16.410/413
Principles of Autonomy and Decision Making

Lecture 23: Markov Decision Processes
Policy Iteration

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology

December 1, 2010

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010

1/22

Assignments

Readings

@ Lecture notes
e [AIMA] Ch. 17.1-3.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 2/22

Searching over policies

@ Value iteration converges exponentially fast, but still asymptotically.

@ Recall how the best policy is recovered from the current estimate of
the value function:

mi(s) = argmaxE [R(s,a,s") + yVi(s)] Vs € S.
a
@ In order to figure out the optimal policy, it should not be necessary to
compute the optimal value function exactly...
@ Since there are only finitely many policies in a finite-state,

finite-action MDP, it is reasonable to expect that a search over
policies should terminate in a finite number of steps.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 3/22

Policy evaluation

@ Let us assume we have a policy, e.g., 7 : S — A, that assigns an
action to each state. l.e., action 7(s) will be chosen each time the
system is at state s.

@ Once the actions taken at each state are fixed,

o the MDP is turned into a Markov chain (with rewards).
e one can compute the expected utility collected over time using that

policy

@ In other words, one can evaluate how well a certain policy does by
computing the value function induced by that policy.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 4/22

Policy evaluation example — naive method

@ Same planning problem as the
previous lecture, in a smaller
world (4x4).

@ Simple policy 7: always go
right, unless at the goal (or
inside obstacles).

o Expected utility (value function)
starting from top left corner
(cell 2,2):

Vy(2,2) ~ 0.06-8.1=0.5

Frazzoli (MIT) Lecture 23: MDPs

‘ Path ‘ Prob. ‘ Utility ‘

— 0.75 0
T 0.08 0
— 0.08 0
= 0.06 8.1

December 1, 2010

5/22

Policy evaluation

@ Recalling the MDP properties, one can write the value function at a
state as the expected reward collected at the first step + expected
discounted value at the next state under the given policy

Vr(s) = E [R(s,7(s),s") +7V(s")]
= 3" T(s,m(s),) [R(s,m(s),) + V()] . VseS

s'eS

o Note that this is a set of card(S) linear equations in the card(S)
unknowns {V(s),s € S}.

@ This can be solved efficiently, in O(card(S)3)

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 6 /22

Policy evaluation example

@ Let us consider the variables v5 5, v32, v3 3 (the
others are trivially 0).

Policy w

o We have:

3 1
Voo = Z(O +0.9- 0) + E(O + 0.9V3’2)

3 1
V3 = Z(l +0.9v33) + E(O +0.9v22)

V- — 1 1 —+ 09V
3,3 (3,3) Value function V;,

@ Solving, we get:

w33 = 10
v = 3v = = 0.5657
22 = 20 32=...=0.
9 1600
= 7. — = _—— 75 =17.5424
V32 75+1600V3’2 159175 7.5

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 7/22

Roll-out policies

@ Given a baseline policy mg, with induced value function V;,, we can
always get another policy 71 that is at least as good (i.e., such that
Vi (5) > Viy(s), forall s € S.

@ ldea: for each state s, choose the action that maximizes the expected
total reward that will be collected if the baseline policy is used from
the next step onwards, i.e.,

m1(s) = arg maL>\<E [R(s,a,s") +vV(s)]
ac

= argmax /ZES T(s,a,s") [R(s,m(s),s") + v V()] , VseS
S

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 8 /22

Roll-out policy example

@ Baseline poIicy:
° 71'0(2 2)
° 7T0(3 2)
o 7T0(3 3)

e m1(2,2) = arg max

e m1(3,2) = arg max

Frazzoli (MIT)

|

. e

0.566
3/4-0.9-7.542
1/12-0.9 - 7.542
7.542
1/12-0.9-10
1/12-0.9 - 0.566

Baseline policy g

December 1, 2010

9/ 22

Policy lteration

@ ldea: given a baseline policy, an improved policy can be computed
using roll-out. The improved policy can be further improved by
applying roll-out again. Repeat.

@ Since there are a finite number of states and a finite number of
actions, this will eventually terminate with a policy that cannot be
further improved

@ This is in fact an optimal policy.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 10 / 22

Policy lteration

Policy iteration algorithm:

@ Pick an arbitrary policy .
o iterate:
@ Policy evaluation: solve the linear system

= Z T(s,m(s),s") [R(s,7(s),s") +YV(s')],Vs €S

s’eS

© Policy improvement: for each s € S:

7(s) eargmaxz s,a,5")[R(s,a,s") +vV(s)]

until 7 is unchanged.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 11 /22

Policy Iteration example 1/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 12 / 22

Policy Iteration example 2/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 13 /22

Policy Iteration example 3/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 14 / 22

Policy Iteration example 4/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 15 / 22

Policy Iteration example 5/5

After 4 iterations:

This is the optimal value function, induced by the optimal policy
(notice exact convergence in a finite number of steps).

o = = o
Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 16 / 22

Value vs. Policy Iteration

@ Policy iteration is desirable because of its finite-time convergence to
the optimal policy.

@ However, policy iteration requires solving possibly large linear
systems: each iteration takes O(card(S)3) time.

@ Value iteration requires only O (card(S) - card(.A)) time at each
iteration — usually the cardinality of the action space is much smaller
than that of the state space.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 17 / 22

Modified Policy iteration

@ Some times, solving the linear system for policy evaluation may be
too time consuming (e.g., for large state spaces).

@ It turns out that we can get a good approximation of the value
function V by doing the following simplified value iteration (simplified
since 7 is given):

Visi(s) = Y T(s,m(s),s) [R(s.7(s), ") +7Vi(s)]

s'eS

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 18 / 22

Asynchronous Policy Iteration

In fact, one can even do the following:

@ Pick a subset of states S cS

Apply either Value lteration, or (modified) Policy Iteration to those
states.

@ Repeat

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 19 / 22

Model-free MDPs

@ In many cases of interest, the exact details of the MDP (i.e.,
transition probabilities) are not known.

@ Reinforcement learning: learn good control policies via the analysis of
state/action/rewards sequences collected in simulation and/or
experiments.

@ Several options, e.g., :

o Certainty equivalence: estimate transition probabilities through data,
then apply standard methods.
Expensive, not on-line

e Temporal Difference learning: Only maintain an estimate of the value
function V. For each transition, e.g., s = s’, update the estimate:

V(s) « (1 —a:)V(s) + a: [R(s,a,5") + vV (s')],

where a; € (0,1) is a learning parameter. Note: «a; should decay (e.g.,
as a; = 1/t) as the number of updated goes to infinity.
Learning depends on the particular policies applied.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 20 / 22

Q-learning

@ Estimate total collected reward for state-action pairs.

Q-factor Q(s, a): estimate of the total collected reward collected (i)
starting at state s, (ii) applying action a at the first step, (iii) acting
optimally for all future times.

@ Q-factor update law, based on an observed transition s NS
Q(s,a) « (1 — ay)Q(s,a) + ar |R(s,a,s') + max Q(s',d) |,
al

Note: a; must be decaying over time for convergence, e.g., a; = 1/t.

Q-learning does not depend on a particular policy.

Issue: Exploitation (choose “best” a) vs. exploration (choose a poorly
characterized a).

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 21 /22

Approximation techniques

@ Very often (e.g., when the state space S is a discretization of a
continuous state space, e.g., R"), the dimensions of the state space
make value iteration/policy iteration/Q-learning/etc. unfeasible in
practice.

@ Choose an approximation architecture ¢, with m parameters r, e.g.,

e ¢: basis functions, r: coefficients
e ¢: "feature vector”, r: coefficients
e ¢: neural network, r parameters (weights/biases, etc.)

o Write, e.g.,
Q(s,a) = Q(s,a,r) Zrk¢k s,a)

e Updates to Q(s, a) correspond to updates to the (low-dimensional)
parameter vector r: find best r such that

Q(.7)

Q(.’.’r).

%

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 22 /22

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Assignments

