16.410/413
Principles of Autonomy and Decision Making

Lecture 22: Markov Decision Processes |

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology

November 29, 2010

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010

1/16

Assignments

Readings

@ Lecture notes
e [AIMA] Ch. 17.1-3.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 2 /16

Outline

Frazzoli (MIT)

November 29, 2010

3/16

From deterministic to stochastic planning problems

A basic planning model for deterministic systems (e.g., graph/tree search
algorithms, etc.) is :

Planning Model (Transition system + goal)

A (discrete, deterministic) feasible planning model is defined by

@ A countable set of states S.

A countable set of actions A.

A transition relation -C S x A x S.
An initial state s; € S.

A set of goal states sg C S.

We considered the case in which the transition relation is purely
deterministic: if (s, a,s’) are in relation, i.e., (s,a,s’) €=, or, more
concisely, s = s’, then taking action a from state s will always take the
state to s’.

Can we extend this model to include (probabilistic) uncertainty in the
transitions?

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 4/16

Markov Decision Process

Instead of a (deterministic) transition relation, let us define transition
probabilities; also, let us introduce a reward (or cost) structure:

Markov Decision Process (Stoch. transition system + reward)
A Markov Decision Process (MDP) is defined by

A countable set of states S.

A countable set of actions A.

A transition probability function T: S x A xS — R,
An initial state sy € S.

A reward function R: S x A x S — Ry.

In other words: if action a is applied from state s, a transition to
state s’ will occur with probability T(s, a,s’).

Furthermore, every time a transition is made from s to s’ using action
a, a reward R(s, a,s’) is collected.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 5/16

Some remarks

@ In a Markov Decision Process, both transition probabilities and
rewards only depend on the present state, not on the history of the
state. In other words, the future states and rewards are independent
of the past, given the present.

@ A Markov Decision Process has many common features with Markov
Chains and Transition Systems.

@ In a MDP:

e Transitions and rewards are stationary.

o The state is known exactly. (Only transitions are stochastic.)

@ MDPs in which the state is not known exactly (HMM + Transition
Systems) are called Partially Observable Markov Decision Processes
(POMDP’s): these are very hard problems.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 6 /16

Total reward in a MDP

@ Let us assume that it is desired to maximize the total reward collected
over infinite time.

@ In other words, let us assume that the sequence of states is

S=(s1,%,.-.,5t,-..), and the sequence of actions is
A= (a1,a2,...,at,...); then the total collected reward (also called
utility) is

o
V — nytR(Sh atu St-‘rl))
t=0

where v € (0, 1] is a discount factor.

e Philosophically: it models the fact that an immediate reward is better
than an uncertain reward in the future.

e Mathematically: it ensures that the sum is always finite, if the rewards
are bounded (e.g., finitely many states/actions).

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 7/16

Decision making in MDPs

@ Notice that the actual sequence of states, and hence the actual total
reward, is unknown a priori.

@ We could choose a plan, i.e., a sequence of actions: A = (a1, az,...).

@ In this case, transition probabilities are fixed and one can compute the
probability of being at any given state at each time step—in a similar
way as the forward algorithm in HMMs—and hence compute the
expected reward:

E[R(St, at, 5t+1)’5t7 at] = Z T(St, dat, S)R(St7 at, S)
seS

@ Such approach is essentially open loop, i.e., it does not take
advantage of the fact that at each time step the actual state reached
is known, and a new feedback strategy can be computed based on
this knowledge.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 8 /16

Introduction to value iteration

@ Let us assume we have a function V; : § — R that associates to
each state s a lower bound on the optimal (discounted) total reward
V*(s) that can be collected starting from that state. Note the
connection with admissible heuristics in informed search algorithms.

@ For example, we can start with Vy(s) =0, for all s € S.

@ As a feedback strategy, we can do the following: at each state,
choose the action that maximizes the expected reward of the present
action + estimate total reward from the next step onwards.

@ Using this strategy, we can get an update Vi1 on the function V;.

o lterate until convergence...

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 9 /16

Value iteration algorithm

A bit more formally:
@ Set Wo(s) <0, forallse S

@ iterate, for all s € S:

Vig1(s) < maxE [R(s,a,s") + v7Vi(s')]

=max Y T(s.2,5) [R(s.a,5) +7Vi(s)]

s'eS

until maxs |Vip1(s) — Vi(s)| < e.

Frazzoli (MIT) Lecture 22: MDPs

November 29, 2010

10 / 16

Value iteration example

Let us consider a simple MDP:
@ The state space is a 10-by-10 grid.

@ The border cells and some of the interior cells are “obstacles” (marked in
gray).

@ The initial state is the top-left feasible cell.

@ A reward of 1 is collected when reaching the bottom right feasible cell. The
discount factor is 0.9.

@ At each non-obstacle cell, the agent can attempt to move to any of the
neighboring cells. The move will be successful with probability 3/4.
Otherwise the agent will move to a different neighboring cell, with equal
probability.

@ The agent always has the option to stay put, which will succeed with
certainty.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 11 /16

Value iteration example

Initial condition:

Frazzoli (MIT)

November 29, 2010

12 /16

Value iteration example

After 1 iteration:

Frazzoli (MIT)

‘i:\ \ G
November 29, 2010

Value iteration example

After 2 iterations:

Frazzoli (MIT)

‘i:\ \ G
November 29, 2010

Value iteration example

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 13 /16

valueit.mov
Media File (video/quicktime)

Value iteration example

After 50 iterations:

Frazzoli (MIT)

November 29, 2010 14 / 16

Bellman's equation

@ Under some technical conditions (e.g., finite state and action spaces,
and v < 1), value iteration converges to the optimal value function
V*,

@ The optimal value function V* satisfies the following equation, called
the Bellman's equation, a nice (perhaps the prime) example of the
principle of optimality

V*(s) = maxE [R(s,a,s") +vV*(s')]

— / / *(
_m‘?x%T(s,a,s)[R(s,a,s)+7V ("], VseS.
s

@ In other words, the optimal value function can be seen as a fixed
point for value iteration.

@ The Bellman's equation can be proven by contradiction.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 15 / 16

Value iteration summary

@ Value iteration converges monotonically and in polynomial time to
the optimal value function.

@ The optimal policy can be easily recovered from the optimal value
function:

7*(s) = argmaxE [R(s, a,s") + yV*(s)] Vs € 8.
a

o Knowledge of the value function turns the optimal planning problem
into a feedback problem,

e Robust to uncertainty

e Minimal on-line computations

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 16 / 16

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Assignments
	Markov Decision Processes

