
16.410/413
Principles of Autonomy and Decision Making

Lecture 23: Markov Decision Processes
Policy Iteration

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology

December 1, 2010

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 1 / 22

Assignments

Readings

Lecture notes

[AIMA] Ch. 17.1-3.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 2 / 22

Searching over policies

Value iteration converges exponentially fast, but still asymptotically.

Recall how the best policy is recovered from the current estimate of
the value function:

πi (s) = arg max
a

E
[
R(s, a, s ′) + γVi (s

′)
]
, ∀s ∈ S.

In order to figure out the optimal policy, it should not be necessary to
compute the optimal value function exactly...

Since there are only finitely many policies in a finite-state,
finite-action MDP, it is reasonable to expect that a search over
policies should terminate in a finite number of steps.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 3 / 22

Policy evaluation

Let us assume we have a policy, e.g., π : S → A, that assigns an
action to each state. I.e., action π(s) will be chosen each time the
system is at state s.

Once the actions taken at each state are fixed,

the MDP is turned into a Markov chain (with rewards).

one can compute the expected utility collected over time using that
policy

In other words, one can evaluate how well a certain policy does by
computing the value function induced by that policy.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 4 / 22

Policy evaluation example — näıve method

Same planning problem as the
previous lecture, in a smaller
world (4x4).

Simple policy π: always go
right, unless at the goal (or
inside obstacles).

Expected utility (value function)
starting from top left corner
(cell 2, 2):

Vπ(2, 2) ≈ 0.06 · 8.1 = 0.5

· · · ·
· → · ·
· → · ·
· · · ·

Path Prob. Utility

→ 0.75 0

↑ 0.08 0

← 0.08 0

↓→ 0.06 8.1

.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 5 / 22

Policy evaluation

Recalling the MDP properties, one can write the value function at a
state as the expected reward collected at the first step + expected
discounted value at the next state under the given policy

Vπ(s) = E
[
R(s, π(s), s ′) + γV (s ′)

]
=
∑
s′∈S

T (s, π(s), s ′)
[
R(s, π(s), s ′) + γV (s ′)

]
, ∀s ∈ S

Note that this is a set of card(S) linear equations in the card(S)
unknowns {Vπ(s), s ∈ S}.

This can be solved efficiently, in O(card(S)3)

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 6 / 22

Policy evaluation example

Let us consider the variables v2,2, v3,2, v3,3 (the
others are trivially 0).

We have:

v2,2 =
3

4
(0 + 0.9 · 0) +

1

12
(0 + 0.9v3,2)

v3,2 =
3

4
(1 + 0.9v3,3) +

1

12
(0 + 0.9v2,2)

v3,3 = 1(1 + 0.9v3,3)

Solving, we get:

v3,3 = 10

v2,2 =
3

40
v3,2 = . . . = 0.5657

v3,2 = 7.5 +
9

1600
v3,2 =

1600

1591
7.5 = 7.5424

Policy π

· · · ·
· → · ·
· → · ·
· · · ·

Value function Vπ

0 0 0 0

0 0.566 0 0

0 7.542 10 0

0 0 0 0

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 7 / 22

Roll-out policies

Given a baseline policy π0, with induced value function Vπ0 , we can
always get another policy π1 that is at least as good (i.e., such that
Vπ1(s) ≥ Vπ0(s), for all s ∈ S.

Idea: for each state s, choose the action that maximizes the expected
total reward that will be collected if the baseline policy is used from
the next step onwards, i.e.,

π1(s) = arg max
a∈A

E
[
R(s, a, s ′) + γV (s ′)

]
= arg max

a∈A

∑
s′∈S

T (s, a, s ′)
[
R(s, π(s), s ′) + γVπ0(s ′)

]
, ∀s ∈ S

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 8 / 22

Roll-out policy example

Baseline policy:

π0(2, 2) =→,
π0(3, 2) =→,
π0(3, 3) = ·.

π1(2, 2) = arg max


→: 0.566
↓: 3/4 · 0.9 · 7.542
↑: 1/12 · 0.9 · 7.542

π1(3, 2) = arg max


→: 7.542
↓: 1/12 · 0.9 · 10
↑: 1/12 · 0.9 · 0.566

Baseline policy π0

· · · ·
· → · ·
· → · ·
· · · ·

Improved policy π1

· · · ·
· ↓ · ·
· → · ·
· · · ·

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 9 / 22

Policy Iteration

Idea: given a baseline policy, an improved policy can be computed
using roll-out. The improved policy can be further improved by
applying roll-out again. Repeat.

Since there are a finite number of states and a finite number of
actions, this will eventually terminate with a policy that cannot be
further improved

This is in fact an optimal policy.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 10 / 22

Policy Iteration

Policy iteration algorithm:

Pick an arbitrary policy π.

iterate:
1 Policy evaluation: solve the linear system

V (s) =
∑
s′∈S

T (s, π(s), s ′) [R(s, π(s), s ′) + γV (s ′)] ,∀s ∈ S

2 Policy improvement: for each s ∈ S:

π(s)← arg max
a

∑
s′∈S

T (s, a, s ′) [R(s, a, s ′) + γV (s ′)]

until π is unchanged.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 11 / 22

Policy Iteration example 1/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 12 / 22

Policy Iteration example 2/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 13 / 22

Policy Iteration example 3/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 14 / 22

Policy Iteration example 4/5

Back to the 10x10 grid:

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 15 / 22

Policy Iteration example 5/5

After 4 iterations:

0 0 0 0 0 0 0 0 0 0

0 0.45 0.56 0.61 0.84 1.17 0.87 1.11 1.5411 0

0 0.61 0.71 0 0 1.54 0 0 2.16 0

0 0.78 0.93 0 0 2.16 2.59 3.02 3.03 0

0 0.98 1.21 0 2.03 2.74 3.26 3.84 3.91 0

0 1.23 1.58 1.90 2.44 2.95 3.54 4.56 5.03 0

0 1.18 1.50 1.78 2.09 2.28 0 5.38 6.51 0

0 1.02 1.29 1.52 1.76 1.77 0 6.74 8.49 0

0 0.76 1.02 1.20 1.37 1.30 0 8.01 10 0

0 0 0 0 0 0 0 0 0 0

This is the optimal value function, induced by the optimal policy
(notice exact convergence in a finite number of steps).

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 16 / 22

Value vs. Policy Iteration

Policy iteration is desirable because of its finite-time convergence to
the optimal policy.

However, policy iteration requires solving possibly large linear
systems: each iteration takes O(card(S)3) time.

Value iteration requires only O (card(S) · card(A)) time at each
iteration — usually the cardinality of the action space is much smaller
than that of the state space.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 17 / 22

Modified Policy iteration

Some times, solving the linear system for policy evaluation may be
too time consuming (e.g., for large state spaces).

It turns out that we can get a good approximation of the value
function V by doing the following simplified value iteration (simplified
since π is given):

Vi+1(s) =
∑
s′∈S

T (s, π(s), s ′)
[
R(s, π(s), s ′) + γVi (s)

]

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 18 / 22

Asynchronous Policy Iteration

In fact, one can even do the following:

Pick a subset of states S̃ ⊆ S

Apply either Value Iteration, or (modified) Policy Iteration to those
states.

Repeat

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 19 / 22

Model-free MDPs

In many cases of interest, the exact details of the MDP (i.e.,
transition probabilities) are not known.

Reinforcement learning: learn good control policies via the analysis of
state/action/rewards sequences collected in simulation and/or
experiments.

Several options, e.g., :

Certainty equivalence: estimate transition probabilities through data,
then apply standard methods.
Expensive, not on-line
Temporal Difference learning: Only maintain an estimate of the value
function V . For each transition, e.g., s

a−→ s ′, update the estimate:

V (s)← (1− αt)V (s) + αt [R(s, a, s ′) + γV (s ′)] ,

where αt ∈ (0, 1) is a learning parameter. Note: αt should decay (e.g.,
as αt = 1/t) as the number of updated goes to infinity.
Learning depends on the particular policies applied.

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 20 / 22

Q-learning

Estimate total collected reward for state-action pairs.

Q-factor Q(s, a): estimate of the total collected reward collected (i)
starting at state s, (ii) applying action a at the first step, (iii) acting
optimally for all future times.

Q-factor update law, based on an observed transition s
a−→ s ′:

Q(s, a)← (1− αt)Q(s, a) + αt

[
R(s, a, s ′) + max

a′
Q(s ′, a′)

]
,

Note: αt must be decaying over time for convergence, e.g., αt = 1/t.

Q-learning does not depend on a particular policy.

Issue: Exploitation (choose “best” a) vs. exploration (choose a poorly
characterized a).

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 21 / 22

Approximation techniques

Very often (e.g., when the state space S is a discretization of a
continuous state space, e.g., Rn), the dimensions of the state space
make value iteration/policy iteration/Q-learning/etc. unfeasible in
practice.

Choose an approximation architecture φ, with m parameters r , e.g.,
φ: basis functions, r : coefficients
φ: “feature vector”, r : coefficients
φ: neural network, r parameters (weights/biases, etc.)

Write, e.g.,

Q(s, a) = Q̃(s, a, r) =
m∑

k=1

rkφk(s, a)

Updates to Q(s, a) correspond to updates to the (low-dimensional)
parameter vector r : find best r such that

Q(·, ·) ≈ Q̃(·, ·, r).

Frazzoli (MIT) Lecture 23: MDPs December 1, 2010 22 / 22

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Assignments

