Planning (Kirk) 
– Unifying Activity and Path Planning 

• Model-based Reactive Planning 

Example: Cooperative Mars Exploration 

How do we coordinate heterogeneous teams of orbiters, 
rovers and air vehicles to perform globally optimal 
science exploration? 

Properties: 
� Teams exploit a hierarchy of complex strategies. 
� Maneuvers are temporally coordinated. 
� Novel events occur during critical phases. 
� Quick responses draw upon a library of contingencies. 
� Selected contingencies must respect timing constraints. 
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Example: Cooperative Mars Exploration Reactive Model-based Programming 

Idea: Describe team behaviors by starting with a rich concurrent , 
embedded programming language (RMPL,TCC, Esterel): 

� c 
� If c next A 
� Unless c next A 
� A, B 
� Always A 

• Sensing/actuation activities 
• Conditional execution 
• Preemption 
• Full concurrency 
• Iteration 

� A [l,u] • Timing 

Add temporal constraints: 

� Choose {A, B} • Contingency 

Add choice (non-deterministic or decision-theoretic): 
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Example Enroute Activity: 

Enroute 

RendezvousRendezvous Rescue AreaRescue Area

Corridor 2 

Corridor 1 

RMPL for Group-Enroute 

Activities: 
Group-Enroute()[l,u] = { 

choose { 
do { 

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH1_OK, 
do { 

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH2_OK


};

{


Group-Transmit(OPS,ARRIVED)[0,2], 
do { 

Group-Wait(HOLD1,HOLD2)[0,u*10%] 
} watching PROCEED 

} 
} 

RMPL for Group-Enroute 

Sequentiality: 
Group-Enroute()[l,u] = { 

choose { Concurrency : 
do { 

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH1_OK, 
do { 

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH2_OK


} ;

{


Group-Transmit(OPS,ARRIVED)[0,2], 
do { 

Group-Wait(HOLD1,HOLD2)[0,u*10%] 
} watching PROCEED 

} 
} 

RMPL for Group-Enroute 

Group-Enroute()[l,u] = { 
choose { 

do { 
Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%]; 

} maintaining PATH1_OK, 
do { 

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH2_OK


};

{


Group-Transmit(OPS,ARRIVED)[0,2], 
do { 

Group-Wait(HOLD1,HOLD2)[0,u*10%] 
} watching PROCEED 

} 
} 

RMPL for Group-Enroute 

Conditionality
Group-Enroute()[l,u] = { 

choose { and Preemption: 
do { 

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH1_OK, 
do { 

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH2_OK


};

{


Group-Transmit(OPS,ARRIVED)[0,2], 
do { 

Group-Wait(HOLD1,HOLD2)[0,u*10%] 
} watching PROCEED 

} 
} 

RMPL for Group-Enroute 

Temporal Constraints:
Group-Enroute()[l,u] = { 

choose { 
do { 

Group-Fly-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH1_OK, 
do { 

Group-Fly-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH2_OK


};

{


Group-Transmit(OPS,ARRIVED)[0,2],

do {


Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED


}


} 
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RMPL for Group-Enroute 

Non-deterministic 
Group-Enroute()[l,u] = { 

choose {	 choice: 
do { 

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH1_OK, 
do { 

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%]; 
} maintaining PATH2_OK 

}; 
{


Group-Transmit(OPS,ARRIVED)[0,2],

do {


Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED


}


} 

Model-Predictive Dispatch for RMPL 

How do we provide fast, temporally flexible planning for 
contingent method selection? 

•	 Graph-based planners support fast planning. 
•	 … but plans are totally order. 
•	 Desire flexible plans based on simple temporal networks 

(e.g., Constrain-based Interval Planning). 

How do we create temporally flexible plan graphs? 
•	 Augment simple temporal networks 

with activities & choice. 
� temporal plan network TPN). 

RMPL Compiler 

Temporal Plan Network (TPN) with STN 

Reactive Temporal Planner � Selects schedulable 
execution threads of 
TPN 

Reactive Model 
Programming Language 

Concurrent Plan 
� Plan = Execution 

threads related by 
Simple Temporal Net 

� Represents all 
RMPL executions 

-based 

Model-Predictive Dispatch for RMPL Outline 

•	 Safe Procedural Execution 
•	 Model-Predictive Dispatch 

– Model-based Programming 
– Temporal Plan Networks (TPN) 
– Activity Planning (Kirk) 
– Unifying Activity and Path Planning 

• Model-based Reactive Planning 

Enroute Activity: 

• Start with flexible plan representation 

Enroute 
1 

4 5 

8 
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13 

2 

11 12 

Group Traverse Group Wait 

Group Transmit 

Science Target 

Activity (or sub-activity) 

Enroute Activity: 

• Start with flexible plan representation 

1 

4 5 

8 

2 

[405, 486] 

Group Traverse Group Wait 

Group Transmit 

[0, 54] 

[0, 2] 

[0, ] 

[0, 0][0, 0] 

[0, 0] 

[0, 0] 

[0, 0] [0, 0] 

Science Target 

Enroute [450,540] 

Activity (or sub-activity) 

Duration (temporal constraint) 
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Enroute Activity: 

• Add conditional nodes 

3 

1 

4 5 

8 

2 

Group Traverse 

[405, 486] 

[405, 486] 

Group Traverse Group Wait 

Group Transmit 

[0, 54] 

[0, 2] 

[0, ] 

[0, 0] 

[0, 0] 

[0, 0] 

[0, 0] 

[0, 0] 

[0, 0] 

[0, 0] 

[0, 0] [0, 0] 

Science Target 

Enroute [450,540] 

Activity (or sub-activity) 

Duration (temporal constraint)


Conditional node


Outline 

• Safe Procedural Execution 
• Model-Predictive Dispatch 

– Model-based Programming 
– Temporal Plan Networks (TPN) 
– Activity Planning (Kirk) 
– Unifying Activity and Path Planning 

• Model-based Reactive Planning 

Planning Group-Enroute 

Group-Enroute 
[500,800] 

To Plan: 

3 

6 

4 5
[405,486] 

Ask(PATH1=OK) 

1 2 

7 
Ask(PATH2=OK) 

8 

[405,486] 

[450,540] 

Ask(PROCEED) 

11 

9 10
[0,54] 

12 

1 
3 

[0,2] 

[0,¥] 

[0,¥] [0,¥] 

14 15 

Tell(PATH1=OK) 

[450,450] 
16 17 

Tell(PROCEED) 

[200,200] 

s e 

[10,10] [0,¥] 

Group Traverse 

Group Traverse Group Wait 

Group Transmit 

Science Target 

• Instantiate Group-Enroute 
• Add External Constraints (Tells) 

Enroute Activity: 

•Add temporally extended, symbolic constraints 
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Group Traverse 

[405, 486] 

[405, 486] 

Group Traverse Group Wait 

Group Transmit 
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Ask( PATH1 = OK) 

Ask( PATH2 = OK) 

Ask( EXPLORE = OK)Science Target 

Enroute [450,540] 

Activity (or sub-activity) 

Duration (temporal constraint) 

Conditional node 

Symbolic constraint (Ask,Tell) 

Planning Group-Enroute 

Group-Enroute 

[450,540] 

3 

6 

4 5
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Ask(PATH1=OK) 

1 2 
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To Plan: 
• Instantiate Group-Enroute 

Generates Schedulable Plan 
Group-Enroute 

[500,800] 

To Plan: 

3 

6 

4 5
[405,486] 

Ask(PATH1=OK) 

1 2 

7 

Ask(PATH2=OK) 

8 

[405,486] 

[450,540] 

Ask(PROCEED) 

11 

9 10 
[0,54] 

12 

13 

[0,2] 

[0,¥] 

14 15 

Tell(PATH1=OK) 

[450,450] 
16 17 

Tell(PROCEED) 

[200,200] 

s e 

[10,10] [0,¥] 

[0,¥] [0,¥] 

Group Traverse 

Group Traverse Group Wait 

Group Transmit 

Science Target 

• Instantiate Group-Enroute • Trace Trajectories 
• Add External Constraints • Check Schedulability 

• Satisfy and Protect Asks 
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Trace Trajectories Trace Trajectories 

• Find paths from start-node to end-node • Not a decision-node: Follow all outarcs 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

Trace Trajectories Trace Trajectories 

• Not a decision-node: Follow all outarcs • Not a decision-node: Follow all outarcs 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

Trace Trajectories Trace Trajectories 

• Decision-node: Select a single outarc • Not a decision-node: Follow all outarcs 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 
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Trace Trajectories Trace Trajectories 

• Continue • Not a decision-node: Follow all outarcs 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

Trace Trajectories Trace Trajectories 

• Continue 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

Start End 

15 16 17 18 

Check Schedulability Check Schedulability 

• Don’t test consistency at each step. 
�Only when a path induces a cycle, • Example: Inconsistent


check for negative cycle in the STN distance graph
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Trace Alternative Trajectories Trace Alternative Trajectories 

• Backtrack to choice • Complete paths 

1 2 

3 4 5 6 

7 8 9 

10 11 12 

13 14 

15 16 17 18 
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How Do We Handle Asks? 

Group-Enroute Satisfying Asks 

3 

6 

4 5
[405,486] 

Ask(PATH1=OK) 

1 2 

7 
Ask(PATH2=OK) 

8 

[405,486] 

[450,540]

Ask(PROCEED) 

11 

9 10
[0,54] 

12 

1
3

[0,2]

[0,¥]

[0,¥] [0,¥] 

14 15 

Tell(PATH1=OK) 

[450,450] 
16 17

Tell(PROCEED) 

[200,200]

s e

[10,10] [0,¥]

Group Traverse 

Group Traverse Group Wait 

Group Transmit 

Science Target

[500,800] 
• Compute bounds on activities. 
• Link ask to equivalent, overlapping tell. 
• Constrain tell to contain ask. 

5 

7 8 9

10 11 12 

6

ask(c)

)tell(c

[4,6] [5,8] [7,11] 

[4,6] [8,11] 

[4,6] [6,9] [7,10]Unconditional planning approach: 
• Guarantee satisfaction of asks at compile time. 
• Treatment similar to causal-link planning 

Avoiding Threats Symbolic Constraint Consistency 

• Identify overlapping Inconsistent activities. • Promote or demote 

[4,6] [5,8] [7,11] 

5 

7 8 9

10 11 12

6

tell(c)

[0,inf]

[4,6] [5,8] [7,9] 

5 

7 8 9

10 11 12

6

tell(c) 

[4,6] [8,11] [4,6] [8,11] 

tell(�c) tell(�c)
[4,6] [6,9] [7,10] [4,6] [7,9] [7,10] 
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How do we optimally select 

activities and paths?


Background: Can perform global path planning using 
Rapidly -exploring Random Trees (RRTs) (la Valle). 

Approach: 
1. Search for globally optimal activity and path plan by 

• unifying TPN & RRT graphs, and 
• by searching hybrid graph best first. 

2. Refine plan using receding horizon control. 

Enroute Activity: 

•Closer look at Group Traverse sub-activity 

Enroute [450,540] 
1 2 

[0, 0] Group Traverse Group Wait [0, 0] 

[0, 0] 4 
[405, 486] 

5 [0, 0] [0, 0] 9 
[0, 54] 

10 [0, 0] 
Ask( PATH1 = OK) Science Target Ask( PROCEED) 

3 8 13 
[0, 0] Group Traverse [0, 0] 

[0, 0] 
Group Transmit [0, ] 

[405, 486] [0, 2]
6 7 11


Ask( PATH2 = OK)

12 

Traverse to Science Target 

Group Traverse sub-activity: 

•Traverse through way points to science target 

Group Traverse [405, 486] 

3 

4 

8 

6 7 

[0, 0] 
[0, 0] 

Ask( PATH2 = OK) 
5 

Group Traverse [405, 486] 

[0, 0] [0, 0] 

Ask( PATH2 = OK) 

3 

4 

8 

6 7 

[0, 0] 
[0, 0] 

5 

•One obstacle between nodes 4 and 5 
•Two Obstacles between nodes 6 and 7 

[0, 0] [0, 0] 

Group Traverse sub-activity: 

ObstacleObstacle

ObstacleObstacle ObstacleObstacle

Group Traverse sub-activity: 

•Non-explicit representations of obstacles obtained from an increment al 
collision detection algorithm 

3 

4 

8 

6 7 

[0, 0] [0, 0] 

5 

[0, 0] [0, 0] 

RRT: Example 

Path 1 

3 

4 

6 

[0, 0] [0, 0] 

[0, 0] [0, 0] 

Path 2 

8 

7 

5 
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RRT: Example 

Planner considers rovers taking Path 1: 

xinit 
Path 1 

[0, 0] 

3 

4 

6 

[0, 0] 

Path 2 

8 

7 

[0, 0] 

5 

[0, 0] 

xgoal 

RRT: Example 

Path 1 

xinit x
Xobs 

goal 

4 5 

RRT: Example RRT: Example 

Path 1 Path 1 

4 5 

xinit xgoal 

Xobs 4 5 

xinit xgoal 

Xobs 

RRT: Example RRT: Example 

Path 1 Path 1 

4 5 

xinit xgoal 

Xobs 4 5 

xinit xgoal 

Xobs 
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11

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

Common Node

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example Model-Predictive Dispatch

Goal: Fast, robust, temporal execution with contingencies,
in an uncertain environments.

Solution: Model-predictive Dispatch, a middle ground between 
non-deterministic programming and temporal planning.

• Rich embedded language, RMPL, for describing complex 
concurrent team strategies extended to time and contingency.

• Kirk Interpreter “looks” for schedulable threads of execution 
before “leaping” to execution.

• Temporal Plan Network provides a flexible, temporal, graph-
based planning paradigm built upon Simple Temporal Nets.

• Global optimality achieved by unifying activity planning and 
global kino-dynamic path planning.


