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Assignments

Readings

Lecture notes

[AIMA] Ch. 15.1-3, 20.3.

Paper on Stellar: L. Rabiner, “A tutorial on Hidden Markov Models...”
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Outline

1 Decoding and Viterbi’s algorithm

2 Learning and the Baum-Welch algorithm
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Decoding

Filtering and smoothing produce distributions of states at each time
step.

Maximum likelihood estimation chooses the state with the highest
probability at the “best” estimate at each time step.

However, these are pointwise best estimate: the sequence of
maximum likelihood estimates is not necessarily a good (or feasible)
trajectory for the HMM!

How do we find the most likely state history, or state trajectory?
(As opposed to the sequence of point-wise most likely states?)
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Example: filtering/smoothing vs. decoding 1/4

Three states:
X = {x1, x2, x3}.
Three possible observations:
Z = {2, 3}.
Initial distribution:
π = (1, 0, 0).

Transition probabilities:

T =

0 0.5 0.5
0 0.9 0.1
0 0 1


Observation probabilities:

M =

0.5 0.5
0.9 0.1
0.1 0.9



x1

x2 x3

0.5

0.5

0.9

0.1

1

Observation sequence:

Z = (2, 3, 3, 2, 2, 2, 3, 2, 3).
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Example: filtering/smoothing vs. decoding 2/4

Using filtering:

t x1 x2 x3

1 1.0000 0 0
2 0 0.1000 0.9000
3 0 0.0109 0.9891
4 0 0.0817 0.9183
5 0 0.4165 0.5835
6 0 0.8437 0.1563
7 0 0.2595 0.7405
8 0 0.7328 0.2672
9 0 0.1771 0.8229

The sequence of point-wise most likely states is:

(1, 3, 3, 3, 3, 2, 3, 2, 3).

The above sequence is not feasible for the HMM model!
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Example: filtering vs. smoothing vs. decoding 3/4

Using smoothing:

t x1 x2 x3

1 1.0000 0 0
2 0 0.6297 0.3703
3 0 0.6255 0.3745
4 0 0.6251 0.3749
5 0 0.6218 0.3782
6 0 0.5948 0.4052
7 0 0.3761 0.6239
8 0 0.3543 0.6457
9 0 0.1771 0.8229

The sequence of point-wise most likely states is:

(1, 2, 2, 2, 2, 2, 3, 3, 3).
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Viterbi’s algorithm

As before, let us use the Markov property of the HMM.

Define
δk(s) = max

X1:(k−1)

Pr
[
X1:k = (X1:(k−1), s),Z1:k |λ

]
(i.e., δk(s) is the joint probability of the most likely path that ends at
state s at time k , generating observations Z1:k .)

Clearly,
δk+1(s) = max

q
(δk(q)Tq,s) Ms,zk+1

This can be iterated to find the probability of the most likely path
that ends at each possible state s at the final time. Among these, the
highest probability path is the desired solution.

We need to keep track of the path...
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Viterbi’s algorithm 2/3

Initialization, for all s ∈ X :

δ1(s) = πsMs,z1

Pre1(s) = null.

Repeat, for k = 1, . . . , t − 1, and for all s ∈ X :

δk+1(s) = maxq (δk(q)Tq,s) Ms,zk+1

Prek+1(s) = arg maxq (δk(q)Tq,s)

Select most likely terminal state: s∗t = arg maxs δt(s)

Backtrack to find most likely path. For k = t − 1, . . . , 1

q∗k = Prek+1(q∗k+1)

The joint probability of the most likely path + observations is found
as p∗ = δt(s∗t ).
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Whack-the-mole example

Viterbi’s algorithm

δ1 = (0.6, 0, 0) Pre1 = (null, null, null)

δ2 = (0.012, 0.048, 0.18) Pre2 = (1, 1, 1).

δ3 = (0.0038, 0.0216, 0.0432) Pre3 = (2, 3, 3).

Joint probability of the most likely path + observations: 0.0432

End state of the most likely path: 3

Most likely path: 3← 3← 1.
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Example: filtering vs. smoothing vs. decoding 4/4

Using Viterbi’s algorithm:

t x1 x2 x3

1 0.5/0 0 0
2 0/1 0.025/1 0.225/1
3 0/1 0.00225/2 0.2025/3
4 0/1 0.0018225/2 0.02025/3
5 0/1 0.0014762/2 0.002025/3
6 0/1 0.0011957/2 0.0002025/3
7 0/1 0.00010762/2 0.00018225/3
8 0/1 8.717e-05/2 1.8225e-05/3
9 0/1 7.8453e-06/2 1.6403e-05/3

The most likely sequence is:

(1, 3, 3, 3, 3, 3, 3, 3, 3).

Note: Based on the first 8 observations, the most likely sequence
would have been

(1, 2, 2, 2, 2, 2, 2, 2)!
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Viterbi’s algorithm 3/3

Viterbi’s algorithm is similar to the forward algorithm, with the
difference that the summation over the states at time step k becomes
a maximization.

The time complexity is, as for the forward algorithm, linear in t (and
quadratic in card(X )).

The space complexity is also linear in t (unlike the forward
algorithm), since we need to keep track of the “pointers” Prek .

Viterbi’s algorithm is used in most communication devices (e.g., cell
phones, wireless network cards, etc.) to decode messages in noisy
channels; it also has widespread applications in speech recognition.
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Outline

1 Decoding and Viterbi’s algorithm

2 Learning and the Baum-Welch algorithm
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Problem 3: Learning

The learning problem

Given a HMM λ, and an observation history Z = (z1, z2, . . . , zt), find a
new HMM λ′ that explains the observations at least as well, or possibly
better, i.e., such that Pr [Z |λ′] ≥ Pr [Z |λ].

Ideally, we would like to find the model that maximizes Pr [Z |λ];
however, this is in general an intractable problem.

We will be satisfied with an algorithm that converges to local maxima
of such probability.

Notice that in order for learning to be effective, we need lots of data,
i.e., many, long observation histories!
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Example: Finding Keyser Söze 1

Let us consider the following problem.

The elusive leader of a dangerous criminal organization (e.g., Keyser Söze,
from the movie “The Usual Suspects”) is known to travel between two cities
(say, Los Angeles and New York City)

The FBI has no clue about his whereabouts at the initial time (e.g., uniform
probability being at any one of the cities).

The FBI has no clue about the probability that he would stay or move to the
other city at each time period:

from\to LA NY

LA 0.5 0.5
NY 0.5 0.5

At each time period the FBI could get sighting reports (or evidence of his
presence in a city), including a non-sighting null report. An estimate of the
probability of getting such reports is

where \ report LA NY null

LA 0.4 0.1 0.5
NY 0.1 0.5 0.4
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Example: Finding Keyser Söze 2

Let us assume that the FBI has been tracking sighting reports for,
say, 20 periods, with observation sequence Z

Z = (−, LA, LA,−,NY ,−,NY ,NY ,NY ,−,
NY ,NY ,NY ,NY ,NY ,−,−, LA, LA,NY ).

We can compute, using the algorithms already discussed:

the current probability distribution (after the 20 observations):

γ20 = (0.1667, 0.8333)

the probability distribution at the next period (so that we can catch
him):

γ21 = T ′γ20 = (0.5, 0.5)

the probability of getting that particular observation sequence given the
model:

Pr[Z |λ] = 1.9 · 10−10
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Example: Finding Keyser Söze 3

Using smoothing:

t LA NY

1 0.5556 0.4444
2 0.8000 0.2000
3 0.8000 0.2000

. . . . . . . . .
18 0.8000 0.2000
19 0.8000 0.2000
20 0.1667 0.8333

The sequence of point-wise most likely states is:

(LA, LA, LA, LA,NY , LA,NY ,NY ,NY , LA,

NY ,NY ,NY ,NY ,NY , LA, LA, LA)

The new question is: given all the data, can we improve on our model,
in such a way that the observations are more consistent with it?
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Expectation of (state) counts

Let us define
γk(s) = Pr[Xk = s|Z , λ],

i.e., γk(s) is the probability that the system is at state s at the k-th
time step, given the observation sequence Z and the model λ.

We already know how to compute this, e.g., using smoothing:

γk(s) =
αk(s)βk(s)

Pr[Z |λ]
=

αk(s)βk(s)∑
s∈X αt(s)

.

New concept: how many times is the state trajectory expected to
transition from state s?

E[# of transitions from s] =
t−1∑
k=1

γk(s)
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Expectation of (transition) counts

In much the same vein, let us define

ξk(q, s) = Pr [Xk = q,Xk+1 = s|Z , λ]

(i.e., ξk(q, s) is the probability of being at state q at time k, and at
state s at time k + 1, given the observations and the current HMM
model)

We have that

ξk(q, s) = ηkαk(q)Tq,sMs,zk+1
βk+1(s),

where ηk is a normalization factor, such that
∑

q,s ξk(q, s) = 1.

New concept: how many times it the state trajectory expected to
transition from state q to state s?

E[# of transitions from q to s] =
t−1∑
k=1

ξk(q, s)
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Baum-Welch algorithm 1

Based on the probability estimates and expectations computed so far,
using the original HMM model λ = (T ,M, π), we can construct a
new model λ′ = (T ′,M ′, π′) (notice that the two models share the
states and observations):

The new initial condition distribution is the one obtained by
smoothing:

π′s = γ1(s)

The entries of the new transition matrix can be obtained as follows:

T ′qs =
E[# of transitions from state q to state s]

E[# of transitions from state q]
=

∑t−1
k=1 ξk(q, s)∑t−1
k=1 γk(q)
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Baum-Welch algorithm 2

The entries of the new observation matrix can be obtained as follows:

M ′sm =
E[# of times in state s, when the observation was m]

E[# of times in state s]

=

∑t
k=1 γk(s) · 1(zk = m)∑t

k=1 γk(s)

It can be shown [Baum et al., 1970] that the new model λ′ is such
that

Pr [Z |λ′] ≥ Pr [Z |λ], as desired.

Pr [Z |λ′] = Pr [Z |λ] only if λ is a critical point of the likelihood
function f (λ) = Pr [Z |λ]
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Example: Finding Keyser Söze 4

Let us apply the method to the example. We get

Initial condition: π = (1, 0).

Transition matrix:[
0.6909 0.3091
0.0934 0.9066

]
Observation matrix:[

0.5807 0.0010 0.4183
0.0000 0.7621 0.2379

]
0 2 4 6 8 10 12 14 16 18 20

−10

−9.5

−9

−8.5

−8

−7.5

Iteration number

Pr
[Z

|λ
]

 

 

Baum−Welch iterations
True value

Note that it is possible that Pr [Z |λ′] > Pr [Z |λtrue]! This is due to
overfitting over one particular data set.

E. Frazzoli (MIT) Lecture 21: HMMs November 24, 2010 22 / 23



Recursive Bayesian estimation: HMMs and Kalman filters

x1

z1

x2

z2

. . .

. . .

xt

zt

The idea of the filtering/smoothing techniques for HMM is in fact
broader. In general it applies to any system where the state at a time
step only depends on the state at the previous time step (Markov
property), and the observation at a time step only depends on the
state at that time step.

HMMs: discrete state (Markov chain), arbitrary transition and
observation matrices.

Kalman filter: continuous state (Markov process), (Linear-)Gaussian
transitions, Gaussian observations.
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