
Kaijen Hsiao


Part A: Topics of Fascination


1) I am primarily interested in SLAM. I plan to do my project on an 
application of SLAM, and thus I am interested not only in the method we 
learned about in class, but also the method outlined in the DP-SLAM 
reading on the course webpage. I only want to implement one method, but I 
need to know how both methods work so that I can figure out which is 
easiest/best to implement. I will probably want to do my advanced lecture 
on a SLAM algorithm. 

2) I am also interested in probabilistic roadmaps. We covered basic 
probabilistic roadmaps in class, which is something that I use in my own 
research, to control two simulated robotic arms. I am also interested in 
learning more about RRTs and MOPs, and would not mind doing an advanced 
lecture on a specific algorithm related to them. 

3) Finally, as a topic I am very interested in learning about in class 
that hasn't been covered, I am particularly interested in MDPs and POMDPs. 
I have learned about HMMs, but not about POMDPs, and the information in 
Russell and Norvig is woefully inadequate. 

Part D: Researching a Critical Reasoning Method 
Paper 1: Thrun, Sebastian."A probabilistic online mapping algorithm for 
teams of mobile robots." International Journal of Robotics Research, 
20(5):335-363, 2001.

 The SLAM algorithm we learned about in class (Leonard's method of 
using multiple overlapping submaps with Kalman filters) is useful when 
errors in your robot's motion can be accurately represented using a 
Gaussian. However, for robots with nonlinear, inaccurate motion, using a 
Gaussian to represent the robot pose can be a poor approximation. 
Instead, one can use particle filters, which represent the robot pose 
essentially with a cloud of possible poses. Instead of a mean and 



covariance matrix, the uncertainty in the robot pose can be captured by 
recording a large set of 'particles' that each contains one possible robot 
pose. Each particle is weighted by the probability that the robot is 
actually in that pose based on the latest observation. At each time step, 
the particles are sampled according to their probabilities, and the motion 
model is used to extend them according to the new motion input (with 
randomly sampled error included). Thus, the particle cloud expands as the 
robot moves, but a good observation will weight only those particles that 
are likely correct with a high weight, causing the cloud to shrink again. 
This is also a good method to represent branching hypotheses; for 
instance, if the robot could likely be in one of two separate places, the 
standard Kalman filter method cannot represent this fact with a Gaussian.

 The idea of particle filters is the basis for a whole set of major 
SLAM algorithms, mostly developed by Sebastian Thrun. The reason I picked 
this paper is because, unlike later papers that all assume that you know 
all about particle filters and basic SLAM, it gives a coherent explanation 
that starts from the beginning. This includes what particle filters are, 
as well as how to do other low level details of the SLAM algorithm, such 
as how to compute the most likely robot pose given a map estimate (using 
gradient ascent), or how to represent the map as an occupancy grid whose 
squares reflect the probability that there is an obstacle there.

 The actual system discussed in this paper is somewhat primitive 
compared to later particle-filter-based SLAM algorithms. In summary: the 
robot uses a laser rangefinder, and the map is represented using an 
occupancy grid rather than landmarks. However, only the maximum 
likelihood map is kept track of, rather than multiple map hypotheses, as 
we will see in later papers. The system is able to close loops, but it 
does so in one lump adjustment using a lot of gradient ascent once a 
conflict is found. The paper also discusses mapping with multiple robots 
that can communicate with each other constantly (one robot is the 'team 
leader', and new robots must be able to localize themselves in the team 
leader's map, at which point they start adding to the map just as the 
first robot does) and 3-D structural and texture mapping (their robot gets 
a panoramic camera; the 3-D info is not used in SLAM in any way, the 3-D 
images are just built using the SLAM results).

 The algorithm used in this paper will probably not be used for my 
cognitive robot, but many of the low-level details from this paper will 
probably be used, and knowing this algorithm helps one to understand the 
algorithms in later papers. While it might be useful for multiple spy 
robots to be able to make the map together, it is not necessarily safe to 
assume that they can be in constant communication with each other. 



Paper 2: M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. "FastSLAM: A 
factored solution to the simultaneous localization and mapping problem." 
In Proceedings of the AAAI National Conference on Artificial Intelligence, 
Edmonton, Canada, 2002. AAAI.

 FastSLAM appears to be a well-known, much-used algorithm, which is 
why I chose this paper. As before, a laser rangefinder is used to collect 
data, and the algorithm is based on particle filters. Unlike the last 
paper, landmarks are used rather than occupancy maps. Also unlike the 
last paper, each particle contains not only the robot pose, but also a 
Gaussian for each landmark in the map. Thus, each particle records one 
hypothesis for the map, and these can diverge widely if need be, rather 
than relying only on the one maximally likely map as in the last paper. 
Despite estimating the full posterior distribution over both the robot 
pose and all the landmark locations, the computation time scales 
logarithmically with the number of landmarks in the map (O(M logK), where 
M is the number of particles and K is the number of landmarks). This is 
not quite as good as Leonard's submap algorithm's time complexity of O(1), 
but it appears to be quite sufficient for quite large maps (with 1 million 
landmarks) even with only 100 particles, and was just as accurate as 
Leonard's method on the locations tried.

 This paper also discusses the data association problem, which is 
the problem of deciding whether a landmark is the same as one you've seen 
before (and which one it is) or if it's a new one, which is another 
low-level detail not often covered in these papers.

 For my cognitive robot, I would use a particle-filter algorithm, 
but may or may not want to use landmarks (vs. an occupancy map). If I 
were to use landmarks, this is probably the algorithm to use. 

Paper 3: "DP-SLAM: Fast, Robust Simultaneous Localization and Mapping 
Without Predetermined Landmarks." Austin Eliazar and Ronald Parr, 18th 
International Joint Conference on Artificial Intelligence (Acapulco, 
August 2003).

 This paper is on the reading list for the class, and thus it is 
the one I started with before realizing that I had no idea what particle 
filters were. However, after reading the first two papers (the algorithm 
in this paper is an extension of the work in the first two papers), it 
becomes much easier to understand.

 The algorithm in this paper combines features of the first two 
papers. Like FastSLAM, it represents the entire map with each particle, 
and can thus keep track of hundreds of candidate maps. However, unlike 
FastSLAM, and like the first paper, it uses an occupancy grid as its map 
representation. As before, a laser rangefinder is used to collect data. 



The main idea is that it finds a way to make copying of particles feasible 
when each particle has to keep track of an entire occupancy grid. If each 
new particle just copied over the old map and changed it, it would take 
O(MP) time, where M is the size of the grid and P is the number of 
particles. Instead, the algorithm presented keeps a particle ancestry 
tree, so that each particle does not have to contain the entire map. Each 
square of the occupancy grid keeps a separate tree that keeps track of the 
IDs of every particle that has made changes to the occupancy of that 
square, along with their observations. Each particle keeps track of its 
ancestors, and thus when the particle wants to find the value of a grid 
square, it checks each of its ancestors to find the most recent change to 
that square. If nobody has changed that square, the occupancy of that 
square is unknown. 
The complexity of this algorithm can become somewhat bad (O(ADPlgP), where 
A is the area that the laser sweeps out, D is the depth of the ancestry 
tree, P is the number of particles, and M is the size of the occupancy 
grid), but in their experiments, the complexity was closer to 
A*lg(squared)P, which is < M. 
If I wanted to use an occupancy grid rather than landmarks for my 
cognitive robot, this is probably the algorithm I would use. 

Part E: A Simple Project For Your Cognitive Robot 
My cognitive robot was a tiny spy robot (think cockroach-bot), capable of 
slipping in through a crack in a building and autonomously mapping the 
place while detecting motion and trying to avoid being seen. Even though 
I would do my project in simulation, the full capabilities of such a robot 
would be too much to implement.

 Thus, here is a manageable project that embodies the salient 
features: a tiny simulated robot, driven by a human (to avoid having to 
develop a solid exploration function) to map the inside of a simulated 
building using either FastSLAM or DP-SLAM. Even ignoring the 
motion-detection-and-people-avoidance problem, this is already a 
significant project. This is because the tiny size of the robot requires 
the robot to do things a bit differently than most SLAM robots. The robot 
would have to be able to get over low thresholds and the like, and so a 
real-life tiny spy robot would probably have to be legged, likely giving 
it terrible odometry. (The simulated robot need not be legged; it just 
needs to approximate the movements of a legged robot.) 
While no tiny laser rangefinders are currently available, it is quite 
conceivable that a tiny laser rangefinder could be developed. This is 
because the laser itself is just a tiny diode; most of the mechanism of a 
laser rangefinder is for precisely aiming the laser. If a MEMS device 



with tiny mirrors could be built to do that job, a laser rangefinder could 
be made that was tiny enough to fit on a tiny cockroach-bot. However, the 
robot would have to creep along walls to avoid being seen, rather than 
charging down the middle of large corridors, possibly complicating the 
typical problem of exploring corridors and rooms. 


