16.412J PS 1

Tom Temple
February 15, 2005

Part A

1. Reinforcement Learning

I am interested in reinforcement learning primarily because I think it is one
of the better models for how humans act. Take for instance the problem
of the inverse kinematics of a robot. With very good measurements of the
system, they can be painstakingly computed. But if you let a person play
with the controls for a while, they can make the robot do what they want,
without measurement or calculation. Furthermore, the human control is
more robust.

2. Exploration vs Exploitation

I think this is a fascinating problem. I am regularly faced with the decision
of how to drive from Cambridge to Lexington. Let me tell you that this is
a difficult problem. I have some estimates of the means and variances of
the time certain routes will take. But I don’t really have much data on the
true distributions especially when conditioned on the other information I
have at my disposal in the morning. Luckily, topology and speed limits
bound the number of possible paths to a manageble number. Even so,
when rt 2 is a parking lot, it brings into play new potential routes for
which I naturally have less information.

3. Dynamic Baysian Networks
I find DBN fascinating because they are a powerful tool for representing
temporal information. They are what I would consider the usable version
of the HMM. As fascinating and useful as the Kalman filter is, its restric-
tions to gaussian distributions is potentially over-limiting. Lets say, for
instance, that I have this sensor that is perfectly correct except for once
in a while just it says 7 regardless. An astute person will quickly learn to
trust the 7’s far less than the 8’s. I think that a computer should be able
to do so also. The DBN is able to capture a much larger swath of the real



world. I am excited to learn more about making optimal decisions with
under more general probability distributions.

Part D

Inverted Helicopter

Inverted autonomous helicopter flight via reinforcement learning, An-
drew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben
Tse, Eric Berger and Eric Liang. In International Symposium on Experimental
Robotics, 2004

I selected this paper since there was a picture of a helicopter in AIMA whose
controller was developed by Andrew Ng. On his webpage he had a number of
interesting articles. This was among the most relevant.

The important feature of this paper was that reinforcement learning was
able to hover an autonomous helicopter inverted. The methodology consisted of
having a human pilot fly the craft inverted and collecting data. Then they used
this data to construct a model. They ran simulations using this model in order
to find a policy that could fly the helicopter inverted. Finally, they successfully
implemented the controller on the real helicopter.

A feature of the simulations was that each potential policy was tested on
the same set of pre-determined random trials. That prevented variation in the
trials to unduly affect which policies were considered the best. He described
this previously in (Pegasus. Ng and Jordan 2000). The important idea is that
one can eliminate the non-determinism of an MDP by generating a set of ran-
dom trial outcomes and evaluating each policy on the same trials, treating the
transitions as deterministic. As long as the trials are representative, the results
will be representative of the true, non-deterministic case.

While this was a very exciting result, the methodology was nothing new.
Furthermore, the reward function had a number of magic parameters that are
not described and I can only suppose they had to be hand tuned. I would also
like to limit the amount of learning that is done in simulation. I think that if
the controller starts off very slowly (and with a little guidance), it could do all
of the learning online without any crashes. People manage to do precisely that.

Relational Reinforcement Learning

Relational Reinforcement Learning. Saso DZzeroski. 2003
I found this paper in a citation by Forbes who was cited by AIMA.

This paper presents the RRL algorithm in which the Q-function is approx-
imately represented by a regression tree. This regression tree is maintained so



that similar examples are combined (or one is rejected) and sufficiently differ-
ent examples yield an additional branching of the tree. Thus, a size constraint
can be maintained. In cases where states are best described relationally, this
data structure is intuitive and compact. For instance, it was effective in finding
optimal solutions to the block stacking problem. The tree is populated by gen-
eralizing a set of manually provided optimal solutions.

A problem with this algorithm is that it scales poorly. The number of po-
tential relationships grows very quickly. The algorithm over-generalized when
it received too many training cases and was pretty bad at tetris. More im-
portantly to the task in question, since the relationships were propositional, it
doesnt generalize into the continuous case very well.

Effective Reinforcement Learning

William D. Smart and Leslie Pack Kaelbling, ” Effective Reinforcement Learning
for Mobile Robots,” International Conference on Robotics and Automation, May
11-15, 2002.

I found this one on LPK’s webpage because I had her as a professor and knew
she was into this stuff.

This paper deals with the problem of Q-learning with sparse rewards. Since
the initial distribution of rewards is so flat, the agent ends up having to pick
actions arbitrarily which means it might take a very long time for the agent to
find a good policy. She fixes the problem manually much like in Dzeroski, with
manual information. In one case, she provides a simple starting learning policy
that ensures that the goal is found. This allows the Q-function to start being
filled in. Then she drives the agent manually towards the goal. In this case,
unlike in Dzeroski, it doesnt matter if this initial input is optimal or not, it is
only to aid fleshing out the Q-values. In all three papers, a human operator is
used to hone in on the region of the state space that is of interest.

I thought this paper was fantastic. It was interesting and well written. I
guess if I had to complain about something it would be that there is no discussion
of choosing the discount factor or learning rate. Also, some details of how the
Q-values are updated are not specified.

Part E

I propose implementing a controller for the Quanser helicopter that learns how
to fly on its own and does not rely on prior knowledge of the system model. I
plan on using Q-learning or policy search. I would start by providing a dense
reward surface for hovering and let the controller determine the control. Then
I will try to extend that to general trajectory following. If that goes well, I



will try a much sparser set of rewards. If possible, I would like to have it learn
from a human operator like in the Kaebling paper. I estimate the probability
of persuing this project at 3/4.



