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Background 
 
In order for cognitive robots to act responsively, intelligently and safely within the real 
world, they must be able to reason at lightening speeds.  Towards this end, performance 
evaluation of novel reasoning algorithms is used as an important measure of progress.   In 
particular, an important requirement for any publication of a novel algorithm is a careful 
performance analysis compared to the state of the art.  Likewise, many reasoning 
disciplines have developed the practice of publishing survey evaluation articles or by 
running competitions, such as the AI Planning competition, to evaluate performance.  
These evaluations are facilitated by sets of common benchmarks, many of which are 
publicly available over the web.   
 
In these evaluations a number of performance metrics are used, depending on the 
properties of the algorithms.  However, the most common are speed and memory usage.  
Whenever possible, processor independent metrics are used for evaluation.  For example, 
the speed of a suite of systematic search algorithms might be measured in terms of the 
number of search nodes expanded, and memory in terms of the maximum number of 
search nodes placed on the search queue at any point in time.  In other cases, the 
algorithms being compared are sufficiently different that the actual processor speed and 
memory usage are the only common denominators.  To gain insight, performance is often 
measured as a function of a range of parameters that summarize certain characteristics of 
the problem being solved.  For example, for constraint satisfaction problems, a common 
parameter is the ratio of constraints to number of variables that appear in the problem. 
 
Objective 
 
A recently emerging category of reasoning algorithm that has not been well characterized 
is the set of algorithms for solving finite domain constraint optimization problems (COP) 
– in particular valued constraint satisfaction problems (valued CSPs) and optimal CSPs.  
The objective of this problem set is for the class to collectively evaluate a set of three 
representative algorithms from this category, and to assemble a survey article of the 
results.  The three algorithms to be evaluated are: 
  

Algorithm A: Conflict directed A* Search 
Algorithm B: Branch-and-bound using Russian Doll Search 
Algorithm C: Decomposition and Dynamic Programming 



 
Provided below are descriptions of the algorithm variants that we are asking you to 
evaluate, and relevant references for those algorithms.  Each algorithm is to be evaluated 
against a set of benchmarks provided below.  These benchmarks include both randomly 
generated and real world problems of varying levels of complexity. 
 
Logistics 
 
Each of you will be responsible for implementing one (and only one) of the algorithms, 
(A, B or C), which you will do together with a partner, unless you choose to implement 
the algorithm alone.  Each team will then work with one other team to write up an 
evaluation of the relative performance of the two algorithms on the common benchmarks. 
 
Please choose a partner with whom you want to work with, in order to implement one of 
the three algorithms (A, B, or C).   We plan to have roughly two teams implement each 
algorithm, and will make the assignment of algorithms to teams next Wednesday (Feb 
23rd).  In class next week we will ask you to provide us the name of your partner and any 
preference you have of the algorithm you implement.  Please review the material below 
and the references provided to help you to make your decision.   
 
For the implementation, you are free to choose your favorite programming language. For 
one of the algorithms, Algorithm A, we provide a software component that is written in 
C/C++.  Hence those teams responsible for Algorithm A will need to be familiar with 
C/C++ and/or interfacing to C++. 
 
In order to compare the relative performance of the algorithms, we will form “super-
teams,” by pairing each team working on an algorithm (e.g., A) with another team 
working on a different algorithm (e.g., B).   
 
Algorithm Evaluation 
 
Each team of two students should evaluate its implementation on each of the example 
problems described at the end of this document.  Note that it may not be possible to solve 
every example problem with your algorithm.  For each example that your approach could 
solve, indicate the value of the optimal solution, the required run-time and memory 
usage.  In addition to absolute processor time and memory usage, please come up with 
processor independent measures of performance (e.g., in terms of search tree nodes) and 
report your algorithm’s performance in terms of those units.  For each example that could 
not be solved by your implementation, indicate whether the program ran out of time or 
ran out of memory.  You may terminate the program on any example that takes more than 
10 minutes (600 seconds) to solve. 
 
Each “super-team” will write up an evaluation comparing their two algorithms against 
each other (e.g., A vs. B). 
 
Materials Submitted on Due Date 



 
On the due date, each super-team (that is, group of four students) should submit to the 
course secretary, Brian O’ Conaill , a hardcopy report, and an 
electronic version of the report, according to the guidelines specified below. 
 
In addition, each super-team should submit an electronic copy of the implementation of 
their two algorithms, including a short summary of how to run the algorithms. 
 
Content of Your Reports  
 
Each super-team should submit one report.  Your report should include a pedagogical 
description of each algorithm implemented, including a simple walked through example 
for illustration.  This should be followed by an analysis of your benchmark results of the 
two algorithms. 
 
Each pair is responsible for writing up the description of their respective algorithm, and 
for analyzing the performance of their algorithm on the benchmarks.  The collective 
super-team is responsible for the comparison of the two algorithms.  To give us a sense of 
the contribution that each team member has made, please indicate the author or authors of 
each section of the report, and please provide a summary of the contribution each team 
member makes to the implementations. 
 
More specifically, each report should consist of the following parts: 
 

Part 1. Describe the two algorithms.  Explain the key ideas underlying each 
algorithm and provide pseudocode for each algorithm. Explain how the two 
algorithms work by walking through a small, pedagogical example. 
 
Part 2. Briefly describe your implementations, and show a sample run of your 
programs on an example.  The sample run should show the optimal solution, and 
some meaningful intermediate steps. 
 
Part 3. In tabular form, report the results of running the two algorithms on each 
benchmark problem. If the algorithm halted, report the value of the optimal solution 
and the run-time, else indicate whether the algorithm ran out of time or out of 
memory (see the above section on “algorithm evaluation” for further guidelines). 
 
Part 4. Discuss your results: Which algorithm performed better on which problems? 
Identify properties of the problems that seem to positively or negatively affect the 
performance of each algorithm.  What do you think are the strengths and weaknesses 
of one algorithm over the other? How difficult would it be to extend them to generate 
the next best solution, or all solutions? Can you think of possible extensions or 
improvements? 
 
Part 5. Summarize each team member’s contribution to the implementation and 
evaluation of the two algorithms. 



  
Appendix.  In an appendix to your report, provide a print out of the source code of 
your programs. 

 
 
Algorithm A: Conflict-directed A* Search 
 
Implement conflict-directed A* (CDA*) to compute optimal solutions for valued 
constraint satisfaction problems (VCSPs). 
 
In order to apply CDA* to a VCSP, you first need to write a compiler that maps a VCSP 
into an optimal constraint satisfaction problem (OCSP).  This may be accomplished by 
applying the transformation shown in lecture by Martin Sachenbacher, and involves 
introducing a decision variable for each soft constraint. 
 
Next, implement CDA* by using a search queue to enumerate the assignments to the 
decision variables in best-first order, testing complete assignments for consistency, and 
using conflicts obtained from inconsistent assignments to guide the expansion of the 
search tree. 
 
CDA* as described in the paper by Williams and Ragno optimizes child expansion by 
expanding only the best child and next best sibling of a search node, rather than 
expanding all of its children at once.  If you would like, you can simplify your 
implementation of the algorithm by omitting this improvement and expanding all 
children of a search node at once (however, we would be delighted if you implemented 
the original algorithm). 
 
In order to facilitate implementation of the algorithm, we provide a component, called 
ISAT, which tests assignments for consistency with a set of constraints given as clauses 
in propositional state logic, and returns a conflict in the case of inconsistency. 
Propositional state logic is a propositional logic in which all propositions are assignments 
to a set of finite domain variables.  Note that ISAT is written in C++, hence your 
implementation of CDA* will either need to make a foreign function call to ISAT or you 
will need to implement CDA* in C++.  You can obtain a CD containing the C/C++ code 
of ISAT and a description of how to use ISAT from the course secretary, Brian 
O’Conaill .  Should you have any further questions regarding ISAT, 
please do not hesitate to direct your question to Shen Qu. 
 
 
Further reading: 
 

• Brian C. Williams and Robert Ragno: Conflict-directed A* and its Role in Model-
based Embedded Systems.  To appear in the Special Issue on Theory and 
Applications of Satisfiability Testing, Journal of Discrete Applied Math 

 



 
 
 
 
Algorithm B: Branch-and-Bound using Russian Doll Search 
 
Implement the Russian Doll Search (RDS) algorithm by Verfaillie, Lemaitre and Schiex 
for solving valued constraint satisfaction problems (VCSPs). 
 
RDS is a branch-and-bound algorithm that replaces one search by n searches on 
successively larger subproblems (n is the number of variables in the problem).  RDS 
records the result for each subproblem, and uses it to improve the lower bounds of partial 
assignments when solving the next largest subproblem. 
 
Further reading: 
 

• Gerard Verfaillie, Michel Lemaitre and Thomas Schiex: Russian Doll Search for 
Solving Constraint Optimization Problems.  In Proceedings of the National 
Conference on Artificial Intelligence (AAAI-96), pages 181-187, 1996. 
(http://citeseer.ist.psu.edu/article/verfaillie96russian.html) 

 
• Rina Dechter: Constraint Processing.  Morgan Kaufmann Publishers, 2003. 

Chapter 13 (Constraint Optimization) 
 
 
 
Algorithm C: Decomposition and Dynamic Programming 
 
Implement an algorithm that solves valued constraint satisfaction problems (VCSPs) by 
decomposing the problem into a bucket tree, and computing optimal solutions by 
performing dynamic programming on the tree. 
 
In order to decompose the problem into a bucket tree, represent the network of 
constraints in the problem as a graph, such that each variable corresponds to a graph 
node, and each constraint corresponds to a graph hyper-edge that connects all of the 
variables that appear in the constraint.  Next use the greedy min-fill (MF) heuristics 
described in the lecture by Martin Sachenbacher and in the book by Dechter to compute a 
bucket tree from the constraint graph.  
 
To perform dynamic programming on the tree, implement a message-passing scheme that 
processes the tree from bottom to top, combines the constraints in each tree node, projects 
them on to the variables shared with its parent node, and sends the result to the parent 
node (this algorithm is called cluster-tree elimination (CTE) in the paper by Kask, 
Dechter and Larrosa below).  Output the value of the optimal solution as the value of the 
best assignment in the root node of the tree. 
 



Further reading: 
 

• Kalev Kask, Rina Dechter and Javier Larrosa: Unifying Cluster-Tree 
Decompositions for Automated Reasoning, University of California at Irvine 
Technical Report, 2003 (http://www.ics.uci.edu/~dechter/publications/r109.html) 

 
• Rina Dechter: Constraint Processing.  Morgan Kaufmann Publishers, 2003. 

Chapter 9 (Tree Decomposition) 
 
 
 
Benchmark Problems 
 
On the course website , we provide a repository 
of benchmark examples to run your algorithm on. All files are given in the WCSP format, 
which is a simple, low-level format for instances of Valued Constraint Satisfaction 
Problems (VCSPs), where a cost is associated with each tuple of a constraint, and the 
goal is to find a complete assignment with minimum cost.  For a description of the 
format, see: 
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/CpWcspFormats 
 

• Folder “Academic” contains some small, academic problems (n-queens problem, 
crypto-arithmetic puzzles, and zebra puzzle): 

 
o 4wqueens.wcsp (4 variables, 10 constraints) 
o 8wqueens.wcsp (8 variables, 36 constraints) 
o 16wqueens.wcsp (16 variables, 136 constraints) 
o donald.wcsp (15 variables, 51 constraints) 
o send.wcsp (11 variables, 32 constraints) 
o zebra.wcsp (25 variables, 19 constraints) 

 
 

• Folder “Random” contains randomly generated problems, which are sorted into 
four different problem classes according to the density of the constraint network 
and the tightness of the constraints (sparse/loose, sparse/tight, dense/loose, and 
dense/tight): 

 
o Vcsp40_10_13_60_1-5.wcsp (40 variables, 100 constraints) (5 instances) 
o Vcsp25_10_21_85_1-5.wcsp (25 variables, 64 constraints) (5 instances) 
o Vcsp30_10_25_48_1-5.wcsp (30 variables, 109 constraints) (5 instances) 
o Vcsp25_10_25_87_1-5.wcsp (25 variables, 75 constraints) (5 instances) 

 
 

• Folder “Celar” contains real-world radio link frequency assignment problems 
arising in wireless communication networks (courtesy for these examples is 
Centre d'Electronique de l'Armement, France). For further documentation, see 



http://fap.zib.de/problems/CALMA/ 
http://www.inra.fr/bia/T/schiex/Doc/CELAR.shtml 

 
o CELAR6-SUB0.wcsp (16 variables, 207 constraints) 
o CELAR6-SUB1-24.wcsp (14 variables, 300 constraints) 
o CELAR6-SUB2.wcsp (16 variables, 353 constraints) 

 
 

• Folder “Dimacs” contains real-world circuit fault analysis examples from the 
Second Discrete Mathematics and Computer Science (DIMACS) challenge.  For 
further documentation, see 
http://mat.gsia.cmu.edu/challenge.html  
http://www.intellektik.informatik.tu-
darmstadt.de/SATLIB/Benchmarks/SAT/DIMACS/BF/descr.html

 
o ssa0432-003.wcsp (435 variables, 1027 constraints) 
o ssa2670-141.wcsp (986 variables, 2315 constraints) 
o ssa2670-130.wcsp (1359 variables, 3321 constraints) 

 
 
 
 
 
 


