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Partial Order Causal Link Planning 
(SNLP, UCPOP) 
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Based on slides by Dave Smith, NASA Ames 
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Based on slides by Dave Smith, NASA Ames 

Representing Timing: 
Qualitative Temporal Relations [Allen AAAI83] 
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A Temporal Planning Problem 
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A Consistent Complete 
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Based on slides by Dave Smith, NASA Ames 

CBI Planning Algorithm 

Choose: 

introduce an action & instantiate constraints 
coalesce propositions 

Propagate temporal constraints 
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execute. 
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• Check schedulability of candidate plans for correctness. 

• Schedule the activities of a complete plan in order to 



Based on slides by Dave Smith, NASA Ames 

Relation to Causal Links & Threats 
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Examples of CBI Planners 
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Based on slides by Dave Smith, NASA Ames 

Outline 

• 
• Simple Temporal Networks 
• Temporal Consistency and Scheduling 
• Execution Under Uncertainty 

Based on slides by Dave Smith, NASA Ames 

Qualitative Temporal Constraints 
Maybe Expressed as Inequalities 

• x before y X+ < Y­

• x meets y X+ = Y­

• x overlaps y (Y­ < X+) & (X- < Y+) 
• x during y (Y­ < X-) & (X+ < Y+) 
• x starts y (X­ = Y-) & (X+ < Y+) 
• x finishes y (X­ < Y-) & (X+ = Y+) 
• x equals y (X­ = Y-) & (X+ = Y+) 

Inequalities may be expressed as binary interval relations: 
Y- - X+ 

Generalize to include metric constraints: 
Y- - X+ 

Based on slides by Dave Smith, NASA Ames 

< Xi, Ti ij > 

• Xi continuous variables 
• Ti ij interval constraints 

{I1 n } where Ii i,bi] 

i i £ Xi £ bi i £ Xi £ bi) 

ij = (a1£ Xi j £ b1 n £ Xi j £ bn) 

? [T +(baking) – T - 1 day 

Metric Time: Temporal CSPS 

Based on slides by Dave Smith, NASA Ames 

TCSP Are Visualized Using 
Directed Constraint Graphs 
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Review: Constraint -based Interval Planning 

(Vilain , Kautz 86) 
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Simple Temporal Networks (STNs) 
(Dechter, Meiri, Pearl 91) 

At most one interval per constraint 
• Tij = (aij £ Xi - Xj £ bij ) 
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Sufficient to represent: 
• most Allen relations 
• simple metric constraints 

Can’t represent: 
• Disjoint activities 
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• Review: Constraint -based Interval Planning 
• Simple Temporal Networks 
• Temporal Consistency and Scheduling 
• Execution Under Uncertainty 

TCSP Queries 
(Dechter , Meiri, Pearl, AIJ91) 

•	 Is the TCSP consistent? 
•	 What are the feasible times for each Xi? 
•	 What are the feasible durations between 

each Xi and Xj? 

•	 What is a consistent set of times? 
•	 What are the earliest possible times? 
•	 What are the latest possible times? 

Planning 
Planning 
Planning 

Scheduling 
Scheduling 

To Query an STN, Map to a 
Distance Graph Gd = < V,Ed > 

• Edge encodes an upper bound on distance to target from source. 
• Negative edges are lower bounds. 

X
T ij = (aij£ Xj - Xi £ bij) Xj - Xi £ bij
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Gd Induces Constraints 

• Path constraint: i0 =i, i1 = . . ., ik= j 
k 

Xj - Xi £ � ai j -1 ,i j 
j = 1 

? Conjoined path constraints result in the shortest path as 
bound: 

X j - Xi £ dij 

where dij is the shortest path from i to j 

Conjoined Paths Computed using 
All Pairs Shortest Path 

(e.g., Floyd -Warshall, Johnson) 

1. for i := 1 to n do dii 0; 
Initialize distances

2. for i, j := 1 to n do dij aij; 

3. for k := 1 to n do Take minimum distance 

4. for i, j := 1 to n do over all triangles 

5. dij min{dij, dik + dkj}; k
i 

j 

Shortest Paths of Gd 
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Map To STN Minimum Network 

0 1 2 3 4 0 1 2 3 4 

0 0 20 50 30 70 0 [0] [10,20] [40,50] [20,30] [60,70] 

1 -10 0 40 20 60 1 [-20,-10] [0] [30,40] [10,20] [50,60] 

2 -40 -30 0 -10 30 2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30] 

3 -20 -10 20 0 50 3 [-30,-20] [-20,-10] [10,20] [0] [40,50] 

4 -60 -50 -20 -40 0 4 [-70,-60] [-60,-50] [-30,-20] [-50,-40] [0] 

d-graph STN minimum network 

Schedulability: Plan Consistency 

No negative cycles: -5 > TA – TA = 0 
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Scheduling: Latest Solution 

Node 0 is the reference. S1 = (d01, . . . , d0n) 
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Scheduling: Earliest Solution 
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Scheduling: 
Window of Feasible Values 
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Scheduling without Search: 
Solution by Decomposition 

• Can assign variables in any order, without backtracking. 
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• Can assign variables in any order, without backtracking. 
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• Select value for 1 

• Can assign variables in any order, without backtracking. 
• Tighten bound of Y using all selected X:  
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Solution by Decomposition 
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Executing Flexible Temporal Plans 

EXECUTIVE 

CONTROLLED SYSTEM 

Handling delays and fluctuations in task duration: 

Flexible execution adapts through dynamic scheduling. 

[Muscettola, Morris, Pell et al.] 

• Least commitment temporal plans leave room to adapt. 

• Assigns time to event when executed. 

Issues in Flexible Execution 

1. How do we minimize execution latency? 

2. How do we schedule at execution time? 

Time Propagation Can Be Costly 

EXECUTIVE 
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EXECUTIVE 

CONTROLLED SYSTEM 

Time Propagation Can Be Costly 

EXECUTIVE 

CONTROLLED SYSTEM 

Time Propagation Can Be Costly 

Issues in Flexible Execution 

1. How do we minimize execution latency? 
� Propagate through a small set of 


neighboring constraints.


2. How do we schedule at execution time? EXECUTIVE 

CONTROLLED SYSTEM 

Compile to Efficient Network 
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Compile to Efficient Network 
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Compile to Efficient Network 



Issues in Flexible Execution Issues in Flexible Execution 

1. How do we minimize execution latency? 1. How do we minimize execution latency? 
� Propagate through a small set of � Propagate through a small set of 


neighboring constraints. neighboring constraints.


2. How do we schedule at execution time? 2. How do we schedule at execution time? 
� Through decomposition? 

Dynamic Scheduling Dynamic Scheduling 
by Decomposition by Decomposition 

• Compute APSP graph 
• Decomposition enables assignment without search 
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Assignment by Decomposition Assignment by Decomposition 

• Select executable timepoint and assign • Select executable timepoint and assign 
• Propagate assignment to neighbors • Propagate assignment to neighbors 
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• 
• Propagate assignment to neighbors 
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But C now has to be 
executed at t =2, which 
is already in the past!Solution: 

monotonically 
increase in value. 

� First execute all 
APSP neighbors 
with negative delays. 

Assignment by Decomposition 

t = 3 

Select executable timepoint and assign 
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• Assignments must 

Dispatching Execution Controller 

Execute an event when enabled and active 
• Enabled - APSP Predecessors are completed 

– Predecessor – a destination of a negative edge 
that starts at event. 

• Active - Current time within bound of task. 

Initially: 
• E = Time points w/o predecessors 
• S = {} 
Repeat: 
1. 

a. Some TP in E is active 
b. All time points in E are still enabled. 

2. 
3. Add TP to S. 
4. 
5. Add to A, all immediate neighbors that became enabled. 

a. 
destination in S. 

Dispatching Execution Controller 

EXECUTIVEWait until current_time has advanced st 

Set TP’s execution time to current_time. 

Propagate time of execution to TP’s APSP immediate neighbors. 

TPx enabled if all negative edges starting at TPx have their 

Propagation is Focused 

• Propagate forward along positive edges to 
tighten upper bounds. 

– forward prop along negative edges is useless. 

• Propagate backward along negative edges to 
tighten lower bounds. 

–Backward prop along positive edges useless. 

Propagation Example Propagation Example 
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Propagation Example Propagation Example 
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Propagation Example 
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E = { C } 
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Filtering: 

Reducing Execution Latency 
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• worst case 

• best case 

• some edges are redundant 

• remove redundant edges 

Edge Domination 

• BC upper-dominates AC if in 
every consistent execution, 
TB + b(B,C) £ TA + b(A,C) 

–The thread running through A-B-C 

is always just as fast or faster than 

the thread running through A-C
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Edge Domination 

• AB lower-dominates AC if in 
every consistent execution, 
TB - b(A,B) ‡ TC - b(A,C) 

– Enablement of node A is always 

determined by thread running 

through A-B-C
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• Edge Dominance	 • Edge Dominance 
– Eliminate edge that is redundant due to the 	 – Eliminate edge that is redundant due to the 

triangle inequality AB + BC = AC triangle inequality AB + BC = AC 
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An Example of Edge Filtering	 An Example of Edge Filtering 

• Start off with the APSP network	 • Start at A-B-C triangle 
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An Example of Edge Filtering An Example of Edge Filtering 

• Look at B-D-C triangle • Look at B-D-C triangle 
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An Example of Edge Filtering An Example of Edge Filtering 

• Look at D-A-B triangle • Look at D-A-C triangle 
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An Example of Edge Filtering An Example of Edge Filtering 

• Look at B-C-D triangle • Look at B-C-D triangle 
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An Example of Edge Filtering 

• Resulting network has less edges than the 
original 
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19 1 

Additional Filtering 

• Node Contraction 
– Collapse two events with fixed time between 

them 
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Additional Filtering 

• Node Contraction 
– Collapse two events with fixed time between 

them 

An Example of Node Contraction 

• Resulting network has less edges than the 
original 
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Avoiding Intermediate 
Graph Explosion 

Problem: 
• APSP consumes O(n2) space. 

Solution: 
•	 Interleave process of APSP construction 

with edge elimination 
– Never have to build whole APSP graph 

& Task Execution 
Reactive 
Task Expansion 

Projective 
Task Expansion 

Goals 

Dynamic Scheduling 
and Task Dispatch 

Task 
Dispatch 

Temporal Plan 

CommandsObservations 

Modes 

Goals and Environment Constraints 

Temporal 
Network 

Solver 

Temporal 
Planner 

Model-based Programming 


