Robust Task Execution:
Procedural and Model-based

Brian C. Williams
16.41276.834J
March 14, 2005

Mission Goals and
Envi ronmen} Constraints

Desiderata: Robust Task-level Execution

Model-based
Create Languages that are:

Embedded Programs

* Suspicious
*Monitor intentions and plans
* Self-Adaptive

« Exploits and generates contingencies
* Anticipatory

« Predicts, plans and verifies into future
State Aware

~.
— —1

* Commanded with desired state Obs
* Fault Aware

Cntrl

*Reasons about and responds to failure
Plant

Projective
Temporal Task Expansion
Planner
Initial Conditions| , Tempora Plan
Dynamic Scheduling Task
and Task Dispatch Dispatch
Modes [| Gods
. Robust
M odel-based Executive Task Expansion
Observati onsl | Commands
Outline

» Safe Procedural Execution
« Mode-Predictive Dispatch
* Model-based Reactive Planning

Robust Task Execution: RAPS [Firby PhD]

* RAPS Monitors Success Against Spec

(define-rap (movetothing place)
(succeed (LOCATION thing place))
(method
(context (and (LOCATION thing loc)
(not (= loc UNKNOWN))))
(tasknet
(tO (goto loc) ((TRUCK LOCATION loc) for t1))
(t1 (pickupthing)((TRUCK -HOLDING thing) for t2)
((TRUCK -HOLDING thing) for t3))
(t2 (goto place) ((TRUCK -LOCATION place) for t3))
(t3 (putdown thing))))
(method
(context (LOCATION thing UNKNOWN))
(tasknet
(t0 (goto WAREHOUSE)))))

Robust Task Execution: RAPS [Firby PhD]

« RAPS Exploits contingencies by performing
functionaly redundant method selection

(define-rap (move-to thing place)
(succeed (LOCATION thing place))
(method
(context(and (LOCATION thing loc)
(not (= loc UNKNOWN))))
(tasknet
(t0 (goto loc) (TRUCK LOCATION loc) for t1))
(t1 (pickupthing)((TRUCK -HOLDING thing) for t2)
((TRUCK -HOLDING thing) for t3))
(t2 (goto place) (TRUCK LOCATION place) for t3))
(t3 (putdown thing))))
(method
(context (LOCATION thing UNKNOWN))
(task-net
(t0 (goto WAREHOUSE)))))

Robust Task Execution: RAPS [Firby PhD]

» RAPS Exploaits contingencies by performing functionally
redundant method selection

— Methods are chosen based on the current situation.
— If amethod fails, another is tried instead.
— Tasks do not complete until satisfied.

— Methods can include monitoring subtasks to deal with
contingencies and opportunities.

» M ethods selected reactively
=M odel -predictive dispatch

» Goalsexplicitly observableand controllable
=M ode -based execution

Outline

 Safe Procedural Execution
* Model-Predictive Dispatch

— Model-based Programming

— Temporal Plan Networks (TPN)

— Activity Planning (Kirk)

— Unifying Activity and Path Planning
* Model-based Reactive Planning

RMPL Model-based Program Kirk Model-based Executive
Control Program

Environment Model |ocation estimates location goals

Executive
« pre-plans activities)
« pre-plans paths Observations
« dynamically schedules[Tsmardinoset al][**%

Plant

Example: Cooperative Mars Exploration

How do we coordinate heterogeneous teams of orbiters,

rovers and air vehicles to perform globally optimal
science exploration?

@ LS
)

o

Example: Cooperative Mars Exploration

HOwg

or
COLLECTION POINT ENr O RENDEZVOUS

Landing Site: ABC

® 29

Landing Site: XYZ 2 Diverge

Properties: SCIENCE AREA 3
o Teamsexploit ahierarchy of complex strategies.

o Maneuvers are temporally coordinated.

o Novel events occur during critical phases.

o Quick responses draw upon alibrary of contingencies.
o Selected contingencies must respect timing constraints.

SCIENCE AREA 1'

Reactive Model-based Programming

Idea: Describe team behaviors by starting with arich concurrent,
embedded programming language (RMPL,TCC, Esterel):

e C * Sensing/actuation activities
o IfcnextA « Conditional execution
e Unlesscnext A « Preemption
« AB « Full concurrency
o AlwaysA « Iteration
Add temporal constraints:
o AllY « Timing

Add choice (non-deterministic or decision-theoretic):

« Choose{A, B} « Contingency

Example Enroute Activity:

Enroute

I

Corridor 2
N\

s Corridor 1 I

RMPL for Group-Enroute

@ oup-Enroute()[1,u] = {
choose {
do {
G oup- Traver se- Pat h(PATHL_1, PATH1_2, PATHL_3, RE_PQS) [| *90% u*90% ;
} maintaining PATHL_CK,
do {
@ oup- Traver se- Pat h(PATH2_1, PATH2_2, PATH2_3, RE_PQS) [| *90% u* 90% ;
} mmintaining PATH2_OK

@ oup- Transni t (GPS, ARRI VED) [0, 2] ,
do {

@ oup- Vi t (HOLDL, HOLD2) [0, u* 10%
} wat chi ng PROCEED

RMPL for Group-Enroute

Activities:
G oup-Enroute()[1,u] = {
choose {
do {

@ oup-Traver se- Pat h(PATHL_1, PATHL_2, PATHL_3, RE_PCS) [| *90% u*90% ;

} maintaining PATHL_OK,
do {

@ oup- Traver se- Pat h(PATH2_1, PATH2_2, PATH2_3, RE_PCE) [| *90% u*90% ;

} maintaining PATH2_OX

@ oup- Transni t (CPS, ARRI VED) [0, 2],
do {

@ oup- Wi t (HOLDL, HOLDR) [0, u* 10%
} wat chi ng PROCEED

RMPL for Group-Enroute

Conditionality
G oup-Enroute()[1,u] = {

choose { and meptlon:
do {
@ oup- Traver se- Pat h(PATHL_1, PATHL_2, PATHL_3, RE_PCS) [| *90% u* 90% ;
} maintaining PATHL_OK,
do {
@ oup- Traver se- Pat h(PATH2_1, PATH2_2, PATH2_3, RE_PCE) [| *90% u*90% ;
} maintaining PATH2_OK

@ oup- Transni t (CPS, ARR VED) [0, 2],
do {

@ oup- Wi t (HOLDL, HOLDR) [0, u* 10%
} wat chi ng PROCEED

RMPL for Group-Enroute

@ oup-Enroute()[1,u] = { Sequentiality:
choose { Concurrency :
do {

@ oup-Traver se- Pat h(PATHL_1, PATHL_2, PATHL_3, RE_PCS) [| *90% u*90% ;

} maintaining PATHL_OK,
do {

@ oup- Traver se- Pat h(PATH2_1, PATH2_2, PATH2_3, RE_PCE) [| *90% u*90% ;

} maintaining PATH2_OX

G oup- Transni t (OPS, ARRI VED) [0, 2] , -
do {

@ oup- Vi t (HOLDL, HOLDR) [0, u* 10%
} wat chi ng PROCEED

RMPL for Group-Enroute

Tempora Constraints:

@ oup-Enroute()[1,u] = {
choose {
do {
G oup- Fl y- Pat h(PATHL_1, PATHL_2, PATH1_3, RE_PCS) [| *90% u* 90% ;
} maintaining PATHL_CK,
do {
@ oup- Fl y- Pat h(PATH2_1, PATH2_2, PATH2_3, RE_PCS) [| *90% u* 90% ;
} mmintaining PATH2_OK

@ oup- Transni t (OPS, ARRI VED) [0, 2] ,
do {

@ oup- Vi4i t (HOLDL, HOLDR) [0, u* 10%
} wat chi ng PROCEED

RMPL for Group-Enroute

Non-deterministic
G oup-Enroute()[1,u] = {

choose { choice:
do {
@ oup- Tr aver se- Pat h(PATHL_1, PATHL_2, PATHL_3, RE_PCB) [| *90% u*90% ;
} naintaining PATHL_CK,
do {
@ oup- Traver se- Pat h(PATH2_1, PATH2_2, PATH2_3, RE_POS) [| *90% u*90% ;
} maintaining PATH2_OX

@ oup- Transni t (CPS, ARRI VED) [0, 2],
do {

@ oup- Wi t (HOLDL, HOLD2) [0, u* 10%
} wat chi ng PROCEED

Model-Predictive Dispatch for RMPL

How do we provide fast, temporally flexible planning for
contingent method selection?

» Graph-based planners support fast planning.

¢ ... but plansaretotally order.

« Desreflexible plans based on simple temporal networks
(e.g., Constrain-based Interval Planning).

How do we create temporally flexible plan graphs?
« Augment simple temporal networks

with activities & choice.
= temporal plan network TPN).

Model-Predictive Dispatch for RMPL

Reactive Model -based
Programming Language

| RVPLCompiler |

o Representsall
Temporal Plan Network (TPN) with STN RMPL executions

| Reactive Temporal Planner Selectsschedulable
execution threads of

| TPN

Concurrent Plan)
o Plan = Execution

threadsrelated by
Simple Temporal Net

Outline

» Safe Procedural Execution
« Mode-Predictive Dispatch

— Model-based Programming

— Temporal Plan Networks (TPN)

— Activity Planning (Kirk)

— Unifying Activity and Path Planning
* Model-based Reective Planning

Enroute Activity:
« Start with flexible plan representation

Enroute

Group Traverse Group Wait

B Acivity (or sub-activity)

[0.0

« Start with flexible plan representation

Enroute [450,540]

Group Traverse

Group Transmit [0}

B Acivity (o sub-activity)

B puration (temporal constraint

Enroute Activity:

« Add conditional nodes

Enroute[450,540]

Group Traverse

B Acivity (or sub-activity)
B puraion (temporal constraint
B conditiond node

Outline

 Safe Procedural Execution
* Model-Predictive Dispatch
— Model-based Programming
— Temporal Plan Networks (TPN)
— Activity Planning (Kirk)
— Unifying Activity and Path Planning
* Model-based Reactive Planning

Planning Group-Enroute

Group-Enroute
[500,800]

[450,540]

Group Traverse

Ask(PATHL=CK)

Group Wait

Ask(PROCEED)

[054] @

[405,486]

Group Traverse
Aok PATF=00

[405,486]

[0.2]
[10,10]

To Plan: [450,450] O—@
« Instantiate Group-Enroute
* Add External Constraints (Tells)

Tel | (PATHL=CK)

Tel | (PROCEED)

[0¥]
[200,200]

To Plan:

[0.0

Conditional node

«Add temporally extended, symbolic constraints

Enroute [450,540]

©)

Activity (or sub-activity)

Duration (temporal constraint)

Symbolic constraint (Ask,Tell)

« Instantiate Group-Enroute

Planning Group-Enroute

Group-Enroute

[450,540]

Group Traverse Group Wait 2
Ask(PATHL=CK)

Ask(PROCEED)

[0.54] @

[405,486]

Group Traverse

ASK(PATH2=0K)

[405,486]

Generates Schedulable Plan

Group-Enroute
[500,800]

[10,10]

To Plan:

1
[200,200]
« Instantiate Group-Enroute « Trace Trajectories
« Add External Constraints

[4505540]
Group Traverse

Ask(PATHL=C1)

Group Wait

Ask(PROCEED)

[405,486] e /C [054]
cience TafGet
(&)

Group Traverse

Ask(PATH2=0K)

Group Transmit
[405,486]

[0.2]
Tel | (PATHL=0K)

Tel | (PROCEED)

15
[450,450]

[0¥]

« Check Schedulability
 Satisfy and Protect Asks

Trace Trajectories

 Find paths from start-node to end-node

Trace Trajectories

* Not adecision-node: Follow al outarcs

Trace Trajectories

¢ Not a decision-node: Follow al outarcs

Trace Trajectories

* Not adecision-node: Follow al outarcs

Trace Trajectories

« Decision-node: Select asingle outarc

Trace Trajectories

* Not adecision-node: Follow al outarcs

Trace Trajectories

¢ Continue

Trace Trajectories

* Not adecision-node: Follow al outarcs

Trace Trajectories

¢ Continue

Trace Trajectories

Check Schedulability

« Don't test consistency at each step.

= Only when a path induces a cycle,
check for negative cyclein the STN distance graph

[18,20]

Check Schedulability

« Example: Inconsistent

[18,20]

Trace Alternative Trajectories

« Backtrack to choice

[18,20]

How Do We Handle Asks?

Group-Enroute
[500,800]

[450,540]

Group Traverse
Ask(PATHL=0K)

Group Wait

Ask(PROCEED)

[054] @

[405,486]

Group Traverse
Aok PATF=00

[405,486] [02]
Tel | (PATHL=0K) Tel | (PROCEED)
[10.10]

. [450,450] <) 18 [200,200
Unconditional planning approach:

* Guarantee satisfaction of asks a compile time.
« Treatment similar to causal -link planning

[0¥]

Trace Alternative Trajectories

¢ Complete paths

[18,20]

Avoiding Threats

« ldentify overlapping Inconsistent activities.

Satisfying Asks
« Compute bounds on activities.

¢ Link ask to equivalent, overlapping tell.
« Congtrain tell to contain ask.

Symbolic Constraint Consistency

¢ Promote or demote

146 5.8 tell(c)

[7.91

[8.11]

[4.6] [7.91 tellex) [7,20]

How do we optimally select
activities and paths?

Background: Can perform global path planning using
Rapidly -exploring Random Trees (RRTs) (laVadle).

Approach:

1. Searchfor globaly optimal activity and path plan by
unifying TPN & RRT graphs, and

by searching hybrid graph best first.

2. Refine plan using receding horizon control.

«Closer look at Group Traverse sub-activity

Enroute [450,540]

[0.0

Group Traverse

Traverseto Science Target

*Traversethrough way pointsto science target
Group Traverse [405, 486]

Ask(PATH2 = OK)

Group Traverse [405, 486]

Ask(PATH2 = OK)

*Oneobstaclebetweennodes4 and 5
*Two Obstacles between nodes 6 and 7

Obstacle

Obstacle

Gro p Traverse s b.am'x'n!-

+Non-explicit representations of obstacles obtained from an incremental
collision detection agorithm

RRT: Example
Path 1 .
K
7
AY
\—-
—— .
o b= ,”
1 / /
1 ‘
) , Pah2 !
1 U
~- B
e

RRT: Example

Planner considersroverstaking Path 1:

Xinit

(0.0 ;

/

RRT: Example
Path 1
.-
Xt s~ \\ joal
t Xobs 1
P R
RRT: Example
Path 1
Xt

RRT: Example
Path 1
o~
Xinit s~ \\ Xgoal
©, J_ ©)
e mm——
RRT: Example
Path 1
o~
Xt s~ \\ Xgoal
l, Xavs
e mm~—
RRT: Example
Path 1
Xifit

10

RRT: Example

RRT: Example

Path 1

X

N
'
w
7’

Xgoal

Common Node

RRT: Example

RRT: Example

Path 1

RRT: Example

Model-Predictive Dispatch

Goal: Fast, robust, temporal execution with contingencies,
in an uncertain environments.

Solution: Model-predictive Dispatch, amiddle ground between
non-deterministic programming and temporal planning.

 Rich embedded language, RMPL, for describing complex
concurrent team strategies extended to time and contingency.

 Kirk Interpreter “looks’ for schedulable threads of execution
before “leaping” to execution.

» Temporal Plan Network provides aflexible, temporal, graph-
based planning paradigm built upon Simple Temporal Nets.

* Globa optimality achieved by unifying activity planning and
global kino-dynamic path planning.

11

