
Massachusetts Institute of Technology

16.412J/6.834J Cognitive Robotics

Problem Set #2 Due: in class Wed, 3/9/05

Background

In order for cognitive robots to act responsively, intelligently and safely within the real
world, they must be able to reason at lightening speeds. Towards this end, performance
evaluation of novel reasoning algorithms is used as an important measure of progress. In
particular, an important requirement for any publication of a novel algorithm is a careful
performance analysis compared to the state of the art. Likewise, many reasoning
disciplines have developed the practice of publishing survey evaluation articles or by
running competitions, such as the AI Planning competition, to evaluate performance.
These evaluations are facilitated by sets of common benchmarks, many of which are
publicly available over the web.

In these evaluations a number of performance metrics are used, depending on the
properties of the algorithms. However, the most common are speed and memory usage.
Whenever possible, processor independent metrics are used for evaluation. For example,
the speed of a suite of systematic search algorithms might be measured in terms of the
number of search nodes expanded, and memory in terms of the maximum number of
search nodes placed on the search queue at any point in time. In other cases, the
algorithms being compared are sufficiently different that the actual processor speed and
memory usage are the only common denominators. To gain insight, performance is often
measured as a function of a range of parameters that summarize certain characteristics of
the problem being solved. For example, for constraint satisfaction problems, a common
parameter is the ratio of constraints to number of variables that appear in the problem.

Objective

A recently emerging category of reasoning algorithm that has not been well characterized
is the set of algorithms for solving finite domain constraint optimization problems (COP)
– in particular valued constraint satisfaction problems (valued CSPs) and optimal CSPs.
The objective of this problem set is for the class to collectively evaluate a set of three
representative algorithms from this category, and to assemble a survey article of the
results. The three algorithms to be evaluated are:

Algorithm A: Conflict directed A* Search
Algorithm B: Branch-and-bound using Russian Doll Search
Algorithm C: Decomposition and Dynamic Programming

Provided below are descriptions of the algorithm variants that we are asking you to
evaluate, and relevant references for those algorithms. Each algorithm is to be evaluated
against a set of benchmarks provided below. These benchmarks include both randomly
generated and real world problems of varying levels of complexity.

Logistics

Each of you will be responsible for implementing one (and only one) of the algorithms,
(A, B or C), which you will do together with a partner, unless you choose to implement
the algorithm alone. Each team will then work with one other team to write up an
evaluation of the relative performance of the two algorithms on the common benchmarks.

Please choose a partner with whom you want to work with, in order to implement one of
the three algorithms (A, B, or C). We plan to have roughly two teams implement each
algorithm, and will make the assignment of algorithms to teams next Wednesday (Feb
23rd). In class next week we will ask you to provide us the name of your partner and any
preference you have of the algorithm you implement. Please review the material below
and the references provided to help you to make your decision.

For the implementation, you are free to choose your favorite programming language. For
one of the algorithms, Algorithm A, we provide a software component that is written in
C/C++. Hence those teams responsible for Algorithm A will need to be familiar with
C/C++ and/or interfacing to C++.

In order to compare the relative performance of the algorithms, we will form “super-
teams,” by pairing each team working on an algorithm (e.g., A) with another team
working on a different algorithm (e.g., B).

Algorithm Evaluation

Each team of two students should evaluate its implementation on each of the example
problems described at the end of this document. Note that it may not be possible to solve
every example problem with your algorithm. For each example that your approach could
solve, indicate the value of the optimal solution, the required run-time and memory
usage. In addition to absolute processor time and memory usage, please come up with
processor independent measures of performance (e.g., in terms of search tree nodes) and
report your algorithm’s performance in terms of those units. For each example that could
not be solved by your implementation, indicate whether the program ran out of time or
ran out of memory. You may terminate the program on any example that takes more than
10 minutes (600 seconds) to solve.

Each “super-team” will write up an evaluation comparing their two algorithms against
each other (e.g., A vs. B).

Materials Submitted on Due Date

On the due date, each super-team (that is, group of four students) should submit to the
course secretary, Brian O’ Conaill , a hardcopy report, and an
electronic version of the report, according to the guidelines specified below.

In addition, each super-team should submit an electronic copy of the implementation of
their two algorithms, including a short summary of how to run the algorithms.

Content of Your Reports

Each super-team should submit one report. Your report should include a pedagogical
description of each algorithm implemented, including a simple walked through example
for illustration. This should be followed by an analysis of your benchmark results of the
two algorithms.

Each pair is responsible for writing up the description of their respective algorithm, and
for analyzing the performance of their algorithm on the benchmarks. The collective
super-team is responsible for the comparison of the two algorithms. To give us a sense of
the contribution that each team member has made, please indicate the author or authors of
each section of the report, and please provide a summary of the contribution each team
member makes to the implementations.

More specifically, each report should consist of the following parts:

Part 1. Describe the two algorithms. Explain the key ideas underlying each
algorithm and provide pseudocode for each algorithm. Explain how the two
algorithms work by walking through a small, pedagogical example.

Part 2. Briefly describe your implementations, and show a sample run of your
programs on an example. The sample run should show the optimal solution, and
some meaningful intermediate steps.

Part 3. In tabular form, report the results of running the two algorithms on each
benchmark problem. If the algorithm halted, report the value of the optimal solution
and the run-time, else indicate whether the algorithm ran out of time or out of
memory (see the above section on “algorithm evaluation” for further guidelines).

Part 4. Discuss your results: Which algorithm performed better on which problems?
Identify properties of the problems that seem to positively or negatively affect the
performance of each algorithm. What do you think are the strengths and weaknesses
of one algorithm over the other? How difficult would it be to extend them to generate
the next best solution, or all solutions? Can you think of possible extensions or
improvements?

Part 5. Summarize each team member’s contribution to the implementation and
evaluation of the two algorithms.

Appendix. In an appendix to your report, provide a print out of the source code of
your programs.

Algorithm A: Conflict-directed A* Search

Implement conflict-directed A* (CDA*) to compute optimal solutions for valued
constraint satisfaction problems (VCSPs).

In order to apply CDA* to a VCSP, you first need to write a compiler that maps a VCSP
into an optimal constraint satisfaction problem (OCSP). This may be accomplished by
applying the transformation shown in lecture by Martin Sachenbacher, and involves
introducing a decision variable for each soft constraint.

Next, implement CDA* by using a search queue to enumerate the assignments to the
decision variables in best-first order, testing complete assignments for consistency, and
using conflicts obtained from inconsistent assignments to guide the expansion of the
search tree.

CDA* as described in the paper by Williams and Ragno optimizes child expansion by
expanding only the best child and next best sibling of a search node, rather than
expanding all of its children at once. If you would like, you can simplify your
implementation of the algorithm by omitting this improvement and expanding all
children of a search node at once (however, we would be delighted if you implemented
the original algorithm).

In order to facilitate implementation of the algorithm, we provide a component, called
ISAT, which tests assignments for consistency with a set of constraints given as clauses
in propositional state logic, and returns a conflict in the case of inconsistency.
Propositional state logic is a propositional logic in which all propositions are assignments
to a set of finite domain variables. Note that ISAT is written in C++, hence your
implementation of CDA* will either need to make a foreign function call to ISAT or you
will need to implement CDA* in C++. You can obtain a CD containing the C/C++ code
of ISAT and a description of how to use ISAT from the course secretary, Brian
O’Conaill . Should you have any further questions regarding ISAT,
please do not hesitate to direct your question to Shen Qu.

Further reading:

• Brian C. Williams and Robert Ragno: Conflict-directed A* and its Role in Model-
based Embedded Systems. To appear in the Special Issue on Theory and
Applications of Satisfiability Testing, Journal of Discrete Applied Math

Algorithm B: Branch-and-Bound using Russian Doll Search

Implement the Russian Doll Search (RDS) algorithm by Verfaillie, Lemaitre and Schiex
for solving valued constraint satisfaction problems (VCSPs).

RDS is a branch-and-bound algorithm that replaces one search by n searches on
successively larger subproblems (n is the number of variables in the problem). RDS
records the result for each subproblem, and uses it to improve the lower bounds of partial
assignments when solving the next largest subproblem.

Further reading:

• Gerard Verfaillie, Michel Lemaitre and Thomas Schiex: Russian Doll Search for
Solving Constraint Optimization Problems. In Proceedings of the National
Conference on Artificial Intelligence (AAAI-96), pages 181-187, 1996.
(http://citeseer.ist.psu.edu/article/verfaillie96russian.html)

• Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, 2003.

Chapter 13 (Constraint Optimization)

Algorithm C: Decomposition and Dynamic Programming

Implement an algorithm that solves valued constraint satisfaction problems (VCSPs) by
decomposing the problem into a bucket tree, and computing optimal solutions by
performing dynamic programming on the tree.

In order to decompose the problem into a bucket tree, represent the network of
constraints in the problem as a graph, such that each variable corresponds to a graph
node, and each constraint corresponds to a graph hyper-edge that connects all of the
variables that appear in the constraint. Next use the greedy min-fill (MF) heuristics
described in the lecture by Martin Sachenbacher and in the book by Dechter to compute a
bucket tree from the constraint graph.

To perform dynamic programming on the tree, implement a message-passing scheme that
processes the tree from bottom to top, combines the constraints in each tree node, projects
them on to the variables shared with its parent node, and sends the result to the parent
node (this algorithm is called cluster-tree elimination (CTE) in the paper by Kask,
Dechter and Larrosa below). Output the value of the optimal solution as the value of the
best assignment in the root node of the tree.

Further reading:

• Kalev Kask, Rina Dechter and Javier Larrosa: Unifying Cluster-Tree
Decompositions for Automated Reasoning, University of California at Irvine
Technical Report, 2003 (http://www.ics.uci.edu/~dechter/publications/r109.html)

• Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, 2003.

Chapter 9 (Tree Decomposition)

Benchmark Problems

On the course website , we provide a repository
of benchmark examples to run your algorithm on. All files are given in the WCSP format,
which is a simple, low-level format for instances of Valued Constraint Satisfaction
Problems (VCSPs), where a cost is associated with each tuple of a constraint, and the
goal is to find a complete assignment with minimum cost. For a description of the
format, see:
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/CpWcspFormats

• Folder “Academic” contains some small, academic problems (n-queens problem,
crypto-arithmetic puzzles, and zebra puzzle):

o 4wqueens.wcsp (4 variables, 10 constraints)
o 8wqueens.wcsp (8 variables, 36 constraints)
o 16wqueens.wcsp (16 variables, 136 constraints)
o donald.wcsp (15 variables, 51 constraints)
o send.wcsp (11 variables, 32 constraints)
o zebra.wcsp (25 variables, 19 constraints)

• Folder “Random” contains randomly generated problems, which are sorted into
four different problem classes according to the density of the constraint network
and the tightness of the constraints (sparse/loose, sparse/tight, dense/loose, and
dense/tight):

o Vcsp40_10_13_60_1-5.wcsp (40 variables, 100 constraints) (5 instances)
o Vcsp25_10_21_85_1-5.wcsp (25 variables, 64 constraints) (5 instances)
o Vcsp30_10_25_48_1-5.wcsp (30 variables, 109 constraints) (5 instances)
o Vcsp25_10_25_87_1-5.wcsp (25 variables, 75 constraints) (5 instances)

• Folder “Celar” contains real-world radio link frequency assignment problems
arising in wireless communication networks (courtesy for these examples is
Centre d'Electronique de l'Armement, France). For further documentation, see

http://fap.zib.de/problems/CALMA/
http://www.inra.fr/bia/T/schiex/Doc/CELAR.shtml

o CELAR6-SUB0.wcsp (16 variables, 207 constraints)
o CELAR6-SUB1-24.wcsp (14 variables, 300 constraints)
o CELAR6-SUB2.wcsp (16 variables, 353 constraints)

• Folder “Dimacs” contains real-world circuit fault analysis examples from the
Second Discrete Mathematics and Computer Science (DIMACS) challenge. For
further documentation, see
http://mat.gsia.cmu.edu/challenge.html
http://www.intellektik.informatik.tu-
darmstadt.de/SATLIB/Benchmarks/SAT/DIMACS/BF/descr.html

o ssa0432-003.wcsp (435 variables, 1027 constraints)
o ssa2670-141.wcsp (986 variables, 2315 constraints)
o ssa2670-130.wcsp (1359 variables, 3321 constraints)

