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Assignments

Readings

@ Lecture notes

e [AIMA] Ch. 15.1-3, 20.3.
@ Paper on Stellar: L. Rabiner, “A tutorial on Hidden Markov Models...”
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Outline

@ Decoding and Viterbi's algorithm

Learning and the Baum-Welch algorithm
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Decoding

o Filtering and smoothing produce distributions of states at each time
step.

@ Maximum likelihood estimation chooses the state with the highest
probability at the “best” estimate at each time step.

@ However, these are pointwise best estimate: the sequence of
maximum likelihood estimates is not necessarily a good (or feasible)
trajectory for the HMM!

@ How do we find the most likely state history, or state trajectory?
(As opposed to the sequence of point-wise most likely states?)
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Example: filtering/smoothing vs. decoding 1/4

@ Three states:
X = {X17X27X3}-

@ Three possible observations:

Z =1{2,3}. os
@ Initial distribution: 0.5
m=(1,0,0).
@ Transition probabilities: o0 C&V@D '
0 05 05
T=1{0 09 01
0 0 1

) o Observation sequence:
@ Observation probabilities:

Z=(2 2,2,2,3,2,3).
05 05 (73737 P 737 73)

M= 109 0.1
0.1 09
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Example: filtering/smoothing vs. decoding 2/4

o Using filtering:

0 | 0.1000 | 0.9000
0| 0.0109 | 0.9891
0| 0.0817 | 0.9183
0| 0.4165 | 0.5835
0| 0.8437 | 0.1563
0
0
0

0.2595 | 0.7405
0.7328 | 0.2672
0.1771 | 0.8229

@ The sequence of point-wise most likely states is:

OO N[OOI B W NP ~+

(1,3,3,3,3,2,3,2,3).

@ The above sequence is not feasible for the HMM model!
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Example: filtering vs. smoothing vs. decoding 3/4

@ Using smoothing:

|

0| 0.6297 | 0.3703
0 | 0.6255 | 0.3745
0| 0.6251 | 0.3749
0| 0.6218 | 0.3782
0 | 0.5948 | 0.4052
0
0
0

0.3761 | 0.6239
0.3543 | 0.6457
0.1771 | 0.8229

@ The sequence of point-wise most likely states is:

OO N[O O B W N ~+

(1,2,2,2,2,2,3,3,3).
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Viterbi's algorithm

@ As before, let us use the Markov property of the HMM.

@ Define
Ok(s) = max Pr[Xpx = (Xi.(k-1), S)s Zrk|A]

X1:(k-1)

(i.e., dk(s) is the joint probability of the most likely path that ends at
state s at time k, generating observations Z;.x.)

o Clearly,
Ok+1(s) = mjx(fsk(Q)Tq,s) Ms 21

@ This can be iterated to find the probability of the most likely path
that ends at each possible state s at the final time. Among these, the
highest probability path is the desired solution.

@ We need to keep track of the path...
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Viterbi's algorithm 2/3

@ Initialization, for all s € X:
) 51(5) = 7'('5/\45721
o Pre;(s) = null.
@ Repeat, for k=1,...,t—1, and for all s € X:

® di1(s) = maxq (0k(q) Tq,s) Ms 2,
o Preyy1(s) = argmaxq (0k(q) Tq.s)

Select most likely terminal state: s} = arg maxs d¢(s)

Backtrack to find most likely path. For k=t—-1,...,1

o q; = Prexi1(qiy)

The joint probability of the most likely path + observations is found
as p* = 0¢(s{).
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Whack-the-mole example

o Viterbi's algorithm

e 6, =(0.6,0,0) Pre; = (null,null,null)

e 0, =(0.012,0.048,0.18) Pre;, = (1,1,1).

e 93 = (0.0038,0.0216, 0.0432) Pres = (2,3,3).
@ Joint probability of the most likely path + observations: 0.0432

@ End state of the most likely path: 3

o Most likely path: 3 + 3 < 1.
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Example: filtering vs. smoothing vs. decoding

@ Using Viterbi's algorithm:

Lt] x| % | X3
1]05/0 0 0
2 [ 0/1 0.025/1 0.225/1
3] 0/1 0.00225/2 0.2025/3
4 0/1] 0.0018225,2 0.02025/3
5| 0/1| 0.0014762/2 | 0.002025/3
6 | 0/1| 0.0011957/2 | 0.0002025/3
7 [ 0/1 | 0.00010762/2 | 0.00018225/3
8 0/1| 8717e-05/2 | 1.8225e-05/3
9| 0/1| 7.8453¢-06/2 | 1.6403e-05/3

@ The most likely sequence is:

(1,3,3,3,3,3,3,3,3).

4/4

o Note: Based on the first 8 observations, the most likely sequence

would have been
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Viterbi's algorithm 3/3

@ Viterbi's algorithm is similar to the forward algorithm, with the
difference that the summation over the states at time step k becomes
a maximization.

@ The time complexity is, as for the forward algorithm, linear in t (and
quadratic in card(X)).

@ The space complexity is also linear in t (unlike the forward
algorithm), since we need to keep track of the “pointers” Prey.

e Viterbi's algorithm is used in most communication devices (e.g., cell
phones, wireless network cards, etc.) to decode messages in noisy
channels; it also has widespread applications in speech recognition.
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Outline

Decoding and Viterbi's algorithm

© Learning and the Baum-Welch algorithm
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Problem 3: Learning

The learning problem

Given a HMM )\, and an observation history Z = (z1, 2, ..., z¢), find a
new HMM )\ that explains the observations at least as well, or possibly
better, i.e., such that Pr[Z|\] > Pr[Z]|)].

o Ideally, we would like to find the model that maximizes Pr [Z]|A];
however, this is in general an intractable problem.

o We will be satisfied with an algorithm that converges to local maxima
of such probability.

@ Notice that in order for learning to be effective, we need lots of data,
i.e., many, long observation histories!
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Example: Finding Keyser Soze 1

Let us consider the following problem.

@ The elusive leader of a dangerous criminal organization (e.g., Keyser Soze,
from the movie “The Usual Suspects”) is known to travel between two cities
(say, Los Angeles and New York City)

@ The FBI has no clue about his whereabouts at the initial time (e.g., uniform
probability being at any one of the cities).

@ The FBI has no clue about the probability that he would stay or move to the
other city at each time period:
[ from\to | LA | NY |
[ A [o05]05 |
[ NY o5 ] 05 |

@ At each time period the FBI could get sighting reports (or evidence of his
presence in a city), including a non-sighting null report. An estimate of the
probability of getting such reports is

=

[ where \'report | LA [ NY | nul
| A [ 04 |
| NY [ o1 ]
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Example: Finding Keyser Soze 2

@ Let us assume that the FBI has been tracking sighting reports for,
say, 20 periods, with observation sequence Z

Z=(—,LA LA — NY,— NY,NY,NY, -,
NY,NY,NY,NY,NY,—, — LA, LA NY).

@ We can compute, using the algorithms already discussed:
o the current probability distribution (after the 20 observations):

Y20 = (0.1667, 0.8333)

o the probability distribution at the next period (so that we can catch
him):
Y21 = T/"}/go = (05,05)

o the probability of getting that particular observation sequence given the
model:

Pr[Z|]\] =1.9-1071°
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Example: Finding Keyser Soze 3

@ Using smoothing:

[ LA] NY]
0.5556 | 0.4444

0.8000 | 0.2000
0.8000 | 0.2000

WIN| | ~+

18 | 0.8000 | 0.2000
19 | 0.8000 | 0.2000
20 | 0.1667 | 0.8333

@ The sequence of point-wise most likely states is:

(LA, LA, LA, LA, NY LA, NY  NY ,NY, LA,
NY,NY,NY,NY, NY,LA LA, LA)
@ The new question is: given all the data, can we improve on our model,
in such a way that the observations are more consistent with it?
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Expectation of (state) counts

o Let us define
vk(s) = Pr[Xx = s|Z, A],

i.e., Yk(s) is the probability that the system is at state s at the k-th
time step, given the observation sequence Z and the model .

@ We already know how to compute this, e.g., using smoothing:

ak(s)B(s) _ ou(s)Bi(s)
Pr(Z|A] Dosex t(s)

Yk(s) =

@ New concept: how many times is the state trajectory expected to
transition from state s?

t—1
E[# of transitions from s] = nyk(s)
k=1
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Expectation of (transition) counts

@ In much the same vein, let us define
fk(qu) =Pr [Xk — ank-i—l = 5’27 )‘]

(i.e., £k(q, s) is the probability of being at state g at time k, and at
state s at time k + 1, given the observations and the current HMM
model)

@ We have that

gk(qv 5) = nkak(q) Tq,sMs,zkHBk—&-l(s)»

where 7 is a normalization factor, such that }__  &k(q,s) = 1.

@ New concept: how many times it the state trajectory expected to
transition from state q to state s?

t—1
E[# of transitions from ¢q to s] = Zﬁk(q, s)
k=1

E. Frazzoli (MIT) Lecture 21: HMMs November 24, 2010 19 /23



Baum-Welch algorithm 1

@ Based on the probability estimates and expectations computed so far,
using the original HMM model A = (T, M, ), we can construct a
new model X = (T’, M, ) (notice that the two models share the
states and observations):

@ The new initial condition distribution is the one obtained by
smoothing:

@ The entries of the new transition matrix can be obtained as follows:

_ E[# of transitions from state g to state s] foll ¢k(q,s)
B E[# of transitions from state q] S vi(q)

/
Tgs
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Baum-Welch algorithm 2

@ The entries of the new observation matrix can be obtained as follows:

M — E[# of times in state s, when the observation was m|
sm E[# of times in state s]

_ ZZ:l Yk(s) - H(zx = m)
> k1 7k(S)

@ It can be shown [Baum et al., 1970] that the new model X is such
that

o Pr[Z|N] > Pr[Z|)], as desired.
o Pr[Z|N] =Pr[Z|)\] only if X is a critical point of the likelihood
function f(A\) = Pr[Z|A]
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Example: Finding Keyser Soze 4

Let us apply the method to the example. We get

e Initial condition: m = (1,0).

ooooooooooooo

@ Transition matrix:

0.6909 0.3091
0.0934 0.9066

@ Observation matrix:

0.5807 0.0010 0.4183 R e
0.0000 0.7621 0.2379

o Note that it is possible that Pr[Z|\] > Pr[Z|Aqrue]! This is due to
overfitting over one particular data set.
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Recursive Bayesian estimation: HMMs and Kalman filters

X1 X2 \\f Xt

OMONOIO

@ The idea of the filtering/smoothing techniques for HMM is in fact
broader. In general it applies to any system where the state at a time
step only depends on the state at the previous time step (Markov
property), and the observation at a time step only depends on the
state at that time step.

e HMMs: discrete state (Markov chain), arbitrary transition and
observation matrices.

o Kalman filter: continuous state (Markov process), (Linear-)Gaussian
transitions, Gaussian observations.
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